Advertisement

Bioremediation

  • Joseph F. Hawumba
  • Peter Sseruwagi
  • Yung-Tse Hung
  • Lawrence K. Wang
Chapter
Part of the Handbook of Environmental Engineering book series (HEE, volume 11)

Abstract

Environmental pollutants such as polycyclic aromatic hydrocarbons (PHAs), polychlorinated biphenyl’s (PCBs), pesticides, petroleum hydrocarbons, and heavy metals are released into the environment, where they cause deleterious effects to wildlife and humans, owing to their inertness and being recalcitrant. However, the existence of microorganisms and plants capable of utilizing or accumulating such compounds has made the applications of such organisms in cleaning up of the environment a workable strategy. Therefore, Bioremediation (the application of bacteria and fungi) and Phytoremediation (the application of plants) to clean-up the environment are the two feasible and safe approaches that offer promise regarding environmental reclamation and sustainable use.

Keywords

Heavy Metal Chemical Oxygen Demand Activate Sludge Biochemical Oxygen Demand Petroleum Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gemmell TR, Knowles JC (2000) Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria. The potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals. FEMS Microbiol Lett 192:185–190Google Scholar
  2. 2.
    Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19(2):67–73CrossRefGoogle Scholar
  3. 3.
    Abraham W-R, Nogales B, Golyshin P, Pieper HD, Timmis NK (2002) Polychlorinated biphenyl-degrading microbial communities in soil and sediments. Curr Opin Microbiol 5:246–253CrossRefGoogle Scholar
  4. 4.
    Samanta KS, Singh VO, Jain KR (2002) Trends Biotechnol 20(6):243–248CrossRefGoogle Scholar
  5. 5.
    Novotný C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lang E, Šašek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551CrossRefGoogle Scholar
  6. 6.
    Khan GA (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal Trace Elem Med Biol 18:355–364CrossRefGoogle Scholar
  7. 7.
    Ang LE, Zhao H, Obbard PJ (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb Technol 37:487–496CrossRefGoogle Scholar
  8. 8.
    Paul D, Pandey G, Pandey J, Jain KR (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23(3):135–114CrossRefGoogle Scholar
  9. 9.
    Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73(7):1163–1172CrossRefGoogle Scholar
  10. 10.
    Singer CA, Luepromchai EJ, Yahng SC, Crowley ED (2001) Contribution of earthworms to PCB bioremediation. Soil Biol Biochem 33:765–776CrossRefGoogle Scholar
  11. 11.
    Environmental Protection Authority (EPA) Guidelines (2005) Soil bioremediation. U.S. Environmental Protection Agency, Washington, DC, pp 1–9Google Scholar
  12. 12.
    Timmis NK, Pieper HD (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201–204CrossRefGoogle Scholar
  13. 13.
    Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int Biodeterior Biodegradation 46:3–10CrossRefGoogle Scholar
  14. 14.
    Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241CrossRefGoogle Scholar
  15. 15.
    Furukawa K (2003) ‘Super bugs’ for bioremediation. Trends Biotechnol 21(5):187–190CrossRefGoogle Scholar
  16. 16.
    De Marco P, Pacheco CC, Figueiredo RA, Moradas-Ferreira P (2004) Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiol Lett 234:75–80CrossRefGoogle Scholar
  17. 17.
    Pieper HD, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270CrossRefGoogle Scholar
  18. 18.
    Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214CrossRefGoogle Scholar
  19. 19.
    Scow MK, Hicks AK (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253CrossRefGoogle Scholar
  20. 20.
    Meckenstock UR, Safinowski M, Griebler C (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49:27–36CrossRefGoogle Scholar
  21. 21.
    Hendrickx B, Junca H, Vosahlova J, Lindner A, Rüegg I, Bucheli-Witschel M, Faber F, Egli T, Mau M, Schlmann M, Brennerova M, Brenner V, Pieper HD, Top ME, Dejonghe W, Bastiaens L, Pringael D (2006) Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Methods 64(2):250–265CrossRefGoogle Scholar
  22. 22.
    Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:135–141CrossRefGoogle Scholar
  23. 23.
    Hernández-Serrato IM, Fortoul IT, Rojas-Martinez R, Mendoza-Alvarado RL, Canales-Treviňo L, Bochichio-Riccardelli T, Avila-Costa RM, Olaiz-Fernández G (2006) Lead blood concentrations and renal function evaluation: study in an exposed Mexican population. Environ Res 100:227–231CrossRefGoogle Scholar
  24. 24.
    Lidsky IT, Schneider JS (2006) Adverse effects of childhood lead poisoning: the clinical neuropsychological perspective. Environ Res 100:284–293CrossRefGoogle Scholar
  25. 25.
    Nakagawa H, Nishijo M, Morikawa Y, Miura K, Tawara K, Kuriwaki J, Kido T, Ikawa A, Kobayashi E, Nogawa K (2006) Urinary cadmium and mortality among inhabitants of a cadmium-polluted area in Japan. Environ Res 100:323–329CrossRefGoogle Scholar
  26. 26.
    Bishayi B, Sengupta M (2006) Synergism in immunotoxicological effects due to repeated combined administration of arsenic and lead in mice. Int Immunopharmacol 6:454–464CrossRefGoogle Scholar
  27. 27.
    Valls M, Lorenzo V (2002) Exporting the genetic and biochemical capacities of bacteria for bioremediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338Google Scholar
  28. 28.
    Zhang H, Xu W, Guo J, He Z, Ma M (2005) Coordinated response of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Sci 169:1059–1065CrossRefGoogle Scholar
  29. 29.
  30. 30.
    NRC (1993) In situ bioremediation: when does it work? National Research Council Report. National Academic Press, Washington, DC, pp 2–11Google Scholar
  31. 31.
    Bollag JM, Bolllag WB (1995) Soil contamination and feasibility of biological remediation. In: Skipper HD, Turco RF (eds) Bioremediation. Science and applications. SSSA, Madison, WI, pp 1–12Google Scholar
  32. 32.
    Loehr R, Asce M, Overcash MR (1985) Land treatment of wastes: concepts and general design. J Environ Eng 111:141–159CrossRefGoogle Scholar
  33. 33.
    Miller FC (1993) Compositing as a process based on the control of ecologically selective factors. In: Metting B (ed) Soil microbial ecology. Marcel Dekker, USA, pp 515–544Google Scholar
  34. 34.
    Rynk R et al (1992) Composting methods. In: Rynk R (ed) On-farm composting handbook. Northeast Regional Engineering Service, Cooperative Extension, Ithaca, pp 24–42Google Scholar
  35. 35.
    Baker KH (1994) Bioremediation of surface and subsurface soils. In: Baker KH, Herson DS (eds) Bioremediation. McGraw-Hill, New YorkGoogle Scholar
  36. 36.
    Williams RT, Ziegenfuss PS, Sisk WE (1992) Composting of explosive and propellant contaminated soils under thermophilic and mesophillic conditions. J Ind Microbiol 9:137–144CrossRefGoogle Scholar
  37. 37.
    ÓLeary P, Walsh P, Razvi A (1990) Solid waste compositing. Aerated static pile for compositing municipal solid wastes. Waste AgeGoogle Scholar
  38. 38.
    Schaub SM, Leonard JJ (1996) Composting: an alternative waste management option for food processing industries. Trends Food Sci Technol 7:263–268CrossRefGoogle Scholar
  39. 39.
    Litchfield CD (1993) In situ bioremediation: bases and practices. In: Levin MA, Gealt MA (eds) Biotechnology of industrial and hazardous waste. McGraw-Hill, USA, pp 167–195Google Scholar
  40. 40.
    Aelion CM, Swindoll CM, Pfaender FK (1987) Adaptation to and bioremediation of xenobiotic compounds by microbial communities from a pristine aquifer. Appl Environ Microbiol53:2217–2217Google Scholar
  41. 41.
    Litchfield JH, Clark LC (1973) Bacterial activity in ground waters containing petroleum products. American Petroleum Institute Publication No. 4211. American Petroleum Institute, Washington, DCGoogle Scholar
  42. 42.
    Nelson CH, Hicks RJ, Andrews SD (1996) In-situ bioremediation: an integrated system approach. In: Hickey RF, Smith G (eds) Biotechnology in industrial waste treatment and bioremediation. CRC, Lewis Publishers, USA, pp 243–268Google Scholar
  43. 43.
    Ellis B, Gorder K (1997) Intrinsic bioremediation: an economic option for cleaning up contaminated land. Chem Ind 3:95–98Google Scholar
  44. 44.
    Hazen TC, Looney BB, Enzein M, Dougherty JM, Wear J, Fliernans CB, Eddy CA (1996) In-situ bioremediation via horizontal wells. In: Hickey RF, Smith G (eds) Biotechnology in industrial waste treatment and bioremediation. CRC, Lewis Publishers, USA, pp 79–86Google Scholar
  45. 45.
    Ogunseitan OA, Tedford ET, Pacia D, Sirotkin KM, Sayler GS (1987) Distribution of plasmids in groundwater bacteria. J Ind Microbiol 1:311–317CrossRefGoogle Scholar
  46. 46.
    Wilson JT, Jawson MD (1995) Science needs for implementation of bioremediation. In: Skipper HD, Turco RF (eds) Bioremediation. Science and applications. SSSA Special Publication, vol 43. Soil Science Society of America, Madison, WI, pp 293–303Google Scholar
  47. 47.
    United States Environmental Protection Agency (1990) Slurry biodegradation. EPA/540/2-90/016Google Scholar
  48. 48.
    Portier RJ (1989) Examination of site data and discussion of microbial physiology with regard to site remediation. In: Proceedings of the 10th national conference: Superfund’89, Haz. Mat. Control. Res. Inst, Washington, DCGoogle Scholar
  49. 49.
    Castaldi FJ, Ford DL (1992) Slurry bioremediation of petro-chemical waste sludges. Water Sci Technol 25:207–212Google Scholar
  50. 50.
    Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Phili JC (2004) Bioremediation of diesel-contaminated soil by microorganisms immobilized in polyvinyl alcohol. Int Bioremediat Biodegradation 54:167–174CrossRefGoogle Scholar
  51. 51.
    El Fantroussi S, Belkacemi M, Top EM, Mahillon J, Naveau H, Agathos SN (1999) Bioaugmentation of a soil bioreactor designed for pilot-scale anaerobic bioremediation studies. Environ Sci Technol 33:2992–3001CrossRefGoogle Scholar
  52. 52.
    Dybas MJ, Hyndman DW, Heine R, Tiedje J, Linning K, Wiggert D, Voice T, Zhao X, Dybas L, Criddle CS (2002) Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation. Environ Sci Technol 36:3635–3644CrossRefGoogle Scholar
  53. 53.
    Da Silva MLB, Alvarez PJJ (2004) Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns. Appl Environ Microbiol 70:4720–4726CrossRefGoogle Scholar
  54. 54.
    Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 3:649–657CrossRefGoogle Scholar
  55. 55.
    Ahring BK, Christiansen N, Mathrani I, Hendriksen HV,Macario, AJL, De Macario EC (1992) Introduction of a de novo bioremediation ability, aryl reductive dechlorination, into anaerobic granular sludge by inoculation of sludge with Desulfomonile tiedjei. Appl Environ Microbiol 58:3677–3682Google Scholar
  56. 56.
    McClure NC, Fry JC, Weightman AJ (1991) Survival and catabolic activity of natural and genetically engineered bacteria in a laboratory-scale activated sludge unit. Appl Environ Microbiol 57:366–373Google Scholar
  57. 57.
    Wang J, Xiangchun Q, Wu L, Libo Q, Werner H (2002) Bioaugmentation as a toll to enhance the removal of refractory compound in coke plant wastewater. Process Biochem 38:777–778CrossRefGoogle Scholar
  58. 58.
    Verville R, Seekins B (1993) New use for blueberry residuals. Biocycle 33:71Google Scholar
  59. 59.
    Saez L, Perez J, Martinez J (1992) Low molecular weight phenolics attenuation during simulated treatment of wastewaters from olive oil mill in evaporation ponds. Water Res 26:1261–1266CrossRefGoogle Scholar
  60. 60.
    Kyriacou A, Lasaridi KE, Kotsou M, Balis C, Pilidis G (2005) Combined bioremediation and advanced oxidation of green table olive processing wastewater. Process Biochem 40:1401–1408CrossRefGoogle Scholar
  61. 61.
    Rozzi A, Malpei F (1996) Treatment and disposal of olive mill effluents. Int Biodeterior Biodegradation 38:135–144CrossRefGoogle Scholar
  62. 62.
    Giorgio L, Andeazza C, Rotunno G (1981) Esperienze sul funzionamento di un impianto di depurazione per acque di scarico civili e di leifici. Ingegneria Sanitaria 5:296–303Google Scholar
  63. 63.
    Mayer ES (1991) Waste treatment experiments at the Gabriel Sedlmayr Spaten. Franziskaner-Braeu K.-G.a.A. Brauwetl. (Ger.) 131:2346Google Scholar
  64. 64.
    Suzuki H, Yoneyama Y, Tanaka T (1997) Acidification during anaerobic treatment of brewery wastewaters. Water Sci Technol 35:265Google Scholar
  65. 65.
    Boudouropoulos ID, Arvanitoyannis IS (2000) Potential and perspective for application of environmental management system (EMS) and ISO 14000 to food industries. Food Res Int 16:177–237CrossRefGoogle Scholar
  66. 66.
    Thassitou PK, Arvanitoyannis IS (2001) Bioremediation: a novel approach to food waste management. Trends Food Sci Technol 12:185–196CrossRefGoogle Scholar
  67. 67.
    Kosseva MR, Kent CA, Lloyd DR (2003) Thermophilic bioremediation strategies for a dairy waste. Biochem Eng J 15:124–130CrossRefGoogle Scholar
  68. 68.
    Romney AJD (ed).(1990) CIP: cleaning in place, 2nd edn. The Society of Dairy Technology, Huntington, UKGoogle Scholar
  69. 69.
    Wildbrertt G (1990) Reinigen in der Milchwirtschatt. Dtsch. Milchwirtschatt 41:229–238Google Scholar
  70. 70.
    Bell C (1992) Anaerobic/aerobic treatment in the food and beverage industry. In: Proceedings of 1992 food ind. environ. conf., GA Tech. Res. Inst., Atlanta, p 293Google Scholar
  71. 71.
    Schöberl P, Huber L (1988) Ökologisch relevante Dten von nichttensidischen Inhaltsstoffen in Wasch- und Reinigungsmitteln. Tenside Surfact. Deter. 25:99–107Google Scholar
  72. 72.
    Danforth TS (1992) Computerised control of sequencing batch reactor treatment for dairy processing wastewater. In: Proc. 1992 food ind. environ. conf., GA Tech. Res. Inst., Atlanta, p 305Google Scholar
  73. 73.
    Rusten B et al (1992) Treatment of dairy wastewater in a novel moving bed biofilm reactor. Water Sci Technol 26:703CrossRefGoogle Scholar
  74. 74.
    Sung S, Dague RR (1995) Laboratory studies on the anaerobic sequencing batch reactor. Water Environ Res 67:294CrossRefGoogle Scholar
  75. 75.
    LaPara TM, Konopka A, Nakatsu CH, Alleman JE (2000) Thermophilic aerobic wastewater treatment in continuous-flow bioreactors, J Environ Eng 126:739–744CrossRefGoogle Scholar
  76. 76.
    Cournoyer MS (1996) Sanitation and stabilization of slaughter-house sludges through compositing. In: Proceedings of the Canadian Meat Research Institute Technology Symposium, Canadian Meat Research Institute, Toronto, Ontario, Canada, pp 1–7Google Scholar
  77. 77.
    Starkey JE (1992) Considerations for the design of poultry wastewater systems. In: Proc. 1992 natl. poultry waste manage. symp., Auburn Univ., Auburn, AL, p 224Google Scholar
  78. 78.
    Overcash MR, Pal D (1979) Design of land treatment system for industrial wastes: theory and practice. Ann Arbor Sci 159–219Google Scholar
  79. 79.
    Baheri H, Meysami (2001) Feasibility of fungi bioaugmentation in compositing a flare pit soil. J Hazard Mater B89:279–353Google Scholar
  80. 80.
    Pope DF, Mathews JE (1993) Bioremediation using the land treatment concept. USEPA/600/R-93/164. Robert S. Kerr, Environmental Research Laboratory. US Environmental Protection Agency, Ada, OkGoogle Scholar
  81. 81.
    Zhao JF (1989) Study on the biodegradability of organic compounds in coke plant wastewater. Ph.D. thesis, Beijing, China: Tsinghua University 1989Google Scholar
  82. 82.
    Zhang, M. (1993) Study on the treatment of coke plant wastewater by fixed-film process. PhD thesis, Tsinghua University, Beijing, ChinaGoogle Scholar
  83. 83.
    Jone W (1998) Practical applications of marine bioremediation. Curr Opin Biotechnol 9:300–304CrossRefGoogle Scholar
  84. 84.
    Pelley J (1998) What is causing toxic algal blooms? Environ Sci Technol 32:26A–30ACrossRefGoogle Scholar
  85. 85.
    Kuba T, van Loosdrecht MCM, Brandse F, Heijnen JJ (1997) Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Water Res 31:777–787CrossRefGoogle Scholar
  86. 86.
    van Loosdrecht MCM, Hooijmans CM, Brdjanovic D, Heijnen J (1997) Biological phosphate removal processes. Appl Microbiol Biotechnol 48:289–296CrossRefGoogle Scholar
  87. 87.
    Lovley DR, Coastes JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289CrossRefGoogle Scholar
  88. 88.
    Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 319:291–297CrossRefGoogle Scholar
  89. 89.
    Anonymous (1992) In situ Hudson River Research Study: a field study on biodegradation of PCBs in Hudson River Sediment. Final Report. General Electric Company, Schenectady, NYGoogle Scholar
  90. 90.
    Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507Google Scholar
  91. 91.
    Nadim F, Hoag GE, Liu S, Carley RJ, Zack P (2000) Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview. J Pet Sci Eng 26:169–178CrossRefGoogle Scholar
  92. 92.
    Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31:178–182CrossRefGoogle Scholar
  93. 93.
    Desai JD, Banat IM (1997) Microbial production of biosurfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–84Google Scholar
  94. 94.
    Prince RC (1997) Bioremediation of marine oil spills. Trends Biotechnol 15:158–160CrossRefGoogle Scholar
  95. 95.
    Arfmann H-A, Timmis KN, Wittich R-M (1997) Mineralization of 4-chlorodibenzofuran by a consorcium consisting of Sphingomonas sp. strain RW1and Burkholderia sp. strain JWS. Appl Environ Microbiol 63:3458–3462Google Scholar
  96. 96.
    Cebolla A, Sousa C, de Lorenzo V (1997) Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. J Biol Chem 272:3986–3992CrossRefGoogle Scholar
  97. 97.
    Crameri A, Dawes G, Rodriguez E, Silver S, Stemmer PCW (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat Biotechnol 15:346–438CrossRefGoogle Scholar
  98. 98.
    Don RH, Pemberton JM (1985) Genetic and physical map of the 2,4-dichlorophenocyacetic acid-degradative plasmid pJP4. J Bacteriol 161:466–468Google Scholar
  99. 99.
    Gallardo ME, Ferrandez A, de Lorenzo V, Garcia JL, Diaz E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol 179:7156–7160Google Scholar
  100. 100.
    Kenneth, N, Timmis A, Diemar H, Pieper A (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:202–204Google Scholar
  101. 101.
    Nörtemann B, Baumgarten J, Rast HG, Knackmuss H-J (1986) Bacterial communities degrading amino- and hydroxynaphthalene-2-sulfonates. Appl Environ Microbiol 52:1195–1202Google Scholar
  102. 102.
    Rouse JD, Sabatini DA, Suflita JM, Harwell JH (1994) Influence of surfactants on microbial degradation of organic compounds. Crit Rev Environ Sci Technol 24:325–370CrossRefGoogle Scholar
  103. 103.
    Pandey G, Paul D, Jain KR (2005) Conceptualizing “suicidal genetically engineered microorganisms” for bioremediation applications. Biochem Biophys Res Commun 327:637–639CrossRefGoogle Scholar
  104. 104.
    Liu L, Jiang C-Y, Liu X-Y, Wu J-F, Han J-G, Liu S-J (2007) Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. Strain CNB-1. Environ Microbiol 9(2):465–473CrossRefGoogle Scholar
  105. 105.
    Wang LK (2004) Site remediation and groundwater decontamination (Chapter 20). In: Wang LK, Hung YT, Lo HH, Yapijakis C (eds) Handbook of Industrial and Hazardous Wastes Treatment. Marcel Dekker, Inc. and CRC Press, New York, NY, pp 923–970CrossRefGoogle Scholar
  106. 106.
    Wang LK, Shammas NK, Wang P, LaFleur R (2010) Remediation of sites contaminated by hazardous wastes (Chapter 16). In: Wang LK, Hung YT, Shammas NK (eds) Handbook of Advanced Industrial and Hazardous Wastes Treatment. pp 589–668Google Scholar
  107. 107.
    Wang LK, Shammas NK, Wang P, Clesceri NL (2010) Remediation of sites contaminated by underground storage tank releases (Chapter 18). In: Wang LK, Hung YT, Shammas NK (eds) Handbook of Advanced Industrial and Hazardous Wastes Treatment. pp 687–758Google Scholar
  108. 108.
    Paspaliaris I, Papassiopi N, Xenidis A, Hung YT (2010) Soil remediation (Chapter 14). In: Wang LK, Hung YT, Shammas NK (eds) Handbook of Advanced Industrial and Hazardous Wastes Treatment. pp 519–570Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Joseph F. Hawumba
    • 1
  • Peter Sseruwagi
    • 2
  • Yung-Tse Hung
    • 3
  • Lawrence K. Wang
    • 4
    • 5
    • 6
  1. 1.Biochemistry DepartmentMakerere UniversityKampalaUganda
  2. 2.National Agricultural Research LaboratoriesKawandaUganda
  3. 3.Department of Civil and Environmental EngineeringCleveland State UniversityClevelandUSA
  4. 4.Lenox Institute of Water TechnologyLenoxUSA
  5. 5.Krofta Engineering CorporationLenoxUSA
  6. 6.Zorex CorporationNewtonvilleUSA

Personalised recommendations