Skip to main content

Part of the book series: Cancer Drug Discovery and Development™ ((CDD&D))

  • 876 Accesses

Summary

Microarrays have long been promised to be a tool that might one day revolutionize oncology research and drug development. Despite the tremendous potential, however, there have been few breakthroughs that can be directly attributed to microarray-based profiling. While many researchers now say that microarrays have been over-hyped, it is more likely that early experiments were simply conducted in a naïve manner. Many believe that as technology and our understanding of experimental design improves, so too will the end results. We believe that with new approaches, particularly the use of pure cell populations potentially coupled with new and improved RNA amplification methodologies, the promise of microarrays for oncology finally will be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeRisi J, Penland L, Brown PO et al. Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat Genet 1996;14:457–460.

    Article  CAS  PubMed  Google Scholar 

  2. Primdahl H, Wikman FP, von der Maase H et al. Allelic imbalances in human bladder cancer: genome-wide detection with high-density single-nucleotide polymorphism arrays. J Natl Cancer Inst 2002;94:216–223.

    PubMed  Google Scholar 

  3. Pollack JR, Perou CM, Alizadeh AA et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999;23:41–46.

    Article  CAS  PubMed  Google Scholar 

  4. van’t Veer LJ, Dai H, van de Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415(6871):530–536.

    Article  Google Scholar 

  5. Rubin MA. Tech.Sight. Understanding disease cell by cell. Science 2002;296:1329–1330.

    Article  CAS  PubMed  Google Scholar 

  6. Mallon E, Osin P, Nasiri N et al. The basic pathology of human breast cancer. J Mammary Gland Biol Neoplasia 2000;5:139–163.

    Article  CAS  PubMed  Google Scholar 

  7. Namba R, Maglione JE, Davis RR et al. Heterogeneity of mammary lesions represents molecular differences. BMC Cancer 2006;6:275.

    Article  PubMed  Google Scholar 

  8. Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumors. Nature 2000;406:747–752.

    Article  CAS  PubMed  Google Scholar 

  9. Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001;98:10869–10874.

    Article  CAS  PubMed  Google Scholar 

  10. Dachs GU, Chaplin DJ. Microenvironmental control of gene expression: implications for tumor angiogenesis, progression, and metastasis. Semin Radiat Oncol 1998;8:208–216.

    Article  CAS  PubMed  Google Scholar 

  11. Schornack PA, Gillies RJ. Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia 2003;5:135–145.

    CAS  PubMed  Google Scholar 

  12. Bielas JH, Loeb KR, Rubin BP et al. Human cancers express a mutator phenotype. Proc Natl Acad Sci USA 2006;103:18238–18242.

    Article  CAS  PubMed  Google Scholar 

  13. Loeb LA, Loeb KR, Anderson JP. Multiple mutations and cancer. Proc Natl Acad Sci USA 2003;100:776–781.

    Article  CAS  PubMed  Google Scholar 

  14. Suarez-Quian CA, Goldstein SR, Pohida T et al. Laser capture microdissection of single cells from complex tissues. Biotechniques 1999;26:328–335.

    CAS  PubMed  Google Scholar 

  15. Fend F, Raffeld M. Laser capture microdissection in pathology. J Clin Pathol 2000;53:666–672.

    Article  CAS  PubMed  Google Scholar 

  16. Alevizos I, Mahadevappa M, Zhang X et al. Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. Oncogene 2001;20:6196–6204.

    Article  CAS  PubMed  Google Scholar 

  17. Hergenhahn M, Kenzelmann M, Grone HJ. Laser-controlled microdissection of tissues opens a window of new opportunities. Pathol Res Pract 2003;199:419–423.

    Article  CAS  PubMed  Google Scholar 

  18. Mohr S, Bottin MC, Lannes B et al. Microdissection, mRNA amplification, and microarray: a study of pleural mesothelial and malignant mesothelioma cells. Biochimie 2004;86:13–19.

    Article  CAS  PubMed  Google Scholar 

  19. Ohyama H, Zhang X, Kohno Y et al. Laser capture microdissection–generated target sample for high-density oligonucleotide array hybridization. Biotechniques 2000;29:530–536.

    CAS  PubMed  Google Scholar 

  20. Wu MS, Lin YS, Chang YT et al. Gene expression profiling of gastric cancer by microarray combined with laser capture microdissection. World J Gastroenterol 2005;11:7405–7412.

    CAS  PubMed  Google Scholar 

  21. Yim SH, Ward JM, Dragan Y et al. Microarray analysis using amplified mRNA from laser capture microdissection of microscopic hepatocellular precancerous lesions and frozen hepatocellular carcinomas reveals unique and consistent gene expression profiles. Toxicol Pathol 2003;31:295–303.

    Article  CAS  PubMed  Google Scholar 

  22. Coco S, Defferrari R, Scaruffi P et al. Genome analysis and gene expression profiling of neuroblastoma and ganglioneuroblastoma reveal differences between neuroblastic and Schwannian stromal cells. J Pathol 2005;207:346–357.

    Article  CAS  PubMed  Google Scholar 

  23. Yang F, Foekens JA, Yu J et al. Laser microdissection and microarray analysis of breast tumors reveal ER-alpha–related genes and pathways. Oncogene 2006;25:1413–1419.

    Article  CAS  PubMed  Google Scholar 

  24. Clarke MF, Dick JE, Dirks PB et al. Cancer stem cells: perspectives on current status and future directions: AACR Workshop on Cancer Stem Cells. Cancer Res 2006;66:9339–9344.

    Article  CAS  PubMed  Google Scholar 

  25. Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol 2005;15:494–501.

    Article  CAS  PubMed  Google Scholar 

  26. Becker AJ, McCulloch CE, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 1963;197:452–454.

    Article  CAS  PubMed  Google Scholar 

  27. Assersohn L, Gangi L, Zhao Y et al. The feasibility of using fine needle aspiration from primary breast cancers for cDNA microarray analyses. Clin Cancer Res 2002;8:794–801.

    CAS  PubMed  Google Scholar 

  28. Gomes LI, Silva RL, Stolf BS et al. Comparative analysis of amplified and nonamplified RNA for hybridization in cDNA microarray. Anal Biochem 2003;321:244–251.

    Article  CAS  PubMed  Google Scholar 

  29. Iscove NN, Barbara M, Gu M et al. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 2002;20:940–943.

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Ali S, Philip PA et al. Direct comparison of microarray gene expression profiles between non-amplification and a modified cDNA amplification procedure applicable for needle biopsy tissues. Cancer Detect Prev 2003;27:405–411.

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Adams L, Schwartz SM, Bumgarner RE. RNA amplification, fidelity, and reproducibility of expression profiling. C R Biol 2003;326:1021–1030.

    Article  CAS  PubMed  Google Scholar 

  32. Nygaard V, Loland A, Holden M et al. Effects of mRNA amplification on gene expression ratios in cDNA experiments estimated by analysis of variance. BMC Genomics 2003;4:11.

    Article  PubMed  Google Scholar 

  33. Subkhankulova T, Livesey FJ. Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single-cell level. Genome Biol 2006;7:R18.

    Article  PubMed  Google Scholar 

  34. Van Gelder RN, von Zastrow ME, Yool A et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA 1990;87:1663–1667.

    Article  PubMed  Google Scholar 

  35. Wang E, Miller LD, Ohnmacht GA et al. High–fidelity mRNA amplification for gene profiling. Nat Biotechnol 2000;18:457–459.

    Article  CAS  PubMed  Google Scholar 

  36. Baugh LR, Hill AA, Brown EL et al. Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res 2001;29:E29.

    Article  CAS  PubMed  Google Scholar 

  37. Barker CS, Griffin C, Dolganov GM et al. Increased DNA microarray hybridization specificity using sscDNA targets. BMC Genomics 2005;6:57.

    Article  PubMed  Google Scholar 

  38. Dafforn A, Chen P, Deng G et al. Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. Biotechniques 2004;37:854–857.

    CAS  PubMed  Google Scholar 

  39. Nallur G, Luo C, Fang L et al. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Res 2001;29:E118.

    Article  CAS  PubMed  Google Scholar 

  40. Karsten SL, Van Deerlin VM, Sabatti C et al. An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis. Nucleic Acids Res 2002;30:E4.

    Article  PubMed  Google Scholar 

  41. Wiedorn KH, Kuhl H, Galle J et al. Comparison of in situ hybridization, direct and indirect in situ PCR as well as tyramide signal amplification for the detection of HPV. Histochem Cell Biol 1999;111: 89–95.

    Article  CAS  PubMed  Google Scholar 

  42. Qian X, Bauer RA, Xu HS et al. In situ hybridization detection of calcitonin mRNA in routinely fixed, paraffin-embedded tissue sections: a comparison of different types of probes combined with tyramide signal amplification. Appl Immunohistochem Mol Morphol 2001;9:61–69.

    Article  CAS  PubMed  Google Scholar 

  43. Yu J, Othman MI, Farjo R et al. Evaluation and optimization of procedures for target labeling and hybridization of cDNA microarrays. Mol Vis 2002;8:130–137.

    CAS  PubMed  Google Scholar 

  44. Gallardo TD, Hammer RE, Garry DJ. RNA amplification and transcriptional profiling for analysis of stem cell populations. Genesis 2003;37:57–63.

    Article  CAS  PubMed  Google Scholar 

  45. Kenzelmann M, Klaren R, Hergenhahn M et al. High-accuracy amplification of nanogram total RNA amounts for gene profiling. Genomics 2004;83:550–558.

    Article  CAS  PubMed  Google Scholar 

  46. Liu CL, Schreiber SL, Bernstein BE. Development and validation of a T7-based linear amplification for genomic DNA. BMC Genomics 2003;4:19.

    Article  CAS  PubMed  Google Scholar 

  47. Park PJ, Cao YA, Lee SY et al. Current issues for DNA microarrays: platform comparison, double linear amplification, and universal RNA reference. J Biotechnol 2004;112:225–245.

    Article  CAS  PubMed  Google Scholar 

  48. Schlingemann J, Thuerigen O, Ittrich C et al. Effective transcriptome amplification for expression profiling on sense-oriented oligonucleotide microarrays. Nucleic Acids Res 2005;33:e29.

    Article  PubMed  Google Scholar 

  49. Shearstone JR, Allaire NE, Campos-Rivera J et al. Accurate and precise transcriptional profiles from 50 pg of total RNA or 100 flow-sorted primary lymphocytes. Genomics 2006;88:111–121.

    Article  CAS  PubMed  Google Scholar 

  50. Xu T, Shu CT, Purdom E et al. Microarray analysis reveals differences in gene expression of circulating CD8(+) T cells in melanoma patients and healthy donors. Cancer Res 2004;64:3661–3667.

    Article  CAS  PubMed  Google Scholar 

  51. Brandt SP. Microgenomics: gene expression analysis at the tissue-specific and single-cell levels. J Exp Bot 2005;56:495–505.

    Article  CAS  PubMed  Google Scholar 

  52. Kurimoto K, Yabuta Y, Ohinata Y et al. An improved single–cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 2006;34:e42.

    Article  PubMed  Google Scholar 

  53. Montrose MH. The future of GI and liver research: editorial perspectives: I. Visions of epithelial research. Am J Physiol Gastrointest Liver Physiol 2003;284:G547–550.

    CAS  PubMed  Google Scholar 

  54. Nygaard V, Hovig E. Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling. Nucleic Acids Res 2006;34:996–1014.

    Article  CAS  PubMed  Google Scholar 

  55. Osawa M, Egawa G, Mak SS et al. Molecular characterization of melanocyte stem cells in their niche. Development 2005;132:5589–5599.

    Article  CAS  PubMed  Google Scholar 

  56. Ramos CA, Bowman TA, Boles NC et al. Evidence for diversity in transcriptional profiles of single hematopoietic stem cells.PLoS Genet 2006;2:e159.

    Article  PubMed  Google Scholar 

  57. Tietjen I, Rihel J, Dulac CG. Single-cell transcriptional profiles and spatial patterning of the mammalian olfactory epithelium. Int J Dev Biol 2005;49:201–207.

    Article  CAS  PubMed  Google Scholar 

  58. Tietjen I, Rihel JM, Cao Y et al. Single-cell transcriptional analysis of neuronal progenitors. Neuron 2003;38:161–175.

    Article  CAS  PubMed  Google Scholar 

  59. Winegarden N. Microarrays. In: Webster J (ed.). Encyclopedia of Medical Devices and Instrumentation. 2 nd ed. Hoboken, NJ: John Wiley & Sons; 2006:361–371.

    Google Scholar 

  60. Godfrey TE, Kim SH, Chavira M et al. Quantitative mRNA expression analysis from formalin-fixed, paraffin-embedded tissues using 5' nuclease quantitative reverse transcription–polymerase chain reaction. J Mol Diagn 2000;2:84–91.

    Article  CAS  PubMed  Google Scholar 

  61. Scicchitano MS, Dalmas DA, Bertiaux MA et al. Preliminary comparison of quantity, quality, and microarray performance of RNA extracted from formalin-fixed, paraffin-embedded, and unfixed frozen tissue samples. J Histochem Cytochem 2006;54:1229–1237.

    Article  CAS  PubMed  Google Scholar 

  62. Kim M, Lee S, Yang SK et al. Differential expression in histologically normal crypts of ulcerative colitis suggests primary crypt disorder. Oncol Rep 2006;16:663–670.

    CAS  PubMed  Google Scholar 

  63. Chung CH, Parker JS, Ely K et al. Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor–κb signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 2006;66:8210–8218.

    Article  CAS  PubMed  Google Scholar 

  64. Fan JB, Yeakley JM, Bibikova M et al. A versatile assay for high-throughput gene expression profiling on universal array matrices. Genome Res 2004;14:878–885.

    Article  CAS  PubMed  Google Scholar 

  65. Bibikova M, Talantov D, Chudin E et al. Quantitative gene expression profiling in formalin-fixed, paraffin-embedded tissues using universal bead arrays. Am J Pathol 2004;165:1799–1807.

    Article  CAS  PubMed  Google Scholar 

  66. Dietel M, Sers C. Personalized medicine and development of targeted therapies: The upcoming challenge for diagnostic molecular pathology: a review. Virchows Arch 2006;448:744–755.

    Article  PubMed  Google Scholar 

  67. Pusztai L, Mazouni C, Anderson K et al. Molecular classification of breast cancer: limitations and potential. Oncologist 2006;11:868–877.

    Article  CAS  PubMed  Google Scholar 

  68. Nielsen TO. Microarray analysis of sarcomas. Adv Anat Pathol 2006;13:166–173.

    Article  CAS  PubMed  Google Scholar 

  69. Gerhold DL, Jensen RV, Gullans SR. Better therapeutics through microarrays. Nat Genet 2002;32 Suppl:547–551.

    Article  CAS  PubMed  Google Scholar 

  70. Jain KK. Role of nanobiotechnology in developing personalized medicine for cancer. Technol Cancer Res Treat 2005;4:645–650.

    CAS  PubMed  Google Scholar 

  71. Jain KK. Personalized medicine. Curr Opin Mol Ther 2002;4:548–558.

    CAS  PubMed  Google Scholar 

  72. Nawrocki S, Skacel T, Brodowicz T. From microarrays to new therapeutic approaches in bladder cancer. Pharmacogenomics 2003;4:179–189.

    Article  CAS  PubMed  Google Scholar 

  73. Bissonnette L, Bergeron MG. Next revolution in the molecular theranostics of infectious diseases: microfabricated systems for personalized medicine. Expert Rev Mol Diagn 2006;6:433–450.

    Article  CAS  PubMed  Google Scholar 

  74. Picard FJ, Bergeron MG. Rapid molecular theranostics in infectious diseases. Drug Discov Today 2002;7:1092–1101.

    Article  CAS  PubMed  Google Scholar 

  75. Sablon E, Shapiro F, Zoulim F. Early detection of hepatitis B drug resistance: implications for patient management. Expert Rev Mol Diagn 2003;3:535–547.

    Article  CAS  PubMed  Google Scholar 

  76. Deeken JF, Figg WD, Bates SE et al. Toward individualized treatment: prediction of anticancer drug disposition and toxicity with pharmacogenetics. Anticancer Drugs 2007;18:111–126.

    Article  CAS  PubMed  Google Scholar 

  77. Golub TR, Slonim DK, Tamayo P et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531–537.

    Article  CAS  PubMed  Google Scholar 

  78. Alizadeh AA, Eisen MB, Davis RE et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403:503–511.

    Article  CAS  PubMed  Google Scholar 

  79. van’t Veer LJ, Dai H, van de Vijver MJ et al. Expression profiling predicts outcome in breast cancer. Breast Cancer Res 2003;5:57–58.

    Article  Google Scholar 

  80. van de Vijver MJ, He YD, van’t Veer LJ et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  81. Aronovitz LG, Redican-Bigott G, Hormozi S et al. New drug development: science, business, regulatory, and intellectual property issues cited as hampering drug development efforts. In: Office USGA, 2006;1–47.

    Google Scholar 

  82. Russo E. Chip critics countered. The Scientist 2003;17:30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stickle, N., Winegarden, N. (2008). Toward the Realization of the Promise of Microarrays in Oncology. In: Innocenti, F. (eds) Genomics and Pharmacogenomics in Anticancer Drug Development and Clinical Response. Cancer Drug Discovery and Development™. Humana Press. https://doi.org/10.1007/978-1-60327-088-5_1

Download citation

Publish with us

Policies and ethics