Skip to main content

Adipose-Derived Stem Cells as a Potential Therapy for Stroke

  • Chapter
Stroke Recovery with Cellular Therapies

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 538 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Adachi N, Sato K, Usas A, et al. Muscle derived cell based ex vivo gene therapy for the treatment of full thickness articular cartilage defects. J Rheumatol 2002;29:1920–3.

    PubMed  CAS  Google Scholar 

  2. Nicholl SB, Wedrychowska A, Smith NR. Modulation of proteoglycan and collagen profiles in human dermal fibroblasts by high density micromass culture and treatment with lactic acid suggests change to a chondrogenic phenotype. Connective Tissue Research 2001;42:59–69.

    Google Scholar 

  3. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annual Review of Cell and Developmental Biology 2001;17(1):387–403.

    Article  PubMed  CAS  Google Scholar 

  4. Young HE, Duplaa C, Young TM, et al. Clonogenic analysis reveals reserve stem cells in postnatal mammals: I. Pluripotent mesenchymal stem cells. Anatomical Record 2001;263(4):350–60.

    Article  CAS  Google Scholar 

  5. Jin K, Greenberg DE. Tales of transdifferentiation. Experimental Neurology 2003;183:255–7.

    Article  PubMed  Google Scholar 

  6. Sanchez-Ramos JR. Neural cells derived from adult bone marrow and umbilical cord blood. Journal of Neuroscience Research 2002;69:880–93.

    Article  PubMed  CAS  Google Scholar 

  7. Gage FH. Neurogenesis in the adult brain. Journal of Neuroscience 2002;22:612–3.

    PubMed  CAS  Google Scholar 

  8. Strelau J, Unsicker K. Neuroregeneration. Philadelphia: Lipincott Williams and Wilkins; 2003.

    Google Scholar 

  9. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proceedings of the National Academy of Sciences USA 1997;94(8):4080–5.

    Article  CAS  Google Scholar 

  10. Kohyama J, Abe H, Shimazaki T, et al. Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 2001;68:235–44.

    Article  PubMed  CAS  Google Scholar 

  11. Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Annals of the New York Academy of Sciences 2001;938:231–5.

    Article  PubMed  CAS  Google Scholar 

  12. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Journal of Experimental Neurology 2000;164(2):247–56.

    Article  CAS  Google Scholar 

  13. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research 2000;61:364–70.

    Article  PubMed  CAS  Google Scholar 

  14. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279:1528–30.

    Google Scholar 

  15. Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999;401:390–4.

    PubMed  CAS  Google Scholar 

  16. Rao MS. Multipotent and restricted precursors in the central nervous system. Anatomic Record 1999;257:137–48.

    Article  CAS  Google Scholar 

  17. Lee SH, Lumelsky N, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnology 2000;18:675–9.

    Article  PubMed  CAS  Google Scholar 

  18. Reh T. Neural stem cells: form and function. Nature Neuroscience 2002;5(5):392–4.

    Article  PubMed  CAS  Google Scholar 

  19. Kim J-H, Auerbach JM, Rodriguez-Gomez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002;418:50–6.

    Article  PubMed  CAS  Google Scholar 

  20. Snyder EY, Daley GQ, Goodell M. Taking stock and planning for the next decade: realistic prospects for stem cell therapies for the nervous system. Journal of Neuroscience Research 2004;76:157–68.

    Article  PubMed  CAS  Google Scholar 

  21. Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002;11(3):385–97.

    Article  Google Scholar 

  22. Gage FH, Coates PW, Palmer TD. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proceedings of the National Academy of Sciences, USA 92 1995;92:11879–83.

    Article  CAS  Google Scholar 

  23. Gage FH. Mammalian neural stem cells. Science 2000;287:1433–8.

    Article  PubMed  CAS  Google Scholar 

  24. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999;96:25–34.

    Google Scholar 

  25. Kordover J, Freeman, T., Chen, E., Mufson, E., Sanberg, P., Hauser, R., Snow, B., Olanow, C. Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson’s disease. Movement Disorders 1998;13:383–93.

    Article  Google Scholar 

  26. Snyder EY, Yoon C, Flax JD, Macklis JD. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in the adult mouse neocortex. Proceedings of the National Academy of Sciences, USA 1997;94:11163–8.

    Article  Google Scholar 

  27. Pittenger MF, McacKay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–7.

    Article  PubMed  CAS  Google Scholar 

  28. Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clinical Orthopaedics and Related Research 1998;355S:S247–56.

    Article  Google Scholar 

  29. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in Molecular Medicine 2001;7(6):259–64.

    Article  PubMed  CAS  Google Scholar 

  30. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–9.

    Article  PubMed  CAS  Google Scholar 

  31. Potten C. Stem cells in gastrointestinal epithelium: numbers, characteristics, and death. Philosophical Transactions of the Royal Society of London 1998;353:821–30.

    Article  PubMed  CAS  Google Scholar 

  32. Dezawa M, Kanno H, Hoshino M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. The Journal of Clinical Investigation 2004;113(12):1701–10.

    Article  PubMed  CAS  Google Scholar 

  33. Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: Disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. Journal of Neuroscience Research 2004;77(2):192–204.

    Article  PubMed  CAS  Google Scholar 

  34. Liu Y, Rao MS. Transdifferentiation-fact or artifact. Journal of Cellular Biochemistry 2003;88:29–40.

    Article  PubMed  CAS  Google Scholar 

  35. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proceedings of the National Academy of Sciences, USA 1998;95:3908–13.

    Google Scholar 

  36. Borlongan CV, Koutouzis TK, Poulos SG, Saporta S, Sanberg PR. Bilateral fetal striatal grafts in the 3-nitropropionic acid-induced hypoactive model of Huntington’s disease. Cell Transplantation 1998;7:131–5.

    Article  PubMed  CAS  Google Scholar 

  37. Brazelton TR, Rossi FMV, Keshet GI, Blau HE. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000;290:1775–9.

    Article  PubMed  CAS  Google Scholar 

  38. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout the forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences, USA 1999;96:10711–6.

    Article  CAS  Google Scholar 

  39. Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. Journal of Cerebral Blood Flow and Metabolism 2000;20(9):1311–20.

    Article  PubMed  CAS  Google Scholar 

  40. Mahmood A, Lu D, Yi L, Chen JL, Chopp M. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. Journal of Neurosurgery 2001;94(4):683–5.

    Article  Google Scholar 

  41. Gimble JM, Robinson CE, Wu X, Kelly KA. The function of adipocytes in the bone marrow stroma: an update. Bone 1996;19(5):421–8.

    Article  PubMed  CAS  Google Scholar 

  42. Gimble JM, Youkhana K, Hua X, et al. Adipogenesis in a myeloid supporting bone marrow stromal cell line. Journal of Cellular Biochemistry 1992;50(1):73–82.

    Article  PubMed  CAS  Google Scholar 

  43. Halvorsen YD, Bond A, Sen A, et al. Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis. Metabolism 2001;50(4):407–13.

    Article  PubMed  CAS  Google Scholar 

  44. Halvorsen YC, Wilkison WO, Gimble JM. Adipose-derived stromal cells–their utility and potential in bone formation. International Journal of Obesity and Related Metabolic Disorders 2000;24 Suppl 4:S41–4.

    PubMed  CAS  Google Scholar 

  45. Zuk P, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell 2002;13:4279–95.

    Article  PubMed  CAS  Google Scholar 

  46. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering 2001;7(2):211–28.

    Article  PubMed  CAS  Google Scholar 

  47. Rodbell M. Effects of hormone on fat metabolism and lipolysis. The Journal of Biological Chemistry 1964;239:375–80.

    PubMed  CAS  Google Scholar 

  48. Hauner H, Entenmann G, Wabitsch M. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. The Journal of Clinical Investigation 1989;84:1663–70.

    PubMed  CAS  Google Scholar 

  49. Lalikos JF, Li YQ, Roth TP. Biochemical assessment of cellular damage after adipocyte harvest. The Journal of Surgical Research 1997;70:95–100.

    Article  PubMed  CAS  Google Scholar 

  50. Gimble JM, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. International Society for Cellular Therapy 2003;5:362–9.

    Google Scholar 

  51. , Zuk P. Signal transduction pathways involved in ADSC lineage commitment and differentiation. In: International Fat Applied Technology Society; 2004; Pittsburgh; 2004.

    Google Scholar 

  52. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. Journal of Cellular Physiology 2001;189(1):54–63.

    Article  PubMed  CAS  Google Scholar 

  53. Williams SK, Rose DG, Jarrell BE. Liposuction derived human fat used for vascular sodding contains endothelial cells and not mesothelial cells as the major cell type. Journal of Vascular Surgery 1994;19:916–23.

    PubMed  CAS  Google Scholar 

  54. Young HE, Steele TA, Bray RA, et al. Human pluripotent and progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56 and MHC Class I. Proceedings of the Society of Experimental Biology and Medicine 1999;221:63–71.

    Google Scholar 

  55. De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003;174(3):101–19.

    Article  PubMed  Google Scholar 

  56. Kral JG, Crandall DL. Development of a human adipocyte synthetic polymer scaffold. Plastic and Reconstructive Surgery 1999;104(6):1732–8.

    Article  PubMed  CAS  Google Scholar 

  57. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochemical and Biophysical Research Communications 2002;290(2):763–9.

    Google Scholar 

  58. Fujimura J, Ogawa R., Mizuno H., Fukunaga Y., Suzuki H. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice. Biochemical and Biophysical Research Communications 2005;333:116–21.

    Article  PubMed  CAS  Google Scholar 

  59. Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Experimental Neurology 2003;183(2):355–66.

    Article  PubMed  CAS  Google Scholar 

  60. Safford KS, Hicok KC, Safford SD, et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications 2002;294:371–9.

    Article  PubMed  CAS  Google Scholar 

  61. Safford KS, Safford SD, Gimble JM, Shetty AK, Rice HE. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Experimental Neurology 2004;187:319–28.

    Article  PubMed  CAS  Google Scholar 

  62. Ashjian PH, Elbarbary AS, Edmonds B, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plastic and Reconstructive Surgery 2003;111(6):1922–31.

    Article  PubMed  Google Scholar 

  63. Rice HE, Hsu EW, Sheng H, et al. MR-guided transplantation of SPIO-labeled adipose-derived stem cells in MCAO-injured mice. American Journal of Roentgenology (in press).

    Google Scholar 

  64. Fricker RA, Carpenter MK, Winkler C, Greco C, Gates MA, Bjorklund A. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. Journal of Neuroscience 1999;19(14):5990–6005.

    PubMed  CAS  Google Scholar 

  65. Gage FH, Ray J, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS. Annual Review of Neuroscience 1995;18:159–92.

    Article  PubMed  CAS  Google Scholar 

  66. Cova L, Ratti A, Volta M, et al. Stem cell therapy for neurodegenerative diseases: the issue of transdifferentiation. Stem Cells and Development 2004;13:121–31.

    Article  PubMed  CAS  Google Scholar 

  67. Tada T, Tada M. Toti/pluripotential stem cells and epigenetic modifications. Cell Structure and Function 2001;26:149–60.

    Article  PubMed  CAS  Google Scholar 

  68. Dahlke MH, Popp FC, Larsen S, Schlitt HJ, Rasko JE. Stem cell therapy of the liver–fusion or fiction? Liver Transplantation 2004;10(4):471–9.

    Article  PubMed  Google Scholar 

  69. Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Medicine 2000;6(11):1229–34.

    Article  PubMed  CAS  Google Scholar 

  70. Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002;416(6880):542–5.

    Article  PubMed  CAS  Google Scholar 

  71. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature 2002;416:545–8.

    Article  PubMed  CAS  Google Scholar 

  72. Lott KE, Awad HA, Gimble JM, Guilak F. Clonal analysis of the multipotent differentiation of human adipose-derived adult stem cells. In: Transactions of the Orthopedic Research Society; 2004; San Francisco; 2004. p. 162.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Rice, H.E., Safford, K.M. (2008). Adipose-Derived Stem Cells as a Potential Therapy for Stroke. In: Savitz, S.I., Rosenbaum, D.M. (eds) Stroke Recovery with Cellular Therapies. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-60327-057-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-057-1_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-732-7

  • Online ISBN: 978-1-60327-057-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics