Skip to main content

Tumor Lymphangiogenesis: What We Know and Don't Know

  • Chapter
  • First Online:
From Local Invasion to Metastatic Cancer

Part of the book series: Current Clinical Oncology ((CCO))

  • 933 Accesses

Abstract

The lymphatic vasculature represents a major conduit through which tumor cell metastasize. In addition to structural considerations and passive mechanisms that facilitate entry of tumor cells into lymphatic capillaries, a number of processes have been discovered whereby tumor cells actively promote their entry into the lymphatics. One of these processes is tumor-induced lymphangiogenesis. Activation of VEGFR-3 on lymphatic endothelial cells (LECs) by its ligands VEGF-C and/or VEGF-D produced by tumors is the best-studied regulator of tumor-induced lymphangiogenesis. However, a number of other pro-lymphangiogenic factors operative within tumors have additionally been discovered. Progress is being made in understanding the signal transduction pathways and their end points that orchestrate lymphangiogenesis. Together, these findings are supporting attempts to therapeutically interfere with tumor-induced lymphangiogenesis. Nevertheless, many outstanding issues remain to be addressed, including possible side effects of such therapeutic interference. Furthermore, additional active mechanisms that promote the formation of lymph node metastasis are emerging, including chemokine-mediated chemotaxis and remote tumor-induced changes in the lymph node microenvironment that support subsequent metastasis formation. The relative contribution of these different mechanisms to the process of metastasis remains to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sleeman JP. The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 2000;157:55–81.

    Article  PubMed  CAS  Google Scholar 

  2. Leong SP, Cady B, Jablons DM, et al. Clinical patterns of metastasis. Cancer Metastasis Rev 2006;25(2):221–32.

    Article  PubMed  Google Scholar 

  3. Willis JI, Schwarz MR. The circulating life span, immunocompetence and 3H-uridine uptake of small lymphocytes from thymus-grafted, neonatally thymectomized rats. J Immunol 1975;115(3):734–8.

    PubMed  CAS  Google Scholar 

  4. Carr I. Lymphatic metastasis. Cancer Metastasis Rev 1983;2(3):307–17.

    Article  PubMed  CAS  Google Scholar 

  5. Brodt P. Adhesion mechanisms in lymphatic metastasis. Cancer Metastasis Rev 1991;10(1):23–32.

    Article  PubMed  CAS  Google Scholar 

  6. Beahrs O, Myers M. Purposes and principles of staging. In: Manual for Staging of Cancer. Philadelphia: J. B. Lippincott Co, 1983, pp. 3–5.

    Google Scholar 

  7. Butler TP, Gullino PM. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 1975;35(3):512–6.

    PubMed  CAS  Google Scholar 

  8. Cabanas RM. An approach for the treatment of penile carcinoma. Cancer 1977;39(2):456–66.

    Article  PubMed  CAS  Google Scholar 

  9. Chen SC, Chang HK, Lin YC, et al. Prognosis of breast cancer after supraclavicular lymph node metastasis: not a distant metastasis. Ann Surg Oncol 2006;13(11):1457–65.

    Article  PubMed  Google Scholar 

  10. Jain RK. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst 1989;81(8):570–6.

    Article  PubMed  CAS  Google Scholar 

  11. Sleeman JP, Krishnan J, Kirkin V, Baumann P. Markers for the lymphatic endothelium: in search of the holy grail? Microsc Res Tech 2001;55(2):61–9.

    Article  PubMed  CAS  Google Scholar 

  12. Baluk P, Fuxe J, Hashizume H, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 2007;204(10):2349–62.

    Article  PubMed  CAS  Google Scholar 

  13. Achen MG, McColl BK, Stacker SA. Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 2005;7(2):121–7.

    Article  PubMed  CAS  Google Scholar 

  14. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005;438(7070):946–53.

    Article  PubMed  CAS  Google Scholar 

  15. Thiele W, Sleeman JP. Tumor-induced lymphangiogenesis: A target for cancer therapy? J Biotechnol 2006;124:224–41.

    Article  PubMed  CAS  Google Scholar 

  16. Beasley NJ, Prevo R, Banerji S, et al. Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res 2002;62(5):1315–20.

    PubMed  CAS  Google Scholar 

  17. Kyzas PA, Geleff S, Batistatou A, Agnantis NJ, Stefanou D. Evidence for lymphangiogenesis and its prognostic implications in head and neck squamous cell carcinoma. J Pathol 2005;206(2):170–7.

    Article  PubMed  Google Scholar 

  18. Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res 2005;65(3):550–63.

    Article  PubMed  CAS  Google Scholar 

  19. Sleeman JP. The relationship between tumors and the lymphatics: what more is there to know? Lymphology 2006;39(2):62–8.

    PubMed  CAS  Google Scholar 

  20. Sleeman JP, Cremers N. New concepts in breast cancer metastasis: tumor initiating cells and the microenvironment. Clin Exp Metastasis 2007;24(8):707–15.

    Article  PubMed  CAS  Google Scholar 

  21. Eccles S, Paon L, Sleeman JP. Lymphatic metastasis: importance and new insights into cellular and molecular mechanisms. Clin Exp Metastasis 2007;24(8):619–36.

    Article  PubMed  CAS  Google Scholar 

  22. Zeng Y, Opeskin K, Baldwin ME, et al. Expression of vascular endothelial growth factor receptor-3 by lymphatic endothelial cells is associated with lymph node metastasis in prostate cancer. Clin Cancer Res 2004;10(15):5137–44.

    Article  PubMed  CAS  Google Scholar 

  23. Roberts N, Kloos B, Cassella M, et al. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 2006;66(5):2650–7.

    Article  PubMed  CAS  Google Scholar 

  24. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice [published erratum appears in Science 1997 Jul 25;277 (5325): 463]. Science 1997;276(5317):1423–5.

    Article  PubMed  CAS  Google Scholar 

  25. Veikkola T, Jussila L, Makinen T, et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001;20(6):1223–31.

    Article  PubMed  CAS  Google Scholar 

  26. Pepper MS, Tille JC, Nisato R, Skobe M. Lymphangiogenesis and tumor metastasis. Cell Tissue Res 2003;314(1):167–77.

    Article  PubMed  CAS  Google Scholar 

  27. Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002;196(11):1497–506.

    Article  PubMed  CAS  Google Scholar 

  28. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 2005;201(7):1089–99.

    Article  PubMed  CAS  Google Scholar 

  29. Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001;7(2):199–205.

    Article  PubMed  CAS  Google Scholar 

  30. Veikkola T, Lohela M, Ikenberg K, et al. Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. FASEB J 2003;17(14):2006–13.

    Article  PubMed  CAS  Google Scholar 

  31. Wirzenius M, Tammela T, Uutela M, et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med 2007;204(6):1431–40.

    Article  PubMed  CAS  Google Scholar 

  32. Goldman J, Rutkowski JM, Shields JD, et al. Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis. FASEB J 2007;21(4):1003–12.

    Article  PubMed  CAS  Google Scholar 

  33. Vlahakis NE, Young BA, Atakilit A, Sheppard D. The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. J Biol Chem 2005;280(6):4544–52.

    Article  PubMed  CAS  Google Scholar 

  34. Petrova TV, Makinen T, Makela TP, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 2002;21(17):4593–9.

    Article  PubMed  CAS  Google Scholar 

  35. Huang XZ, Wu JF, Ferrando R, et al. Fatal bilateral chylothorax in mice lacking the integrin alpha9beta1. Mol Cell Biol 2000;20(14):5208–15.

    Article  PubMed  CAS  Google Scholar 

  36. Vlahakis NE, Young BA, Atakilit A, et al. Integrin alpha9beta1 directly binds to vascular endothelial growth factor (VEGF)-A and contributes to VEGF-A-induced angiogenesis. J Biol Chem 2007;282(20):15187–96.

    Article  PubMed  CAS  Google Scholar 

  37. Karpanen T, Heckman CA, Keskitalo S, et al. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J 2006;20(9):1462–72.

    Article  PubMed  CAS  Google Scholar 

  38. Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development (Cambridge, England) 2002;129(20):4797–806.

    CAS  Google Scholar 

  39. Achen MG, Stacker SA. Tumor lymphangiogenesis and metastatic spread-new players begin to emerge. Int J Cancer 2006;119(8):1755–60.

    Article  PubMed  CAS  Google Scholar 

  40. Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 2002;3(3):411–23.

    Article  PubMed  CAS  Google Scholar 

  41. Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 2005;24(16):2885–95.

    Article  PubMed  CAS  Google Scholar 

  42. Mäkinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K, Klein R, Wilkinson GA. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 2005;19(3):397–410.

    Article  PubMed  Google Scholar 

  43. Cao R, Bjorndahl MA, Religa P, et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 2004;6(4):333–45.

    Article  PubMed  CAS  Google Scholar 

  44. Furtado GC, Marinkovic T, Martin AP, et al. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc Natl Acad Sci USA 2007;104(12):5026–31.

    Google Scholar 

  45. Chang LK, Garcia-Cardena G, Farnebo F, et al. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA 2004;101(32):11658–63.

    Google Scholar 

  46. Shin JW, Min M, Larrieu-Lahargue F, Canron X, Kunstfeld R, Nguyen L, Henderson JE, Bikfalvi A, Detmar M, Hong YK. Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 2006;17(2):576–84.

    Article  PubMed  CAS  Google Scholar 

  47. Achen MG, Stacker SA. Tumor lymphangiogenesis and metastatic spread-new players begin to emerge. Int J Cancer 2006;119:1755–60.

    Article  PubMed  CAS  Google Scholar 

  48. Cao Y. Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer 2005;5(9):735–43.

    Article  PubMed  CAS  Google Scholar 

  49. Cao R, Bjorndahl MA, Gallego MI, et al. Hepatocyte growth factor is a novel lymphangiogenic factor with an indirect mechanism of action. Blood 2006;107(9):3531–6.

    Article  PubMed  CAS  Google Scholar 

  50. Sfiligoi C, de Luca A, Cascone I, et al. Angiopoietin-2 expression in breast cancer correlates with lymph node invasion and short survival. Int J Cancer 2003;103(4):466–74.

    Article  PubMed  CAS  Google Scholar 

  51. Dixelius J, Makinen T, Wirzenius M, et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem 2003;278(42):40973–9.

    Article  PubMed  CAS  Google Scholar 

  52. Salameh A, Galvagni F, Bardelli M, Bussolino F, Oliviero S. Direct recruitment of CRK and GRB2 to VEGFR-3 induces proliferation, migration, and survival of endothelial cells through the activation of ERK, AKT, and JNK pathways. Blood 2005;106(10):3423–31.

    Article  PubMed  CAS  Google Scholar 

  53. Matsuo M, Yamada S, Koizumi K, Sakurai H, Saiki I. Tumour-derived fibroblast growth factor-2 exerts lymphangiogenic effects through Akt/mTOR/p70S6kinase pathway in rat lymphatic endothelial cells. Eur J Cancer 2007;43(11):1748–54.

    Article  PubMed  CAS  Google Scholar 

  54. Kobayashi S, Kishimoto T, Kamata S, Otsuka M, Miyazaki M, Ishikura H. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci 2007;98(5):726–33.

    Article  PubMed  CAS  Google Scholar 

  55. Taniguchi K, Kohno R, Ayada T, et al. Spreads are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol 2007;27(12):4541–50.

    Article  PubMed  CAS  Google Scholar 

  56. Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001;7(2):186–91.

    Article  PubMed  CAS  Google Scholar 

  57. Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001;20(4):672–82.

    Article  PubMed  CAS  Google Scholar 

  58. Arya M, Patel HR, McGurk C, et al. The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis. J Exp Ther Oncol 2004;4(4):291–303.

    PubMed  CAS  Google Scholar 

  59. Darash-Yahana M, Pikarsky E, Abramovitch R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J 2004;18(11):1240–2.

    PubMed  CAS  Google Scholar 

  60. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410(6824):50–6.

    Article  PubMed  CAS  Google Scholar 

  61. Takeuchi H, Fujimoto A, Tanaka M, Yamano T, Hsueh E, Hoon DS. CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res 2004;10(7):2351–8.

    Article  PubMed  CAS  Google Scholar 

  62. Wang J, Xi L, Hunt JL, et al. Expression pattern of chemokine receptor 6 (CCR6) and CCR7 in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Res 2004;64(5):1861–6.

    Article  PubMed  CAS  Google Scholar 

  63. Mashino K, Sadanaga N, Yamaguchi H, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 2002;62(10):2937–41.

    PubMed  CAS  Google Scholar 

  64. Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M. Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 2002;99(25):16069–74.

    Google Scholar 

  65. Shields JD, Emmett MS, Dunn DB, et al. Chemokine-mediated migration of melanoma cells towards lymphatics – a mechanism contributing to metastasis. Oncogene 2007;26(21):2997–3005.

    Article  PubMed  CAS  Google Scholar 

  66. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 2007;11(6):526–38.

    Article  PubMed  CAS  Google Scholar 

  67. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 2001;93(21):1638–43.

    Article  PubMed  CAS  Google Scholar 

  68. Maruyama K, Ii M, Cursiefen C, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 2005;115(9):2363–72.

    Article  PubMed  CAS  Google Scholar 

  69. Kerjaschki D, Huttary N, Raab I, et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 2006;12(2):230–4.

    Article  PubMed  CAS  Google Scholar 

  70. Schledzewski K, Falkowski M, Moldenhauer G, et al. Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol 2006;209(1):67–77.

    Article  PubMed  CAS  Google Scholar 

  71. He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002;94(11):819–25.

    Article  PubMed  CAS  Google Scholar 

  72. Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res 2006;66(23):11089–93.

    Article  PubMed  CAS  Google Scholar 

  73. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438(7069):820–7.

    Article  PubMed  CAS  Google Scholar 

  74. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 10 Oct 2006 (Epub ahead of print).

    Google Scholar 

  75. Harrell MI, Iritani BM, Ruddell A. Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 2007;170(2):774–86.

    Article  PubMed  Google Scholar 

  76. Van den Eynden GG, Van der Auwera I, Van Laere SJ, et al. Induction of lymphangiogenesis in and around axillary lymph node metastases of patients with breast cancer. Br J Cancer 2006;95(10):1362–6.

    Article  PubMed  Google Scholar 

  77. Harrell JC, Dye WW, Allred DC, et al. Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res 2006;66(18):9308–15.

    Article  PubMed  CAS  Google Scholar 

  78. Achen MG, Roufail S, Domagala T, et al. Monoclonal antibodies to vascular endothelial growth factor-D block its interactions with both VEGF receptor-2 and VEGF receptor-3. Eur J Biochem/FEBS 2000;267(9):2505–15.

    Article  CAS  Google Scholar 

  79. Persaud K, Tille JC, Liu M, et al. Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J Cell Sci 2004;117(Pt 13):2745–56.

    Article  PubMed  CAS  Google Scholar 

  80. Kubo H, Cao R, Brakenhielm E, Makinen T, Cao Y, Alitalo K. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 2002;99(13):8868–73.

    Google Scholar 

  81. Krishnan J, Kirkin V, Steffen A, et al. Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res 2003;63(3):713–22.

    PubMed  CAS  Google Scholar 

  82. Kirkin V, Thiele W, Baumann P, et al. MAZ51, an indolinone that inhibits endothelial cell and tumor cell growth in vitro, suppresses tumor growth in vivo. Int J Cancer 2004;112(6):986–93.

    Article  PubMed  CAS  Google Scholar 

  83. Karpanen T, Egeblad M, Karkkainen MJ, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001;61(5):1786–90.

    PubMed  CAS  Google Scholar 

  84. Lin B, Podar K, Gupta D, et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res 2002;62(17):5019–26.

    PubMed  CAS  Google Scholar 

  85. Ruggeri B, Singh J, Gingrich D, et al. CEP-7055: a novel, orally active pan inhibitor of vascular endothelial growth factor receptor tyrosine kinases with potent antiangiogenic activity and antitumor efficacy in preclinical models. Cancer Res 2003;63(18):5978–91.

    PubMed  CAS  Google Scholar 

  86. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004;64(19):7099–109.

    Article  PubMed  CAS  Google Scholar 

  87. Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 2000;156(5):1499–504.

    Article  PubMed  CAS  Google Scholar 

  88. Schoppmann SF, Birner P, Stockl J, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 2002;161(3):947–56.

    Article  PubMed  CAS  Google Scholar 

  89. Hamrah P, Chen L, Cursiefen C, Zhang Q, Joyce NC, Dana MR. Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) on monocytic bone marrow-derived cells in the conjunctiva. Exp Eye Res 2004;79(4):553–61.

    Article  PubMed  CAS  Google Scholar 

  90. Hamrah P, Chen L, Zhang Q, Dana MR. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol 2003;163(1):57–68.

    Article  PubMed  CAS  Google Scholar 

  91. Fernandez Pujol B, Lucibello FC, Zuzarte M, Lutjens P, Muller R, Havemann K. Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur J Cell Biol 2001;80(1):99–110.

    Article  PubMed  CAS  Google Scholar 

  92. Hamada K, Oike Y, Takakura N, et al. VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 2000;96(12):3793–800.

    PubMed  CAS  Google Scholar 

  93. Le Bras B, Barallobre MJ, Homman-Ludiye J, et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci 2006;9(3):340–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neeb, A., Sleeman, J.P. (2009). Tumor Lymphangiogenesis: What We Know and Don't Know. In: Leong, S. (eds) From Local Invasion to Metastatic Cancer. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-087-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-087-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-086-1

  • Online ISBN: 978-1-60327-087-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics