Skip to main content

Vaccine-Primed Lymph Node Cells in the Adoptive Immunotherapy of Cancer: Presence of Host Immune Suppression Induced by Established Cancer

  • Chapter
  • First Online:
From Local Invasion to Metastatic Cancer

Part of the book series: Current Clinical Oncology ((CCO))

  • 904 Accesses

Abstract

Lymph nodes represent critical lymphoid compartments where antigen-presenting cells interact with T cells to propagate cellular immune responses. As such, they represent a unique source of “pre-effector” T cells that can be induced by the regional inoculation of tumor antigen as a vaccine. Utilizing this concept, we have been able to generate tumor-reactive T cells from vaccine-primed lymph nodes (VPLNs) that can mediate tumor regression in adoptive immunotherapy. This chapter describes how this pre-effector response in VPLNs can be suppressed by the presence of established systemic tumor. This suppression involves the B7-H1/PD-1 axis as well as TGF-β. Methods to block these suppressive mechanisms will be important in improving future adoptive cellular therapy approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephenson KR, Perry-Lalley D, Griffith KD, Shu S, Chang AE. Development of antitumor reactivity in regional draining lymph nodes from tumor-immunized and tumor-bearing murine hosts. Surgery 1989; 105(4):523–8.

    PubMed  CAS  Google Scholar 

  2. Yoshizawa H, Chang AE, Shu S. Specific adoptive immunotherapy mediated by tumor-draining lymph node cells sequentially activated with anti-CD3 and IL-2. J Immunol 1991; 147(2):729–37.

    PubMed  CAS  Google Scholar 

  3. Tanigawa K, Takeshita N, Eickhoff GA, Shimizu K, Chang AE. Antitumor reactivity of lymph node cells primed in vivo with dendritic cell-based vaccines. J Immunother 2001; 24(6):493–501.

    Article  PubMed  CAS  Google Scholar 

  4. Geiger JD, Wagner PD, Cameron MJ, Shu S, Chang AE. Generation of T-cells reactive to the poorly immunogenic B16-BL6 melanoma with efficacy in the treatment of spontaneous metastases. J Immunother Emphasis Tumor Immunol 1993; 13(3):153–65.

    Article  PubMed  CAS  Google Scholar 

  5. Strome SE, Krauss JC, Cameron MJ, Forslund K, Shu S, Chang AE. Immunobiologic effects of cytokine gene transfer of the B16-BL6 melanoma. Arch Otolaryngol Head Neck Surg 1993; 119(12):1289–95.

    Article  PubMed  CAS  Google Scholar 

  6. Arca MJ, Krauss JC, Aruga A, Cameron MJ, Shu S, Chang AE. Therapeutic efficacy of T cells derived from lymph nodes draining a poorly immunogenic tumor transduced to secrete granulocyte-macrophage colony-stimulating factor. Cancer Gene Ther 1996; 3(1):39–47.

    PubMed  CAS  Google Scholar 

  7. Chang AE, Li Q, Bishop DK, Normolle DP, Redman BD, Nickoloff BJ. Immunogenetic therapy of human melanoma utilizing autologous tumor cells transduced to secrete granulocyte-macrophage colony-stimulating factor. Hum Gene Ther 2000; 11(6):839–50.

    Article  PubMed  CAS  Google Scholar 

  8. Aruga A, Shu S, Chang AE. Tumor-specific granulocyte/macrophage colony-stimulating factor and interferon gamma secretion is associated with in vivo therapeutic efficacy of activated tumor-draining lymph node cells. Cancer Immunol Immunother 1995; 41(5):317–24.

    Article  PubMed  CAS  Google Scholar 

  9. Aruga A, Aruga E, Tanigawa K, Bishop DK, Sondak VK, Chang AE. Type 1 versus type 2 cytokine release by Vbeta T cell subpopulations determines in vivo antitumor reactivity: IL-10 mediates a suppressive role. J Immunol 1997; 159(2):664–73.

    PubMed  CAS  Google Scholar 

  10. Tanigawa K, Takeshita N, Craig RA, et al. Tumor-specific responses in lymph nodes draining murine sarcomas are concentrated in cells expressing P-selectin binding sites. J Immunol 2001; 167(6):3089–98.

    PubMed  CAS  Google Scholar 

  11. Li Q, Yu B, Grover AC, Zeng X, Chang AE. Therapeutic effects of tumor reactive CD4+ cells generated from tumor-primed lymph nodes using anti-CD3/anti-CD28 monoclonal antibodies. J Immunother 2002; 25(4):304–13.

    Article  CAS  Google Scholar 

  12. Li Q, Carr A, Ito F, Teitz-Tennenbaum S, Chang AE. Polarization effects of 4-1BB during CD28 costimulation in generating tumor-reactive T cells for cancer immunotherapy. Cancer Res 2003; 63(10):2546–52.

    PubMed  CAS  Google Scholar 

  13. Kroon HM, Li Q, Teitz-Tennenbaum S, Whitfield JR, Noone AM, Chang AE. 4-1BB costimulation of effector T cells for adoptive immunotherapy of cancer: involvement of Bcl gene family members. J Immunother 2007; 30(4):406–16.

    Article  CAS  Google Scholar 

  14. Chang AE, Aruga A, Cameron MJ, et al. Adoptive immunotherapy with vaccine-primed lymph node cells secondarily activated with anti-CD3 and interleukin-2. J Clin Oncol 1997; 15(2):796–807.

    PubMed  CAS  Google Scholar 

  15. Chang AE, Li Q, Jiang G, Sayre DM, Braun TM, Redman BG. Phase II trial of autologous tumor vaccination, anti-CD3-activated vaccine-primed lymphocytes, and interleukin-2 in stage IV renal cell cancer. J Clin Oncol 2003; 21(5):884–90.

    Article  PubMed  CAS  Google Scholar 

  16. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10(9):942–9.

    Article  PubMed  CAS  Google Scholar 

  17. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5(4):263–74.

    Article  PubMed  CAS  Google Scholar 

  18. Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 2004; 4(5):336–47.

    Article  PubMed  CAS  Google Scholar 

  19. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol 2002; 2(2):116–26.

    Article  PubMed  CAS  Google Scholar 

  20. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5(12):1365–9.

    Article  PubMed  CAS  Google Scholar 

  21. Curiel TJ, Wei S, Dong H, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 2003; 9(5):562–7.

    Article  PubMed  CAS  Google Scholar 

  22. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6(4):295–307.

    Article  PubMed  CAS  Google Scholar 

  23. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999; 163(10):5211–8.

    PubMed  CAS  Google Scholar 

  24. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 1999; 59(13):3128–33.

    PubMed  CAS  Google Scholar 

  25. Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 2001; 194(6):823–32.

    Article  PubMed  CAS  Google Scholar 

  26. Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25– naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198(12):1875–86.

    Article  PubMed  CAS  Google Scholar 

  27. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25– T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004; 172(9):5149–53.

    PubMed  CAS  Google Scholar 

  28. Wan YY, Flavell RA. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 2005; 102(14):5126–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wei, S., Shreiner, A.B., Chang, A.E. (2009). Vaccine-Primed Lymph Node Cells in the Adoptive Immunotherapy of Cancer: Presence of Host Immune Suppression Induced by Established Cancer. In: Leong, S. (eds) From Local Invasion to Metastatic Cancer. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-087-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-087-8_36

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-086-1

  • Online ISBN: 978-1-60327-087-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics