Skip to main content

Prostate Cancer Nomograms and How They Measure Up to Neural Networks

  • Chapter
Prostate Biopsy

Part of the book series: Current Clinical Urology ((CCU))

  • 894 Accesses

Abstract

Nomograms and neural networks represent two distinct methodologic approaches toward prediction of prostate cancer outcomes. The authors of this chapter recommend nomograms because of advantages including increased accuracy and graphic display of input variables and their relative importance. Accuracy, level of complexity, performance characteristics, model generalizability, and advantages relative to available alternatives are important considerations in selecting a predictive tool. Benefiting from continued improvement, prostate cancer nomograms have become accepted in clinical practice worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karakiewicz PI, Benayoun S, Kattan MW, et al. Development and validation of a nomogram predicting the outcome of prostate biopsy based on patient age, digital rectal examination and serum prostate specific antigen. J Urol 2005;173(6):1930–1934.

    Article  PubMed  Google Scholar 

  2. Svatek R, Karakiewicz PI, Shulman M, Karam J, Perrotte P, Benaim E. Pretreatment nomogram for disease-specific survival of patients with chemotherapy-naive androgen independent prostate cancer. Eur Urol 2006;49(4):666–674.

    Article  PubMed  Google Scholar 

  3. Djavan B, Remzi M, Zlotta A, Seitz C, Snow P, Marberger M. Novel artificial neural network for early detection of prostate cancer. J Clin Oncol 2002;20(4):921–929.

    Article  PubMed  Google Scholar 

  4. Remzi M, Anagnostou T, Ravery V, Zlotta A, Stephan C, Marberger M, Djavan B. An artificial neural network to predict the outcome of repeat prostate biopsies. Urology 2003;62(3):456–460.

    Article  PubMed  Google Scholar 

  5. Stephan C, Cammann H, Semjonow A, et al. Multicenter evaluation of an artificial neural network to increase the prostate cancer detection rate and reduce unnecessary biopsies. Clin Chem 2002;48(8):1279–1287.

    CAS  PubMed  Google Scholar 

  6. Matsui Y, Utsunomiya N, Ichioka K, et al. The use of artificial neural network analysis to improve the predictive accuracy of prostate biopsy in the Japanese population. Jpn J Clin Oncol 2004;34(10):602–607.

    Article  PubMed  Google Scholar 

  7. Babaian RJ, Fritsche H, Ayala A, et al. Performance of a neural network in detecting prostate cancer in the prostate-specific antigen reflex range of 2.5 to 4.0 ng/mL. Urology 2000;56(6):1000–1006.

    Article  CAS  PubMed  Google Scholar 

  8. Porter CR, Gamito EJ, Crawford ED, et al. Model to predict prostate biopsy outcome in large screening population with independent validation in referral setting. Urology 2005;65(5):937–941.

    Article  PubMed  Google Scholar 

  9. Poulakis V, Witzsch U, de Vries R, et al. Preoperative neural network using combined magnetic resonance imaging variables, prostate specific antigen, and Gleason score to predict prostate cancer recurrence after radical prostatectomy. Eur Urol 2004;46(5):571–578.

    Article  PubMed  Google Scholar 

  10. Poulakis V, Witzsch U, De Vries R, et al. Preoperative neural network using combined magnetic resonance imaging variables, prostate specific antigen and Gleason score to predict prostate cancer stage. J Urol 2004;172(4 Pt 1):1306–1310.

    Article  PubMed  Google Scholar 

  11. Han M, Snow PB, Epstein JI, et al. A neural network predicts progression for men with Gleason score 3 + 4 versus 4 + 3 tumors after radical prostatectomy. Urology 2000;56(6):994–999.

    Article  CAS  PubMed  Google Scholar 

  12. Partin AW, Kattan MW, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 1997;277(18):1445–1451.

    Article  CAS  PubMed  Google Scholar 

  13. Finne P, Auvinen A, Aro J, et al. Estimation of prostate cancer risk on the basis of total and free prostate-specific antigen, prostate volume and digital rectal examination. Eur Urol 2002;41(6):619–626.

    Article  PubMed  Google Scholar 

  14. Steuber T, Graefen M, Haese A, et al. Validation of a nomogram for prediction of side specific extracapsular extension at radical prostatectomy. J Urol 2006; 175(3 Pt 1):939–944.

    Article  PubMed  Google Scholar 

  15. Specht MC, Kattan MW, Gonen M, Fey J, Van Zee KJ. Predicting nonsentinel node status after positive sentinel lymph biopsy for breast cancer: clinicians versus nomogram. Ann Surg Oncol 2005;12(8):654–659.

    Article  PubMed  Google Scholar 

  16. Chun FK, Steuber T, Erbersdobler A, et al. Development and Internal validation of a nomogram predicting the probability of prostate cancer Gleason sum upgrading between biopsy and radical prostatectomy pathology. Eur Urol 2006;49(5):820–826.

    Article  PubMed  Google Scholar 

  17. Bradley E, Tibshirani RJ. Monographs on Statistics and Applied Probability: An Introduction to the Bootstrap. Boca Raton: Chapman & Hall/CRC; 1993:275.

    Google Scholar 

  18. Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 2001;54(8):774–781.

    Article  CAS  PubMed  Google Scholar 

  19. Katz EM, Kattan MW. How to judge a tumor marker. Natl Clin Pract Oncol 2005;2:482–483.

    Article  Google Scholar 

  20. Kattan MW. Statistical prediction models, artificial neural networks, and the sophism “I am a patient, not a statistic.” J Clin Oncol 2002;20(4):885–887.

    PubMed  Google Scholar 

  21. Eastham JA, May R, Robertson JL, Sartor O, Kattan MW. Development of a nomogram that predicts the probability of a positive prostate biopsy in men with an abnormal digital rectal examination and a prostate-specific antigen between 0 and 4 ng/mL. Urology 1999;54:709.

    Article  CAS  PubMed  Google Scholar 

  22. Garzotto M, Hudson RG, Peters L, et al. Predictive modeling for the presence of prostate carcinoma using clinical, laboratory, and ultrasound parameters in patients with prostate specific antigen levels ≤10 ng/mL. Cancer 2003;98:1417.

    Article  PubMed  Google Scholar 

  23. Moul JW, Snow PB, Fernandez EB, Maher PD, Sesterhenn IA. Neural network analysis of quantitative histological factors to predict pathological stage in clinical stage I nonseminomatous testicular cancer. J Urol 1995;153:1674–1677.

    Article  CAS  PubMed  Google Scholar 

  24. Truong H, Morimoto R, Walts AE, Erler B, Marchevsky A. Neural networks as an aid in the diagnosis of lymphocyte-rich effusions. Anal Quant Cytol Histol 1995;17:48–54.

    CAS  PubMed  Google Scholar 

  25. Karakiewicz PI, Bazinet M, Aprikian AG, et al. Outcome of sextant biopsy according to gland volume. Urology 1997;49(1):55–59.

    Article  CAS  PubMed  Google Scholar 

  26. Uzzo RG, Wei JT, Waldbaum RS, Perlmutter AP, Byrne JC, Vaughan ED Jr. The influence of prostate size on cancer detection. Urology 1995;46(6):831–836.

    Article  CAS  PubMed  Google Scholar 

  27. Eskicorapci SY, Guliyev F, Akdogan B, Dogan HS, Ergen A, Ozen H. Individualization of the biopsy protocol according to the prostate gland volume for prostate cancer detection. J Urol 2005; 173(5):1536–1540.

    Article  PubMed  Google Scholar 

  28. Schwarzer G, Schumacher M. Artificial neural networks for diagnosis and prognosis in prostate cancer. Semin Urol Oncol 2002;20(2):89–95.

    Article  PubMed  Google Scholar 

  29. Freedland SJ, Isaacs WB, Platz EA, et al. Prostate size and risk of high-grade, advanced prostate cancer and biochemical progression after radical prostatectomy: a search database study. J Clin Oncol 2005;23(30):7546–7554.

    PubMed  Google Scholar 

  30. Sargent DJ. Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer 2001;91:1636–1642.

    Article  CAS  PubMed  Google Scholar 

  31. Lachenbruch PA. Some misuses of discriminant analysis. Methods Inf Med 1977;16(4):255–258.

    CAS  PubMed  Google Scholar 

  32. Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000;19(4):541–561.

    Article  CAS  PubMed  Google Scholar 

  33. Burke HB. Artificial neural networks for cancer research: outcome prediction. Semin Surg Oncol 1994;10(1):73–79.

    Article  CAS  PubMed  Google Scholar 

  34. Niederberger CS. This month in Investigative Urology. Commentary on the use of neural networks in clinical urology. J Urol 1995;153(5):1362.

    Article  CAS  PubMed  Google Scholar 

  35. Snow PB, Smith DS, Catalona WJ. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J Urol 1994;152(5 Pt 2):1923–1926.

    CAS  PubMed  Google Scholar 

  36. Graefen M, Karakiewicz PI, Cagiannos I, et al. International validation of a preoperative nomogram for prostate cancer recurrence after radical prostatectomy. J Clin Oncol 2002;20(15):3206–3212.

    Article  PubMed  Google Scholar 

  37. Graefen M, Karakiewicz PI, Cagiannos I, et al. Validation study of the accuracy of a postoperative nomogram for recurrence after radical prostatectomy for localized prostate cancer. J Clin Oncol 2002;20(4):951–956.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Karakiewicz, P.I., Kattan, M.W. (2008). Prostate Cancer Nomograms and How They Measure Up to Neural Networks. In: Jones, J.S. (eds) Prostate Biopsy. Current Clinical Urology. Humana Press. https://doi.org/10.1007/978-1-60327-078-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-078-6_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-790-7

  • Online ISBN: 978-1-60327-078-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics