Skip to main content

Congenital Heart Disease Associated with Pulmonary Arterial Hypertension

  • Chapter
Pulmonary Hypertension

Part of the book series: Contemporary Cardiology™ ((CONCARD))

  • 1589 Accesses

Abstract

Pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD) is common among the subtypes of PAH. It is quite variable in terms of clinical manifestations, severity of associated PAH, response to therapy, and outcomes, depending on the anatomy of the specific lesion, pulmonary circulatory flows and pressures, and other factors. Genetic predisposition likely plays a role, but no specific genetic abnormality has yet been identified for this form of PAH. Patients with CHD-PAH should undergo a careful evaluation that includes imaging of the defect as well as catheterization to characterize the severity and nature of pulmonary hemodynamic abnormalities. Surgical correction is desirable as long as the chances of reversibility are sufficient, but this may be difficult to ascertain preoperatively in marginal cases. Many patients now respond to pulmonary hypertension therapies if they are not surgical candidates or fail to improve after surgery, and lung or heart/lung transplantation remains an option for selected recalcitrant patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Diller GP, Dimopoulis K, Okonko D, et al. Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation 2005; 112:828–835.

    Google Scholar 

  • Friedman WF. Proceedings of national heart, lung and blood institute pediatric cardiology workshop: pulmonary hypertension. Pediatr Res 20:811–824.

    Google Scholar 

  • Kidd L, Driscoll DJ, Gersony WM, et al. Second natural history study of congenital heart defects: results of treatment of patients with ventricular septal defects. Circulation 1993; 87:138–151.

    Google Scholar 

  • Simonneau G, Galie N, Rubin LJ, et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol 2004; 43(suppl):5S–12S.

    Article  PubMed  Google Scholar 

  • Galie N, “Classification of patients with congenital systemic-to-pulmonary shunts associated with pulmonary arterial hypertension: current status and future directions”. Pulmonary Arterial Hypertension Related to Congenital Heart Disease. Ed Maurice Beghetti. Munich, Elsevier GmbH, 2006, 11–17.

    Google Scholar 

  • Wood P. The Eisenmenger syndrome or pulmonary hypertension with reversed central shunt. Br Med J 1958; 46:701–709.

    Article  Google Scholar 

  • Rabinovitch M, Haworth SG, Castaneda AR, Nadas AS, Reid LR. Lung biopsy in congenital heart disease: a morphometric approach to pulmonary vascular disease. Circulation 1978; 58:1107–1122.

    PubMed  CAS  Google Scholar 

  • Fratz S, Geiger R, KResse H, et al. Pulmonary blood pressure, not flow, is associated with net endotehlin-1 production in the lungs of patients with congenital heart disease and normal pulmonary vascular resistance. J Thorac Cardiovasc Surg 2003; 126:1724–1729.

    Article  PubMed  CAS  Google Scholar 

  • van Albada ME, Shoemaker RG, Kemna MS, et al. The role of increased pulmonary blood flow in pulmonary arterial hypertension. Eur Respir J. 2005; 26:487–493.

    Article  PubMed  Google Scholar 

  • Black SM, Bekker JM, Johengen MJ, et al. Altered regulation of the ET-1 cascade in lambs with increased pulmonary blood flow and pulmonary hypertension. Pediatr Res 2000; 47:97–106.

    Article  PubMed  CAS  Google Scholar 

  • Fratz S, Meyrick B, Ovadia B, et al. Chronic endothelin A Receptor blockade in lambs with increased pulmonary blood flow and pressure. Am J Physiol Lung Cell Mol Physiol 2004; 287:L592–L597.

    Article  PubMed  CAS  Google Scholar 

  • Mata-Greenwood E, Meyrick B, Soifer SJ, Fineman JR, Black SM. Expression of VEGF and its receptors Flt-1 and Flk-1/KDR is altered in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2003; 285:L222–L231.

    PubMed  CAS  Google Scholar 

  • Mata-Greenwood E, Meyrick B, Steinhorn RH, Fineman JR, Black SM. Alterations in TGF-beta1 expression in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2003; 285:L209–L221.

    PubMed  CAS  Google Scholar 

  • Cornfield DN, Resnik ER, Herron JM, Reinhartz O, Fineman JR. Pulmonary vascular K+ channel expression and vasoreactivity in a model of congenital heart disease. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1210–L1219.

    PubMed  CAS  Google Scholar 

  • Black SM, Sanchez LS, Mata-Greenwood E, et al. sGC and PDE5 are elevated in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2001; 281:L1051–L1057.

    PubMed  CAS  Google Scholar 

  • Van Beneden R, Rondelet B, Kerbaul F, Ray L, Naeje R. Ang-1/BMPR2 signalling and the expression of MCP-1 and ICAM in overcirculation-induced experimental pulmonary hypertension. Eur Respir J 2004; 24:533 S.

    Article  Google Scholar 

  • Rondelet B, Kerbaul F, Motte S, et al. Bosentan for the prevention of overcirculation-induced experimental pulmonary arterial hypertension. Circulation 2003; 107:1329–1335.

    Article  PubMed  CAS  Google Scholar 

  • Rondelet B, Kerbaul F, Van Beneden R, et al. Signalling molecules in overcirculation-induced pulmonary hypertension in piglets: effects of sildenafil therapy. Circulation 2004; 110:2220–2225.

    Article  PubMed  CAS  Google Scholar 

  • Bolger AP, Sharma R, Li W, et al. Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. Circulation 2002; 106:92–99.

    Article  PubMed  CAS  Google Scholar 

  • Cacoub P, Dorent R, Maistre G, et al. Endothelin-1 in primary pulmonary hypertension and the Eisenmenger syndrome. Am J Cardiol 1993; 71:448–450.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa S, Miyauchi T, Sakai S, et al. Elevated levels of plasma endothelin-1 in young patients with pulmonary hypertension caused by congenital heart disease are decreased after successful surgical repair. J Thorac Cardiovasc Surg 1995; 110:271–273.

    Article  PubMed  CAS  Google Scholar 

  • Cacoub P, Dorent R, Nataf P, et al. Endothelin-1 in the lungs of patients with pulmonary hypertension. Cardiovasc Res 1997; 33:196–200.

    Article  PubMed  CAS  Google Scholar 

  • Roberts KE, McElroy JJ, Wong WP, et al. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J 2004; 24:371–374.

    Article  PubMed  CAS  Google Scholar 

  • Steele PM, Fuster V, Cohen M, Ritter DG, McGoon DC. Isolated atrial septal defect with pulmonary vascular obstructive disease—long-term follow-up and prediction of outcome after surgical correction. Circulation 1987; 76:1037–1042.

    PubMed  CAS  Google Scholar 

  • Batista RJ, Santos JL, Takeshita N, et al. Successful reversal of pulmonary hypertension in Eisenmenger complex. Arq Bras Cardiol. 1997 Apr; 68(4):279–280.

    Google Scholar 

  • Bando K, Turrentine MW, Sharp TG, et al. Pulmonary hypertension after operations for congenital heart disease: analysis of risk factors and management. J Thorac Cardiovasc Surg 1996; 112:1600–1607.

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Neick I, Li J, Penny DJ et al. Pulmonary vascular resistance after cardiopulmonary bypass in infants: effect on postoperative recovery. J Thorac Cardiovasc Surg 2001; 121:1033–1039.

    Article  PubMed  CAS  Google Scholar 

  • Adatia I, Barrow S, Stratton P, et al. Effect of intracardiac repair on biosynthesis of thromboxane A2 and prostacyclin in children with a left to right shunt. Br Heart J 1994; 72:452–456.

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Nieck I, Penny DJ, Rigby ML, et al. L-arginine and substance P reverse the pulmonary endothelial dysfunction caused by congenital heart surgery. Circulation 1999; 100:749–755.

    Google Scholar 

  • Hiramatsu T, Imai Y, Takanishsi Y, et al. Time course of endothelin-1 and nitrate anion levels after cardiopulmonary bypass in congenital heart defects. Ann Thorac Surg 1997; 63:648–652.

    Article  PubMed  CAS  Google Scholar 

  • Bradley SM, Simsic JM, Mulvihill DM. Hypoventilation improves oxygenation after bidirectional superior cavopulmonary connection, J Thorac Cardiovasc Surg 2003; 126:1033–1039.

    Article  PubMed  Google Scholar 

  • Hoskote A, Li J, Hickey C, et al. The effects of carbon dioxide on oxygenation and systemic, cerebral and pulmonary vascular hemodynamics after the bidirectional superior cavopulmonary anastomosis. J Am Coll Cardiol 2004; 44:1501–1509.

    Article  PubMed  Google Scholar 

  • Guadagni G, Bove EL, Migliavacca F, Dubini G. Effects of pulmonary afterload on the hemodynamics after the hemi-Fontan procedure. Med Eng Phys 2001; 23:293–298.

    Article  PubMed  CAS  Google Scholar 

  • Ikai A, Shirai M, Nishimura K, et al. Hypoxic pulmonary vasoconstriction disappears in a rabbit model of cavopulmonary shunt. J Thorac Cardiovasc Surg 2004; 127:1450–1457.

    Article  PubMed  Google Scholar 

  • Simsic JM, Bradley SM, Mulvihill DM. Sodium nitroprusside after bidirectional superior cavopulmonary connection: preserved cerebral blood flow velocity and systemic oxygenation. J Thorac Cardiovasc Surg 2003; 126:186–190.

    Article  PubMed  CAS  Google Scholar 

  • Daliento L, Somerville J, Presbitero P, et al. Eisenmenger syndrome. Factors relating to deterioration and death. Eur Heart J 1998; 19:1845–1855.

    Article  PubMed  CAS  Google Scholar 

  • Saha A, Balakrishnan K, Jaiswal P, et al. Prognosis for patients with Eisenmenger syndrome of various aetiology. Int J Cardiol 1994; 45:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Vongpatanasin W, Brickner ME, Hillis LD, et al. The Eisenmenger syndrome in adults. Ann Int Med 1998; 128:745–755.

    PubMed  CAS  Google Scholar 

  • Cantor WJ, Harrison DA, Moussadji JS, et al. Determinants of survival and length of survival in adults with Eisenmenger syndrome. Am J Cardiol 1999; 84:677–681.

    Article  PubMed  CAS  Google Scholar 

  • Sondel PM, Tripp ME, Ganick DJ, Levy JM, Shahidi NT. Phlebotomy with iron therapy to correct the microcytic polycythemia of chronic hypoxia. Pediatrics 1981; 67:667–670.

    PubMed  CAS  Google Scholar 

  • Perloff JK, Marelli AJ, Miner PD. Risk of stroke in adults with cyanotic congenital heart disease. Circulation 1993; 87:1954–1959.

    PubMed  CAS  Google Scholar 

  • Jones P, Patel A. Eisenmenger’s syndrome and problems with anaesthesia. Br J Hosp Med 1996; 54(5):214–219.

    Google Scholar 

  • Bowyer JJ, Busst CM, Denison DM, Shinebourne EA. Effect of long-term oxygen treatment at home in children with pulmonary vascular disease. Br Heart J 1986; 55:385–390.

    Article  PubMed  CAS  Google Scholar 

  • Sandoval J, Aguirre JS, Pulido T, et al. Nocturnal oxygen therapy in patients with the Eisenmenger Syndrome. Am J Respir Crit Care Med 2001; 164:1682–1687.

    PubMed  CAS  Google Scholar 

  • Gildein HP, Wildberg A, Moellin R. Comparative studies of hemodynamics under prostacyclin and nifedipine in patients with Eisenmenger syndrome. Z Kardiol (Germany) 1995; 84:55–63.

    CAS  Google Scholar 

  • Trulock EP. Lung transplantation for primary pulmonary hypertension. Clin Chest Med 2001; 22:583–593.

    Article  PubMed  CAS  Google Scholar 

  • Silversides CK, Granton JT, Konen T, et al. Pulmonary thrombosis in adults with Eisenmenger syndrome. J Am Coll Cardiol 2003; 42:1982–1987.

    Article  PubMed  Google Scholar 

  • Rosove MH, Hocking WG, Harwig SS, Perloff JK. Studies of beta-thromboglobulin, platelet factor 4, fibrinopeptide-A in erythrocytosis due to cyanotic congenital heart disease. Thromb Res 1983; 29:225–235.

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig EB, Kerstein D, Barst RJ. Long-term prostacyclin for pulmonary hypertension with associated congenital heart defects. Circulation 1999; 99:1858–1865.

    PubMed  CAS  Google Scholar 

  • McLaughlin VV, Genthner DE, Panella MM, et al. Compassionate use of continuous prostacyclin in the management of secondary pulmonary hypertension: As case series. Ann Intern Med 1999; 130:740.

    PubMed  CAS  Google Scholar 

  • Ferndandes SM , Newburger JW, Lang P, Pearson DD, Feinstein JA, Gauvreau KK, Landzberg MJ. Usefulness of epoprostenol therapy in the severely ill adolescent adult with Eisenmenger physiology. Am J Cardiol 2003; 91:46–49.

    Article  Google Scholar 

  • Olschewski H, Simonneau G, Galie N, et al. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med 2002; 347:322–329.

    Article  PubMed  CAS  Google Scholar 

  • Barst RJ, Rubin LJ, Long WA, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med 1996; 334:296–302.

    Article  PubMed  CAS  Google Scholar 

  • Simonneau G, Barst RJ, Galie N, et al. Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med 2002; 165:800–804.

    PubMed  Google Scholar 

  • Galie N, Humbert M, Vachiery JL, et al. Effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol 2002; 39:1496–502.

    Article  PubMed  CAS  Google Scholar 

  • Rubin LJ, Badesch DB, Barst RJ, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 2002; 346:896–903.

    Article  PubMed  CAS  Google Scholar 

  • Barst RJ, Langleben D, Frost A, Horn EM, et al. Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med 2004; 169:441–447.

    Article  PubMed  Google Scholar 

  • Galie N, Beghetti M, Gatzoulis MA, et al. Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study. Circulation 2006; 114:48–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Landzberg, M.J. (2008). Congenital Heart Disease Associated with Pulmonary Arterial Hypertension. In: Hill, N.S., Farber, H.W. (eds) Pulmonary Hypertension. Contemporary Cardiology™. Humana Press. https://doi.org/10.1007/978-1-60327-075-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-075-5_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-661-0

  • Online ISBN: 978-1-60327-075-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics