Advertisement

Uterine Cancer pp 267-283 | Cite as

Future Directions: New Targets

  • Franco MuggiaEmail author
  • Leslie I. Gold
  • John Curtin
Chapter
Part of the Current Clinical Oncology book series (CCO)

Abstract

The biology of endometrial cancer is providing new therapeutic targets. In this chapter we review (a) how the integration of chemotherapy has been taking place; (b) new targeted therapies and immunotherapies being tested in the treatment of these malignancies; (c) new targets worthy of consideration based on the biology of uterine cancers; (d) other consequences such as of these advances and the reduction of morbidity and toxicity associated with past practices; and (e) other special entities and issues to be considered.

Keywords

Molecular targets Immunotherapy PTEN mTOR Hormone receptors 

References

  1. 1.
    Muggia FM, Chia G, Reed LJ, Romney SL. Doxorubicin-cyclophosphamide: effective chemotherapy for advanced endometrial adenocarcinoma. Am J Obstet Gynecol. 128(3):314–9, 1977.PubMedGoogle Scholar
  2. 2.
    Thigpen JT, Blessing JA, DiSaia PJ, Yordan E, Carson LF, Evers C. A randomized comparison of doxorubicin alone versus doxorubicin plus cyclophosphamide in the management of advanced or recurrent endometrial carcinoma: a Gynecologic Oncology Group study. J Clin Oncol. 12(7):1408–14, 1994.PubMedGoogle Scholar
  3. 3.
    Thigpen JT, Brady MF, Homesley HD, Malfetano J, DuBeshter B, Burger RA, Liao S. Phase III trial of doxorubicin with or without cisplatin in advanced endometrial carcinoma: a gynecologic oncology group study. J Clin Oncol. 22(19):3902–8, 2004.PubMedCrossRefGoogle Scholar
  4. 4.
    Fleming GF, Fillaci VL, Bentley RC, Herzog T, Sorosky J, Vaccarello L, Gallion H. Phase III randomized trial of doxorubicin + cisplatin versus doxorubicin + 24-h paclitaxel + filgrastin in endometrial carcinoma: a Gynecologic Oncology Group study. Ann Oncol. 15(8):1173–8, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Fleming GF, Brunetto VL, Cella D, Look KY, Reid GC, Munkarah AR, Kline R, Burger RA, Goodman A, Burks RT. Phase III trial of doxorubicin plus cisplatin with or without paclitaxel plus filgrastim in advanced endometrial carcinoma: a Gynecologic Oncology Group study. J Clin Oncol. 22(11):2159–66, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Hoskins PJ, Swenerton KD, Pike JA, Wong F, Lim P, Acquino-Parsons C, Lee N. Paclitaxel and carboplatin, alone or with irradiation, in advanced or recurrent endometrial cancer: a Phase II study. J Clin Oncol. 19(20):4048–53, 2001.PubMedGoogle Scholar
  7. 7.
    Rabdall ME,Brunetto G, Muss H, Mannel RS, Spirtos N, Jeffrey F, Thigpen JT, Benda J, for the Gynecologic Oncology Group. Whole abdominal radiotherapy versus combination doxorubicin–cisplatin chemotherapy in advance endomietrial carcinoma: A randomized Phase III study. J Clin Oncol. 19(20):4048–53, 2001.Google Scholar
  8. 8.
    Randall ME, Filiaci VL, Muss H, Spirtos NM, Mannel RS, Fowler J, Thigpen JT, Benda JA. Gynecolgic Oncology Group Study. Randomized phase III trial of whole-abdominal irradiation versus doxorubicin and cisplatin chemotherapy in advanced endometrial carcinoma: a Gynecological Oncology Group Study. J Clin Oncol. 24(1):36–44, 2006.PubMedCrossRefGoogle Scholar
  9. 9.
    Sutton G, Brunetto VL, Kilgore L, Soper JT, McGehee R, Olt G, Lentz SS, Sorosky J, Hsiu JG. A Phase III trial of ifosfamide with or without cisplatin in carcinosarcoma of the uterus: A Gynecologic Oncology Group Study. Gynecol Oncol. 79(2):147–53, 2000.PubMedCrossRefGoogle Scholar
  10. Homesley HD, Filiaci VL, Bitterman P, Eaton L, Kilgore LC, Monk BJ. Phase III trial of ifosfamide versus ifosfamide plus paclitaxel as first line treatment of advanced or recurrent uterine carcinosarcoma (mixed mesodermal tumors): a Gynecologic Oncology Group study. SGO. Abstract # 66, 2006.Google Scholar
  11. 11.
    Wolfson AH, Brady MF, Rocereto TF, Mannel RS, Lee Y, Futoran RJ, Cohn D, Ioffe OB. A Gynecologic Oncology Group randomized trial of whole abdominal irradiation (WAI) vs cisplatin-ifosfamide + mesna (CIM) in surgically cytoreduced stage I-IV carcinosarcoma (CS) of the uterus. Gynecol Oncol. 107:77–85, 2007.CrossRefGoogle Scholar
  12. 12.
    Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, pays an essential role in tumor metastasis. Cell. 117:927–939, 2004.PubMedCrossRefGoogle Scholar
  13. 13.
    Jeon YT, Park IA, Kim YB, Kim JW, Park NH, Kang SB, Lee HP, Song YS. Steroid receptor expressions in endometrial cancer: clinical significance and epidemiological implication. Cancer Lett. 239:198–204, 2006.PubMedCrossRefGoogle Scholar
  14. 14.
    Shang Y, Brown M. Molecular determinants for the tissue specificity of SERMs. Science. 295(5564):2465–8, 2002.PubMedCrossRefGoogle Scholar
  15. 15.
    Lupu R and Menendez JA. Targeting fatty acid synthase in breast and endometrial cancer: an alternative to selective estrogen receptor modulators? Endocrinology. 147:4056–66, 2006.PubMedCrossRefGoogle Scholar
  16. 16.
    Barnes KR and Lippard SJ. Cisplatin and related anticancer drugs: recent advances and insight. Met Ions Biol Syst. 42:143–77, 2004PubMedGoogle Scholar
  17. 17.
    Ellenson LH and Wu TC. Focus on endometrial and cervical cancer. Cancer Cell. 5(6):533–8, 2004.PubMedCrossRefGoogle Scholar
  18. 18.
    Sun H, Enomoto T, Fujta M, Wada H, Yoshino K, Ozaki K, Nakamura T, Murata Y. Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia. Am J Clin Pathol. 115(1):32–8, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Levine RL, Cargile CB, Blazes MS, van Rees B, Kurman RJ, Ellenson LH. PTEN mutations and microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine endometrioid carcinoma. Cancer Res. 58(15):3254–8, 1998.PubMedGoogle Scholar
  20. 20.
    Shedden KA, Kshirsagar MP, Schwartz DR, Wu R, Yu H, Misek DE, Hanash S, Katabuchi H, Ellenson LH, Fearon ER, Cho KR. Histologic type, organ of origin, and Wnt pathway status: effect on gene expression in ovarian and uterine carcinomas. Clin Cancer Res. 11:2123–2131, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Marquez RT, Baggerly KA, Patterson AP, Liu J, broaddus R, Frumovitz M, Atkinson EN, Smith DI, hartmann L, Fishman D, Berchuck A, Whitaker R, Gershenson DM, Mills GB, Bast RC Jr, Lu KH. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin Cancer Res. 11:6116–26, 2005.PubMedCrossRefGoogle Scholar
  22. 22.
    Kohn EC, Mills GB, Liotta L. Promising directions for the diagnosis and management of gynecological cancers. Int J Gynaecol Obstet. 83:203–209, 2003.PubMedCrossRefGoogle Scholar
  23. 23.
    Souchelnytskyi S. Proteomics of TGF-beta signaling and its impact on breast cancer. Expert Rev Proteomics. 2:925–935, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Espina V, Dettloff KA, Cowherd S, Petricoin EF 3rd, Liotta LA. Use of proteomic analysis to monitor responses to biological therapies. Expert Opin Biol Ther. 4:83–93, 2004.PubMedCrossRefGoogle Scholar
  25. 25.
    Wulfkuhle JD, Aquino JA, Calvert VS, Fishman DA, Coukos G, Liota LA, Petricoin EF 3rd. Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics. 3:2085–2090, 2003.PubMedCrossRefGoogle Scholar
  26. 26.
    Cowherd SM, Espina VA, Petricoin EF 3rd, Liotta LA. Proteomic analysis of human breast cancer tissue with laser-capture microdissection and reverse-phase protein microarrays. Clin Breast Cancer. 5:385–392, 2004.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshizaki T, Enomoto T, Nakashima R, Ueda Y, Kanao H, Yoshino K, Fukumoto M, Yoneda Y, Buzard S, Murata Y. Altered protein expression in endometrial carcinogenesis. Cancer Lett. 226:101–106, 2005.PubMedCrossRefGoogle Scholar
  28. 28.
    Vilgelm A, Lian Z, Wang H, Beauparlant SL, Klein-Szanto A, Ellenson LH, Di Cristofano A. Akt-mediated phosphorylation and activation of estrogen receptor alpha is required for endometrial neoplastic transformation in Pten + /− mice. Cancer Res. 66(7):3375–80, 2006.PubMedCrossRefGoogle Scholar
  29. 29.
    Zukerberg LR, DeBarnardo RL, Kirley Sd, D’Apuzzo M, Lynch MP, Littell RD, Duska LR, Boring L, Rueda BR. Loss of cables, a cyclin-dependent kinase regulatory protein, is associated with the development of endometrial hyperplasia and endometrial cancer. Cancer Res. 64:202–208, 2004.PubMedCrossRefGoogle Scholar
  30. 30.
    Lecanda J, Parekh TV, Gama P, Lin K, Liarski V, Uretsky S, Mittal K, Gold LI. Transforming growth factor-beta, estrogen, and progesterone converge on the regulation of p27Kip1 in the normal and malignant endometrium. Cancer Res. 67(3):1007–18, 2007.PubMedCrossRefGoogle Scholar
  31. 31.
    Watanabe J, Watanabe K, Jobo T, Kamata Y, Kawaguchi M, Imai M, Okayusu I, Kutamoto H. Significance of p27 as a predicting marker for medroxyprogresterone acetate therapy against endometrial endometrioid adenocarcinoma. Int J Gynecol Cancer. 16(Suppl 1):452–7, 2006.PubMedCrossRefGoogle Scholar
  32. 32.
    Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Baak JP, Lees JA, Weng LP, Eng C. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst. 92:924–930, 2000.PubMedCrossRefGoogle Scholar
  33. 33.
    Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, Frost P, Dreisbach V, Blenis J, Gaciong Z, Fisher P, Sawyers C, Hedrick-Ellenson L, Parsons R. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in pTen + /- mice. Proc Natl Acad Sci USA. 98(18):10320–5, 2001.PubMedCrossRefGoogle Scholar
  34. 34.
    Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Mak TW. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten + /- mice. Cancer Res. 60:3605–3611, 2000.PubMedGoogle Scholar
  35. 35.
    Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet. 27:222–4, 2001.PubMedCrossRefGoogle Scholar
  36. 36.
    Besson A, Gurian-West M, Chen X, Kelly-Spratt KS, Kemp CJ, Roberts JM. A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization, and tumor suppression. Genes Dev. 20:47–64, 2006.PubMedCrossRefGoogle Scholar
  37. 37.
    Payne SR, Kemp CJ. P27(Kip1) (Cdkn1b)-deficient mice are susceptible to chemical carcinogenesis and may be a useful model for carcinogen screening. Toxicol Pathol. 31:355–63, 2003.PubMedGoogle Scholar
  38. 38.
    An HJ, Lee YH, Cho NH, Shim JY, Kim JY, Lee C, Kim SJ. Alteration of PTEN expression in endometrial carcinoma is associated with down-regulation of cyclin-dependent kinase inhibitor, p27. Histopathology. 41:437–445, 2002.PubMedCrossRefGoogle Scholar
  39. 39.
    Weng LP, Brown JL, Eng C. PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Human Mol Genet. 10(6):599–604, 2001.CrossRefGoogle Scholar
  40. 40.
    Mamillapalli R, Gavrilova N, Mihaylova VT, Tsvetkov LM, Wu H, Zhang H, Sun H. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol. 11(4):263–267, 2001 Feb 20.PubMedCrossRefGoogle Scholar
  41. 41.
    DeBernardo RL, Littell RD, Luo H, Duska LR, Oliva E, Kirley SD, Lynch MP, Zukerberg LR, Rueda BR. Defining the extent of cables loss in endometrial cancer subtypes and its effectiveness as an inhibitor of cell proliferation in malignant endometrial cells in vitro and in vivo. Cancer Biol Ther. 4:103–107, 2005.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang H, Duan HO, Kirley SD, Zukerberg LR, Wu CL. Aberrant splicing of cables gene, a CDK regulator, in human cancers. Cancer Biol Ther. 4:1211–1215, 2005.PubMedCrossRefGoogle Scholar
  43. 43.
    Li DM, Sun H. EPT1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res. 57(11):2124–9, 1997.PubMedGoogle Scholar
  44. 44.
    Spoelstra NS, Manning NG, Higashi Y, Darling D, Singh M, Shroyer KR, Broaddus RR, Horwitz KB, Richer JK. The transcription factor ZRB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res. 66(7):3893–3902, 2006.PubMedCrossRefGoogle Scholar
  45. 45.
    McGrath M, Lee IM, Hankinson SE, Kraft P, Hunter DJ, Buring J, De Vivo I. Androgen receptor polymorphisms and endometrial cancer risk. Int J Cancer. 118:1261–1268, 2006.PubMedCrossRefGoogle Scholar
  46. 46.
    Parekh TV, Gama P, Wen X, Demopoulos R, Munger JS, Carcangiu ML, Reiss M, Gold LI. Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Cancer Res. 62(10):2778–2790, 2002.PubMedGoogle Scholar
  47. 47.
    Gold LI and Parekh TV. Loss of growth regulation by transforming growth factor-beta (TGF-beta) in human cancers: studies on endometrial carcinoma. Semin Reprod Endocrinol. 17(1):73–92, 1999.PubMedCrossRefGoogle Scholar
  48. 48.
    Gold LI and Lecanda J. Mechanisms of cell cycle regulation by TGF-β dysregulated in cancer. In: Transforming growth factor—β in Cancer Therapy. Vol. 1. Basic and Clinical Biology, Part 1. Basic Concepts of TGF-β signaling in normal physiology and cancer pathobiology, Ed., Sonia Jakowlew, Humana Press, Inc., Totowa, NJ, 2008.Google Scholar
  49. 49.
    Roberts AB and Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA. 100:8621–8623, 2003.PubMedCrossRefGoogle Scholar
  50. 50.
    Muraoka-Cook RS, Dumont N, Arteaga CL. Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res. 11(2 Pt 2):937s–943s, 2005.PubMedGoogle Scholar
  51. 51.
    Dumont N and Arteaga CL. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell. 3(6):531–536, 2003.PubMedCrossRefGoogle Scholar
  52. 52.
    Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 29(2):117–29, 2001.PubMedCrossRefGoogle Scholar
  53. 53.
    Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signaling inhibitors for cancer therapy. Nat Rev Discov. 3(12):1011–1022, 2004.CrossRefGoogle Scholar
  54. 54.
    Tsuchida K, Sunada Y, Noji S, Murakami T, Uezumi A, Nakatani M. Inhibitors of the TFG-beta superfamily and their clinical applications. Mini Rev Med Chem. 6(11):1255–1261, 2006.PubMedCrossRefGoogle Scholar
  55. 55.
    Saunier EF, Akhurst RJ. TGF beta inhibition for cancer therapy. Curr Cancer Drug Targets 6(7):565–78, 2006.PubMedCrossRefGoogle Scholar
  56. 56.
    Akhurst RJ. Large- and small-molecule initiators of brainstorming growth factor-beta signaling. Curr Opin Investig Drugs 7(6):513–521, 2006.PubMedGoogle Scholar
  57. 57.
    Bierie B and Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6(7):506–520, 2006.PubMedCrossRefGoogle Scholar
  58. 58.
    Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 432(7015):332–337, 2004.PubMedCrossRefGoogle Scholar
  59. 59.
    Orimo A, Tomioka Y, Shimizu Y, Sato M, Oigawa S, Kamata K, Nogi Y, Inoue S, Takahashi M, Hata T, Muramatsu M. Cancer-associated myofibroblasts possess various factors to promote endometrial tumor progression. Clin Cancer Res. 7(10):3097–105, 2001.PubMedGoogle Scholar
  60. 60.
    Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell. 7:513–520, 2005.PubMedCrossRefGoogle Scholar
  61. 61.
    Radisky DC and Bissell MJ. Cancer. Respect thy neighbor! Science. 303(5659):775–777, 2004.PubMedCrossRefGoogle Scholar
  62. 62.
    Hayward SW, Wang Y, Cao M, Hom YK, Zhang B, Grossfeld GD, Sudilovsky D, Cunha GR. Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res. 61(22):8135–8142, 2001.PubMedGoogle Scholar
  63. 63.
    Ao M, Williams K, Bhowmick NA, Hayward SW. Transforming growth factor-beta promotes invasion in tumorigenic but not in nontumorigenic human prostatic epithelial cells. Cancer Res. 66:8007–16, 2006.PubMedCrossRefGoogle Scholar
  64. 64.
    Ao M, Franco OE, Park D, Raman D, Williams K, Hayward SW. Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res. 67(9):4244–53, 2007.PubMedCrossRefGoogle Scholar
  65. 65.
    Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 303(5659):848–851, 2004.PubMedCrossRefGoogle Scholar
  66. 66.
    Bierie B and Moses HL. Under pressure: stromal fibroblasts change their ways. Cell. 123(6):985–7, 2005.PubMedCrossRefGoogle Scholar
  67. Lecanda J, Evans BR, Ganapathy V, D’Aquino-Ardalan C, Liarski V, Cadacio C, Mittal K, Blank S, Gold LI. TGFB targets the ubiquitin-proteasome pathway to prevent degradation of the cyclin-dependent kinase inhibitor p27 Kip1, for growth arrest.Google Scholar
  68. 68.
    Arnold JT, Kaufman DG, Seppala M, Lessey BA. Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model. Hum Reprod. 16:836–845, 2001.PubMedCrossRefGoogle Scholar
  69. 69.
    Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 4(4):359–65, 2007.PubMedCrossRefGoogle Scholar
  70. 70.
    Fournier MV, Martin KJ, Kenny PA, Xhaja K, Bosch I, Yaswen P, Bissell MJ. Gene expression signature in organized and growth-arrested mammary acini predicts good outcome in breast cancer. Cancer Res. 66(14):7095–102, 2006.PubMedCrossRefGoogle Scholar
  71. 71.
    Thigpen JT, Brady MF, Alvarez RD, Adelson MD, Homesley HD, Manetta A, Soper JT, Given FT. Oral medroxyprogesterone acetate in the treatment of advanced or recurrent endometrial carcinoma: a dose-response study by the Gynecologic Oncology Group. J Clin Oncol. 17(6):1736–44, 1999.PubMedGoogle Scholar
  72. 72.
    Iwai K, Fukuda K, Hachisuga T, Mori M, Uchiyama M, Iwasaka T, Sugimori H. Prognostic significance of progesterone receptor immunohistochemistry for lymph node metastases in endometrial carcinoma. Gynecol Oncol. 72(3):351–9, 1999.PubMedCrossRefGoogle Scholar
  73. 73.
    Burger RA, Sill MW, Monk BJ, Greer BE, Sorosky JI. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group study. J Clin Oncol. 25:5615–71, 2007.Google Scholar
  74. 74.
    Cannistra SA, Matulonis U, Penson RT, Hambleton J, Dupont J, Mackey H, Douglas J, Burger RA, Armstrong D, Wenham R, McGuire W. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol. 25(33):5180–86, 2007.PubMedCrossRefGoogle Scholar
  75. 75.
    Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 23(5):1011–27, 2005.PubMedCrossRefGoogle Scholar
  76. 76.
    Kamat AA, Merritt WM, Coffey D, Lin YG, Patel PR, Broaddus R, Nugent E, Han LY, Landen CN Jr, Spannuth WA, Lu C, Coleman RL, Gershenson DM, Sood AK. Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clin Cancer Res. 13(24):7487–95, 2007.PubMedCrossRefGoogle Scholar
  77. 77.
    Willett CG, Boucher Y, diTomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani Dv, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 10(2):145–147, 2004.PubMedCrossRefGoogle Scholar
  78. 78.
    Motzer RJ, Basch E. Targeted drugs for metastatic renal cell carcinoma. Lancet. 370(9605):2071–3, 2007.PubMedCrossRefGoogle Scholar
  79. 79.
    Yabushita H, Noguchi M, Kinoshita S, Kishida T, Sawaguchi K, Noguchi M. Angiostatin expression in endometrial cancer. Oncol Rep. 9(6):1193–6, 2002.PubMedGoogle Scholar
  80. 80.
    Shaarawy M, El-Sharkawy SA. Biomarkers of intrinsic angiogenic and anti-angiogenic activity in patients with endometrial hyperplasia and endometrial cancer. Acta Oncol. 40(4):513–8, 2001.PubMedCrossRefGoogle Scholar
  81. 81.
    Livasy CA, Reading FC, Moore DT, Boggess JF, Lininger RA. EGFR expression and Her2/neu overexpression/amplifiction in endometrial carcinosarcoma. Gynec Oncol. 100(1):101–6, 2006.CrossRefGoogle Scholar
  82. 82.
    Press MF, Lenz HJ. EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs. 67(14):2045–75, 2007.PubMedCrossRefGoogle Scholar
  83. 83.
    Konecny GE, Venkatesan N, Yang G, Dering J, Ginther C, Finn R, Rahmeh M, Fejzo MS, Toft D, Jiang SW, Slamon DJ, Podratz KC. Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells. Br J Cancer. 98(6):1076–1084, 2008.PubMedCrossRefGoogle Scholar
  84. 84.
    Ejskjaer K, Sorensen BS, Poulsen SS, Forman A, Nexo E, Mogensen O. Expression of the epidermal growth factor system in endometrioid endometrial cancer. Gynecol Oncol. 104(1):158–67, 2007.PubMedCrossRefGoogle Scholar
  85. 85.
    Schilder RJ, Sill MW, Chen X, Darcy KM, Decesare SL, Lewandowski G, Lee RB, Arceiero CA, Wu H, Godwin AK. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group study. Clin Cancer Res. 11(15):5539–48, 2005.PubMedCrossRefGoogle Scholar
  86. 86.
    Gordon AN, Finkler N, Edwards RP, Garcia AA, Crozier M, Irwin DH, Barrett E. Efficacy and safety of erlotinib HCL, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int J Gynecol Cancer. 15:785–792, 2005.PubMedCrossRefGoogle Scholar
  87. 87.
    Secord AA, Blessing JA, Armstrong DK, Rodgers WH, Miner Z, Barnes MN, Lewandowski G, Mannel RS; Gynecologic Oncology Group. Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: a Gynecologic Oncology Group study. Gynecol Oncol. 108(3):493–9, 2008.PubMedCrossRefGoogle Scholar
  88. 88.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2(7):489–501, 2002.PubMedCrossRefGoogle Scholar
  89. 89.
    Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U S A. 95(26):15587–91, 1998.PubMedCrossRefGoogle Scholar
  90. 90.
    Ali IU, Schriml LM, Dean M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst. 91(22):1922–32, 1999.PubMedCrossRefGoogle Scholar
  91. 91.
    Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, Jen J, Isaacs WB, Bova GS, Sidransky D. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 57(22):4997–5000, 1997.PubMedGoogle Scholar
  92. 92.
    Mita MM, Mita AC, Chu QS, Rowinsky EK, Fetterly GJ, Goldston M, Patnaik A, Mathews L, Ricart AD, Mays T, Knowles H, Rivera VM, Kreisberg J, Bedrosian CL, Tolcher AW. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 26(3):361–367, 2008.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhou C, Gehrig PA, Whang YE, Boggess JF. Rapamycin inhibits telomerase activity by decreasing the hTERT mRNA level in endometrial cancer cells. Molec Cancer Ther. 2:789–795, 2003.Google Scholar
  94. 94.
    Sonpavde G, Hutson TE. Pazopanib: a novel multitargeted tyrosine kinase inhibitor. Curr Oncol Rep. 9(2):115–9, 2007.PubMedCrossRefGoogle Scholar
  95. 95.
    Slingerland JM, Hengst L, Pan CH, Alexander D, Stampfer MR, Reed SI. A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor beta-arrested epithelial cells. Mol Cell Biol. 14(6):3683–94, 1994.Google Scholar
  96. 96.
    Bloom J, Pagano M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol. 13(1):41–7, 2003.PubMedCrossRefGoogle Scholar
  97. 97.
    Gold LI, Rahman M, Liarsky V, Parekh TV, Razouk S, Lecanda J, Mittal K, and Gama P. The downregulation and growth inhibition of endometrial caricinoma cells. Proc Amer Assoc Cancer Res. 910:(Abstract # 3948), 2004.Google Scholar
  98. 98.
    Cusack JC Jr, Liu R, Xia L, Chao Th, Pien C, Niu W, Palombella VJ, Neuteboom ST, Palladino MA. NPI-0052 enhances tumoricidal response to conventional cancer therapy in a colon cancer model. Clin Cancer Res. 12(22):6758–6764, 2006.PubMedCrossRefGoogle Scholar
  99. 99.
    Mitsiades CS, Mitsiades N, Hideshima T, Richardson PG, Anderson KC. Proteasome inhibitors as therapeutics. Essays Biochem. 41:205–218, 2005.PubMedCrossRefGoogle Scholar
  100. 100.
    Richardson PG, Mitsiades C. Bortezomib: proteasome inhibition as an effective anticancer therapy. Future Oncol. 1(2):161–171, 2005.PubMedCrossRefGoogle Scholar
  101. 101.
    Denicourt C, Saenz CC, Datnow B, Cui XS, Dowdy SF. Relocalized p27Kip1 tumor suppressor functions as a cytoplasmic metastatic oncogene in melanoma. Cancer Res. 67(19):9238–43, 2007.PubMedCrossRefGoogle Scholar
  102. 102.
    Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Blade J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC. Assessment of proteasome inhibition for extending remissions (APEX) investigators. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 352:2487–2498, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Medical OncologyNYU Cancer Institute, NYU Medical CenterNew York

Personalised recommendations