Advertisement

Molecular Pathology and Cytogenetics of Endometrial Carcinoma, Carcinosarcoma, and Uterine Sarcomas

  • Jose Palacios
  • Paola Dal CinEmail author
Chapter
Part of the Current Clinical Oncology book series (CCO)

Abstract

Molecular pathology and genetics are the subject of increasing focus since they are providing a link between etiologic factors and the heterogeneity of clinicopathologic manifestations that have been covered in the preceding chapters. In endometrial cancer, two divergent pathways have been delineated that may be thought as analogous to the hormone-dependent and -independent subtypes in breast and prostate cancers. The subtypes of endometrial adenocarcinoma reflect differences in the dysregulation of hormone-dependent and -independent pathways and may be subject to increasing manipulation described in Chapters 6 and 15. Knowledge on alterations in sarcomas will hopefully lead to advances in diagnosis and therapy that are urgently needed in women where spread beyond the uterus has occurred.

Keywords

Molecular pathways Microsatellite instability PTEN inactivation b-catenin Cytogenetics 

References

  1. 1.
    Matias-Guiu X, Catasus L, Bussaglia E, et al Molecular pathology of endometrial hyperplasia and carcinoma. Hum Pathol. 2001;32(6):569–577.PubMedCrossRefGoogle Scholar
  2. 2.
    Boland CR, Thibodeau SN, Hamilton SR, et al A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–5257.Google Scholar
  3. 2.
    Umar A, Boland CR, Terdiman JP, et al Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–268.PubMedCrossRefGoogle Scholar
  4. 4.
    Boyd J. Genetic basis of familial endometrial cancer: is there more to learn? J Clin Oncol. 2005;23(21):4570–4573.PubMedCrossRefGoogle Scholar
  5. 5.
    Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453–1456.PubMedCrossRefGoogle Scholar
  6. 6.
    Wijnen J, de Leeuw W, Vasen H, et al Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet. 1999;23(2):142–144.PubMedCrossRefGoogle Scholar
  7. 7.
    Risinger JI, Berchuck A, Kohler MF, et al. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 1993;53(21):5100–5103.PubMedGoogle Scholar
  8. 8.
    Burks RT, Kessis TD, Cho KR, Microsatellite instability in endometrial carcinoma. Oncogene. 1994;9(4):1163–1166.PubMedGoogle Scholar
  9. 9.
    Duggan BD, Felix JC, Muderspach LI, Tsao JL, Shibata DK. Early mutational activation of the c-Ki-ras oncogene in endometrial carcinoma. Cancer Res. 1994;54(6):1604–1607.PubMedGoogle Scholar
  10. 10.
    Basil JB, Goodfellow PJ, Rader JS, Mutch DG, Herzog TJ. Clinical significance of microsatellite instability in endometrial carcinoma. Cancer. 2000;89(8):1758–1764.PubMedCrossRefGoogle Scholar
  11. 11.
    MacDonald ND, Salvesen HB, Ryan A, Iversen OE, Akslen LA, Jacobs IJ. Frequency and prognostic impact of microsatellite instability in a large population-based study of endometrial carcinomas. Cancer Res. 2000;60(6):1750–1752.PubMedGoogle Scholar
  12. 12.
    Goodfellow PJ, Buttin BM, Herzog TJ, et al Prevalence of defective DNA mismatch repair and MSH6 mutation in an unselected series of endometrial cancers. Proc Natl Acad Sci U S A. 2003;100(10):5908–5913.PubMedCrossRefGoogle Scholar
  13. 13.
    Esteller M, Catasus L, Matias-Guiu X, et al hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am J Pathol. 1999;155(5):1767–1772.PubMedCrossRefGoogle Scholar
  14. 14.
    Salvesen HB, MacDonald N, Ryan A, et al Methylation of hMLH1 in a population-based series of endometrial carcinomas. Clin Cancer Res. 2000;6(9):3607–3613.PubMedGoogle Scholar
  15. 15.
    Kanaya T, Kyo S, Maida Y, et al Frequent hypermethylation of MLH1 promoter in normal endometrium of patients with endometrial cancers. Oncogene. 2003;22(15):2352–2360.PubMedCrossRefGoogle Scholar
  16. 16.
    Stefansson I, Akslen LA, MacDonald N, et al Loss of hMSH2 and hMSH6 expression is frequent in sporadic endometrial carcinomas with microsatellite instability: a population-based study. Clin Cancer Res. 2002;8(1):138–143.PubMedGoogle Scholar
  17. 17.
    Hardisson D, Moreno-Bueno G, Sanchez L, et al Tissue microarray immunohistochemical expression analysis of mismatch repair (hMLH1 and hMSH2 genes) in endometrial carcinoma and atypical endometrial hyperplasia: relationship with microsatellite instability. Mod Pathol. 2003;16(11):1148–1158.PubMedCrossRefGoogle Scholar
  18. 18.
    Schwartz S, Yamamoto H, Navarro M, Maestro M, Reventos J, Perucho M. Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res. 1999;59(12):2995–3002.PubMedGoogle Scholar
  19. 19.
    Catasus L, Matias-Guiu X, Machin P, et al Frameshift mutations at coding mononucleotide repeat microsatellites in endometrial carcinoma with microsatellite instability. Cancer. 2000;88(10):2290–2297.PubMedCrossRefGoogle Scholar
  20. 20.
    Furlan D, Casati B, Cerutti R, et al Genetic progression in sporadic endometrial and gastrointestinal cancers with high microsatellite instability. J Pathol. 2002;197(5):603–609.PubMedCrossRefGoogle Scholar
  21. 21.
    Maxwell GL, Risinger JI, Alvarez AA, Barrett JC, Berchuck A. Favorable survival associated with microsatellite instability in endometrioid endometrial cancers. Obstet Gynecol. 2001;97(3):417–422.PubMedCrossRefGoogle Scholar
  22. 22.
    Peiffer SL, Herzog TJ, Tribune DJ, Mutch DG, Gersell DJ, Goodfellow PJ. Allelic loss of sequences from the long arm of chromosome 10 and replication errors in endometrial cancers. Cancer Res. 1995;55(9):1922–1926.PubMedGoogle Scholar
  23. 23.
    Risinger JI, Hayes AK, Berchuck A, Barrett JC. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res. 1997;57(21):4736–4738.PubMedGoogle Scholar
  24. 24.
    Moreno-Bueno G, Hardisson D, Sarrio D, et al Abnormalities of E- and P-cadherin and catenin (beta-, gamma-catenin, and p120ctn) expression in endometrial cancer and endometrial atypical hyperplasia. J Pathol. 2003;199(4):471–478.PubMedCrossRefGoogle Scholar
  25. 25.
    Sun H, Enomoto T, Fujita M, et al Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia. Am J Clin Pathol. 2001;115(1):32–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Mutter GL, Lin MC, Fitzgerald JT, et al Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst. 2000;92(11):924–930.PubMedCrossRefGoogle Scholar
  27. 27.
    Orbo A, Kaino T, Arnes M, Kopp M, Eklo K. Genetic derangements in the tumor suppressor gene PTEN in endometrial precancers as prognostic markers for cancer development: a population-based study from northern Norway with long-term follow-up. Gynecol Oncol. 2004;95(1):82–88.PubMedCrossRefGoogle Scholar
  28. 28.
    Brachtel EF, Sanchez-Estevez C, Moreno-Bueno G, Prat J, Palacios J, Oliva E. Distinct molecular alterations in complex endometrial hyperplasia (CEH) with and without immature squamous metaplasia (squamous morules). Am J Surg Pathol. 2005;29(10):1322–1329.PubMedCrossRefGoogle Scholar
  29. 29.
    Mutter GL, Ince TA, Baak JP, Kust GA, Zhou XP, Eng C. Molecular identification of latent precancers in histologically normal endometrium. Cancer Res. 2001;61(11):4311–4314.PubMedGoogle Scholar
  30. 30.
    Bussaglia E, del Rio E, Matias-Guiu X, Prat J. PTEN mutations in endometrial carcinomas: a molecular and clinicopathologic analysis of 38 cases. Hum Pathol. 2000;31(3):312–317.PubMedCrossRefGoogle Scholar
  31. 31.
    Koul A, Willen R, Bendahl PO, Nilbert M, Borg A. Distinct sets of gene alterations in endometrial carcinoma implicate alternate modes of tumorigenesis. Cancer. 2002;94(9):2369–2379.PubMedCrossRefGoogle Scholar
  32. 32.
    Risinger JI, Hayes K, Maxwell GL, et al PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res. 1998;4(12):3005–3010.PubMedGoogle Scholar
  33. 33.
    Maxwell GL, Risinger JI, Hayes KA, et al Racial disparity in the frequency of PTEN mutations, but not microsatellite instability, in advanced endometrial cancers. Clin Cancer Res. 2000;6(8):2999–3005.PubMedGoogle Scholar
  34. 34.
    Salvesen HB, Stefansson I, Kretzschmar EI, et al Significance of PTEN alterations in endometrial carcinoma: a population-based study of mutations, promoter methylation and PTEN protein expression. Int J Oncol. 2004;25(6):1615–1623.PubMedGoogle Scholar
  35. 35.
    Pallares J, Bussaglia E, Martinez-Guitarte JL, et al Immunohistochemical analysis of PTEN in endometrial carcinoma: a tissue microarray study with a comparison of four commercial antibodies in correlation with molecular abnormalities. Mod Pathol. 2005;18(5):719–727.PubMedCrossRefGoogle Scholar
  36. 36.
    Oda K, Stokoe D, Taketani Y, McCormick F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005;65(23):10669–10673.PubMedCrossRefGoogle Scholar
  37. 37.
    Schlosshauer PW, Pirog EC, Levine RL, Ellenson LH. Mutational analysis of the CTNNB1 and APC genes in uterine endometrioid carcinoma. Mod Pathol. 2000;13(10):1066–1071.PubMedCrossRefGoogle Scholar
  38. 38.
    Moreno-Bueno G, Hardisson D, Sanchez C, et al Abnormalities of the APC/beta-catenin pathway in endometrial cancer. Oncogene. 2002;21(52):7981–7990.PubMedCrossRefGoogle Scholar
  39. 39.
    Fukuchi T, Sakamoto M, Tsuda H, Maruyama K, Nozawa S, Hirohashi S. Beta-catenin mutation in carcinoma of the uterine endometrium. Cancer Res. 1998;58(16):3526–3528.PubMedGoogle Scholar
  40. 40.
    Mirabelli-Primdahl L, Gryfe R, Kim H, et al Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Res. 1999;59(14):3346–3351.PubMedGoogle Scholar
  41. 41.
    Saegusa M, Hashimura M, Yoshida T, Okayasu I. Beta-catenin mutations and aberrant nuclear expression during endometrial tumorigenesis. Br J Cancer. 2001;84(2):209–217.PubMedCrossRefGoogle Scholar
  42. 42.
    Sasaki H, Nishii H, Takahashi H, et al Mutation of the Ki-ras protooncogene in human endometrial hyperplasia and carcinoma. Cancer Res. 1993;53(8):1906–1910.PubMedGoogle Scholar
  43. 43.
    Tsuda H, Jiko K, Yajima M, et al Frequent occurrence of c-Ki-ras gene mutations in well differentiated endometrial adenocarcinoma showing infiltrative local growth with fibrosing stromal response. Int J Gynecol Pathol. 1995;14(3):255–259.PubMedCrossRefGoogle Scholar
  44. 44.
    Lagarda H, Catasus L, Arguelles R, Matias-Guiu X, Prat J. K-ras mutations in endometrial carcinomas with microsatellite instability. J Pathol. 2001;193(2):193–199.PubMedCrossRefGoogle Scholar
  45. 45.
    Caduff RF, Johnston CM, Frank TS. Mutations of the Ki-ras oncogene in carcinoma of the endometrium. Am J Pathol. 1995;146(1):182–188.PubMedGoogle Scholar
  46. 46.
    Ito K, Watanabe K, Nasim S, et al K-ras point mutations in endometrial carcinoma: effect on outcome is dependent on age of patient. Gynecol Oncol. 1996;63(2):238–246.PubMedCrossRefGoogle Scholar
  47. 47.
    Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418(6901):934.PubMedCrossRefGoogle Scholar
  48. 48.
    Feng YZ, Shiozawa T, Miyamoto T, et al. BRAF mutation in endometrial carcinoma and hyperplasia: correlation with KRAS and p53 mutations and mismatch repair protein expression. Clin Cancer Res. 2005;11(17):6133–6138.PubMedCrossRefGoogle Scholar
  49. 49.
    Mutch DG, Powell MA, Mallon MA, Goodfellow PJ. RAS/RAF mutation and defective DNA mismatch repair in endometrial cancers. Am J Obstet Gynecol. 2004;190(4):935–942.PubMedCrossRefGoogle Scholar
  50. 50.
    Salvesen HB, Kumar R, Stefansson I, et al Low frequency of BRAF and CDKN2A mutations in endometrial cancer. Int J Cancer. 2005;115(6):930–934.PubMedCrossRefGoogle Scholar
  51. 51.
    Pappa KI, Choleza M, Markaki S, et al Consistent absence of BRAF mutations in cervical and endometrial cancer despite KRAS mutation status. Gynecol Oncol. 2006;100(3):596–600.PubMedCrossRefGoogle Scholar
  52. 52.
    Risinger JI, Dent GA, Ignar-Trowbridge D, et al p53 gene mutations in human endometrial carcinoma. Mol Carcinog. 1992;5(4):250–253.PubMedCrossRefGoogle Scholar
  53. 53.
    Enomoto T, Fujita M, Inoue M, et al Alterations of the p53 tumor suppressor gene and its association with activation of the c-K-ras-2 protooncogene in premalignant and malignant lesions of the human uterine endometrium. Cancer Res. 1993;53(8):1883–1888.PubMedGoogle Scholar
  54. 54.
    Kihana T, Hamada K, Inoue Y, et al Mutation and allelic loss of the p53 gene in endometrial carcinoma. Incidence and outcome in 92 surgical patients. Cancer. 1995;76(1):72–78.PubMedCrossRefGoogle Scholar
  55. 55.
    Swisher EM, Peiffer-Schneider S, Mutch DG, et al Differences in patterns of TP53 and KRAS2 mutations in a large series of endometrial carcinomas with or without microsatellite instability. Cancer. 1999;85(1):119–126.PubMedCrossRefGoogle Scholar
  56. 56.
    Sakuragi N, Watari H, Ebina Y, et al Functional analysis of p53 gene and the prognostic impact of dominant-negative p53 mutation in endometrial cancer. Int J Cancer. 2005;116(4):514–519.PubMedCrossRefGoogle Scholar
  57. 57.
    Tashiro H, Blazes MS, Wu R, et al Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997;57(18):3935–3940.PubMedGoogle Scholar
  58. 58.
    Kovalev S, Marchenko ND, Gugliotta BG, Chalas E, Chumas J, Moll UM. Loss of p53 function in uterine papillary serous carcinoma. Hum Pathol. 1998;29(6):613–619.PubMedCrossRefGoogle Scholar
  59. 59.
    Darvishian F, Hummer AJ, Thaler HT, et al Serous endometrial cancers that mimic endometrioid adenocarcinomas: a clinicopathologic and immunohistochemical study of a group of problematic cases. Am J Surg Pathol. 2004;28(12):1568–1578.PubMedCrossRefGoogle Scholar
  60. 60.
    Peiro G, Mayr D, Hillemanns P, Lohrs U, Diebold J. Analysis of HER-2/neu amplification in endometrial carcinoma by chromogenic in situ hybridization. Correlation with fluorescence in situ hybridization, HER-2/neu, p53 and Ki-67 protein expression, and outcome. Mod Pathol. 2004;17(3):227–287.PubMedCrossRefGoogle Scholar
  61. 61.
    Slomovitz BM, Broaddus RR, Burke TW, et al Her-2/neu overexpression and amplification in uterine papillary serous carcinoma. J Clin Oncol. 2004;22(15):3126–3132.PubMedCrossRefGoogle Scholar
  62. 62.
    Santin AD, Bellone S, Van Stedum S, et al Determination of HER2/neu status in uterine serous papillary carcinoma: comparative analysis of immunohistochemistry and fluorescence in situ hybridization. Gynecol Oncol. 2005;98(1):24–30.PubMedCrossRefGoogle Scholar
  63. Mitelman Database of Chromosome Aberrations in Cancer (2008). Mitelman F, Johansson B, and Mertens F (Eds.), http://cgap.nci.nih.gov/Chromosomes/Mitelman.
  64. 64.
    Micci F, Teixeira MR, Haugom L, Kristensen G, Abeler VM, Heim S. Genomic aberrations in carcinomas of the uterine corpus. Genes Chromosomes Cancer. 2004;40(3):229–246.PubMedCrossRefGoogle Scholar
  65. 65.
    Wada H, Enomoto T, Fujita M, et al Molecular evidence that most but not all carcinosarcomas of the uterus are combination tumors. Cancer Res. 1997;57(23):5379–5385.PubMedGoogle Scholar
  66. 66.
    Fujii H, Yoshida M, Gong ZX, et al Frequent genetic heterogeneity in the clonal evolution of gynecological carcinosarcoma and its influence on phenotypic diversity. Cancer Res. 2000;60(1):114–120.PubMedGoogle Scholar
  67. 67.
    Abeln EC, Smit VT, Wessels JW, de Leeuw WJ, Cornelisse CJ, Fleuren GJ. Molecular genetic evidence for the conversion hypothesis of the origin of malignant mixed mullerian tumours. J Pathol. 1997;183(4):424–431.PubMedCrossRefGoogle Scholar
  68. 68.
    Soong R, Knowles S, Hammond IG, Michael C, Iacopetta BJ. p53 protein overexpression and gene mutation in mixed Mullerian tumors of the uterus. Cancer Detect Prev. 1999;23(1):8–12.PubMedCrossRefGoogle Scholar
  69. 69.
    Lancaster JM, Risinger JI, Carney ME, Barrett JC, Berchuck A. Mutational analysis of the PTEN gene in human uterine sarcomas. Am J Obstet Gynecol. 2001;184(6):1051–1053.PubMedCrossRefGoogle Scholar
  70. 70.
    Amant F, de la Rey M, Dorfling CM, et al PTEN mutations in uterine sarcomas. Gynecol Oncol. 2002;85(1):165–169.PubMedCrossRefGoogle Scholar
  71. 71.
    Amant F, Vloeberghs V, Woestenborghs H, et al ERBB-2 gene overexpression and amplification in uterine sarcomas. Gynecol Oncol. 2004;95(3):583–587.PubMedCrossRefGoogle Scholar
  72. 72.
    Livasy CA, Reading FC, Moore DT, Boggess JF, Lininger RA. EGFR expression and HER2/neu overexpression/amplification in endometrial carcinosarcoma. Gynecol Oncol. 2006;100(1):101–106.PubMedCrossRefGoogle Scholar
  73. 73.
    de Vos S, Wilczynski SP, Fleischhacker M, Koeffler P. p53 alterations in uterine leiomyosarcomas versus leiomyomas. Gynecol Oncol. 1994;54(2):205–208.PubMedCrossRefGoogle Scholar
  74. 74.
    Jeffers MD, Farquharson MA, Richmond JA, McNicol AM. p53 immunoreactivity and mutation of the p53 gene in smooth muscle tumours of the uterine corpus. J Pathol. 1995;177(1):65–70.PubMedCrossRefGoogle Scholar
  75. 75.
    Teneriello MG, Taylor RR, et al Analysis of Ki-ras, p53, and MDM2 genes in uterine leiomyomas and leiomyosarcomas. Gynecol Oncol. 1997;65(2):330–335.PubMedCrossRefGoogle Scholar
  76. 76.
    Quade BJ, Pinto AP, Howard DR, Peters WA, 3rd, Crum CP. Frequent loss of heterozygosity for chromosome 10 in uterine leiomyosarcoma in contrast to leiomyoma. Am J Pathol. 1999;154(3):945–950.PubMedCrossRefGoogle Scholar
  77. 77.
    Levy B, Mukherjee T, Hirschhorn K. Molecular cytogenetic analysis of uterine leiomyoma and leiomyosarcoma by comparative genomic hybridization. Cancer Genet Cytogenet. 2000;121(1):1–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Quade BJ, Wang TY, Sornberger K, Dal Cin P, Mutter GL, Morton CC. Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosomes Cancer. 2004;40(2):97–108.PubMedCrossRefGoogle Scholar
  79. 79.
    Christacos NC, Quade BJ, Dal Cin P, Morton CC. Uterine leiomyomata with deletions of Ip represent a distinct cytogenetic subgroup associated with unusual histologic features. Genes Chromosomes Cancer. 2006;45(3):304–312.PubMedCrossRefGoogle Scholar
  80. 80.
    Dal Cin P, Quade BJ, Neskey DM, Kleinman MS, Weremowicz S, Morton CC. Intravenous leiomyomatosis is characterized by a der(14)t(12;14)(q15;q24). Genes Chromosomes Cancer. 2003;36(2):205–206.PubMedCrossRefGoogle Scholar
  81. 81.
    Patton KT, Cheng L, Papavero V, et al Benign metastasizing leiomyoma: clonality, telomere length and clinicopathologic analysis. Mod Pathol. 2006;19(1):130–140.PubMedCrossRefGoogle Scholar
  82. 82.
    Quade BJ, McLachlin CM, Soto-Wright V, Zuckerman J, Mutter GL, Morton CC. Disseminated peritoneal leiomyomatosis. Clonality analysis by X chromosome inactivation and cytogenetics of a clinically benign smooth muscle proliferation. Am J Pathol. 1997;150(6):2153–2166.PubMedGoogle Scholar
  83. 83.
    Ng TL, Gown AM, Barry TS, et al Nuclear beta-catenin in mesenchymal tumors. Mod Pathol. 2005;18(1):68–74.PubMedCrossRefGoogle Scholar
  84. 84.
    Hrzenjak A, Tippl M, Kremser ML, et al Inverse correlation of secreted frizzled-related protein 4 and beta-catenin expression in endometrial stromal sarcomas. J Pathol. 2004;204(1):19–27.PubMedCrossRefGoogle Scholar
  85. 85.
    Micci F, Walter CU, Teixeira MR, et al Cytogenetic and molecular genetic analyses of endometrial stromal sarcoma: nonrandom involvement of chromosome arms 6p and 7p and confirmation of JAZF1/JJAZ1 gene fusion in t(7;17). Cancer Genet Cytogenet. 2003;144(2):119–124.PubMedCrossRefGoogle Scholar
  86. 86.
    Koontz JI, Soreng AL, Nucci M, et al Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal tumors. Proc Natl Acad Sci U S A. 2001;98(11):6348–6353.PubMedCrossRefGoogle Scholar
  87. 87.
    Huang HY, Ladanyi M, Soslow RA. Molecular detection of JAZF1-JJAZ1 gene fusion in endometrial stromal neoplasms with classic and variant histology: evidence for genetic heterogeneity. Am J Surg Pathol. 2004;28(2):224–232.PubMedCrossRefGoogle Scholar
  88. 88.
    Hrzenjak A, Moinfar F, Tavassoli FA, et al JAZF1/JJAZ1 gene fusion in endometrial stromal sarcomas: molecular analysis by reverse transcriptase-polymerase chain reaction optimized for paraffin-embedded tissue. J Mol Diagn. 2005;7(3):388–395.PubMedCrossRefGoogle Scholar
  89. 89.
    Micci F, Panagopoulos I, Bjerkehagen B, Heim S. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcoma. Cancer Res. 2006;66(1):107–112.PubMedCrossRefGoogle Scholar
  90. 90.
    Nucci MR, Harburger D, Koontz J, Cin PD. Molecular analysis of the JAZF1-JJAZ1 gene fusion by RT-PCR and fluorescence in situ hybridization in endometrial stromal neoplasms. Am J Surg Pathol. 2007;31:65–70.PubMedCrossRefGoogle Scholar
  91. 91.
    Oliva E, de Leval L, Soslow RA, Herens C. High frequency of JAZF1-JJAZ1 gene fusion in endometrial stromal tumors with smooth muscle differentiation by interphase FISH detection. Am J Surg Pathol. 2007; 31(8):1277–1284.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Pathology DepartmentBrigham and Women’s HospitalBoston

Personalised recommendations