Advertisement

Kitchen Refuse Fermentation

  • Mohd Ali Hassan
  • Shahrakbah Yacob
  • Cheong Weng Chung
  • Yoshihito Shirai
  • Yung-Tse Hung
Chapter
Part of the Handbook of Environmental Engineering book series (HEE, volume 11)

Abstract

Controlled fermentation has been used for kitchen waste treatment. The most important factors affecting methane production from kitchen waste is organic loading rate and hydraulic detention time. Two main types of fermentation of kitchen waste are natural fermentation and controlled fermentation. The fermentation products are poly-3-hydroxyalkanoates (PHA) and poly-lactate (PLA).

Keywords

Lactic Acid Lactic Acid Bacterium Municipal Solid Waste Hydraulic Retention Time Food Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tanaka M (1999) Recent trends in recycling activities and waste management in Japan. J Mater Cycles Wastes Manag 1:10–16Google Scholar
  2. 2.
    USEPA (2001) Municipal waste in the united states: facts and figures, EPA/625–91/014, Washington, DCGoogle Scholar
  3. 3.
    Shimura S, Yokota I, Nitta Y (2001) Research for MSW flow analysis in developing nations. J Mater Cycles Waste Manag 3:48–59Google Scholar
  4. 4.
    Einsiedel NV (2000) Final disposal of municipal solid waste: critical considerations of solid waste disposal in Asian cities. (http://www.aeetc.org/project/watersoil/landfilldocADB.html)
  5. 5.
    Berrueta J, Gutierrez A, Fueyo G (1996) Anaerobic treatment of leachates in a pilot scale upflow anaerobic sludge blanket reactor – strategy of start-up. J Chem Technol Biot 67:302–314CrossRefGoogle Scholar
  6. 6.
    Lema JM, Mandez R, Blazquez R (1988) Characteristic of landfill leachate and alternatives for their treatment: a review. Water Air Soil Pollut 40:223–250Google Scholar
  7. 7.
    Boothe DDH, Smith MC, Gattie DK, Das KC (2001) Characterization of microbial populations in landfill leachate and bulk samples during aerobic bioreduction. Adv Environ Res 5:285–294CrossRefGoogle Scholar
  8. 8.
    Calli B, Mertoglu B, Roest K, Inanc B (2006) Comparison of long term performances and final microbial compositions of anaerobic reactors treating landfill leachate. Bioresour Technol 97:641–647CrossRefGoogle Scholar
  9. 9.
    Huang L, Chen Y, Zhou H, Luo S, Lan C, Qu L (2003) Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46:171–177CrossRefGoogle Scholar
  10. 10.
    Pourcher A, Sutra L, Hébé I, Moguedet G, Bollet C, Simoneau P, Gardan L (2001) Enumeration and characterization of cellulolytic bacteria from refuse of landfill. FEMS Microbiol Ecol 34:229–241CrossRefGoogle Scholar
  11. 11.
    Kim DH, Kim SH., Shin HS (2009) Hydrogen fermentation of food waste without inoculum addition. Enzyme Microb Technol 45:181–187CrossRefGoogle Scholar
  12. 12.
    Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg 13:83–114CrossRefGoogle Scholar
  13. 13.
    Gallert C, Winter J (1997) Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production. Appl Microbiol Biotechnol 48:405–410CrossRefGoogle Scholar
  14. 14.
    Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energ 22:1–8CrossRefGoogle Scholar
  15. 15.
    Barlaz MA, Schaefer E, Weiland P (1989) Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl Environ Microbiol 55:55–65Google Scholar
  16. 16.
    Mechichi T, Sayadi S (2005) Evaluating process imbalance of anaerobic treatment of olive mill wastewaters. Process Biochem 40:139–145CrossRefGoogle Scholar
  17. 17.
    Nebot E, Romero LI, Quiroga JM Sales D (1995) Effect of the feed frequency on the performance of anaerobic filters. Anaerobe 1:113–120CrossRefGoogle Scholar
  18. 18.
    Masse L, Massé DI (2005) Effect of soluble organic, particulate organic, and hydraulic shock loads on anaerobic sequencing batch reactors treating slaughterhouse wastewater at 20C. Process Biochem 40:1225–1232CrossRefGoogle Scholar
  19. 19.
    Oremland RS (1988) Biochemistry of methane production, In: Zehnder, AJ Stumm W (eds) Biology of anaerobic microorganisms Wiley, New York, pp 707–770Google Scholar
  20. 20.
    Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38:560–564CrossRefGoogle Scholar
  21. 21.
    Braun R, Huber P, Meyrath J (1981) Ammonia toxicity in liquid piggery manure digestion. Biotechnol Lett 3:159–164CrossRefGoogle Scholar
  22. 22.
    Koster IW, Lettinga G (1984) The influence of ammonia–nitrogen on the specific activity of pelletized methanogens sludge. Agr Wastes 9:205–216CrossRefGoogle Scholar
  23. 23.
    Borzacconi L, Lōpez I, Anido C (1997) Hydrolysis constant and VFA inhibition in acidogenesis phase of MSW anaerobic degradation. Water Sci Technol 36:479–484CrossRefGoogle Scholar
  24. 24.
    Liu T (1998) Anaerobic digestion of solid substrates in an innovative two-phase plug-flow reactor (TPPFR) and a conventional single-phase continuously stirred-tank reactor. Water Sci Technol 38:453–461Google Scholar
  25. 25.
    Inanc B, Matsui S, Ide S (1996) Propionic acid accumulation and controlling factors in anaerobic treatment of carbohydrate: effects of H2 and pH. Water Sci Technol 34:317–325CrossRefGoogle Scholar
  26. 26.
    Sans C, Mata-Alvarez J, Cecchi F, Pavan P, Bassetti A (1995) Volatile fatty acids production by mesophilic fermentation of mechanically-sorted urban organic wastes in a plug-flow reactor. Bioresour Tech 51:89–96CrossRefGoogle Scholar
  27. 27.
    Argelier S, Delgenes J, Moletta R (1998) Design of acidogenic reactors for the anaerobic treatment of the organic fraction of solid food waste. Bioprocess Eng 18:309–315CrossRefGoogle Scholar
  28. 28.
    Hamed J (2003) Comparison of municipal and kitchen waste leachates for the production of organic acids and polyhydroxyalkanotes. Masters Thesis, University Putra MalaysiaGoogle Scholar
  29. 29.
    Phang LY (2001) Continuous production of organic acids from palm oil mill effluent and kitchen garbage. Masters Thesis, University Putra MalaysiaGoogle Scholar
  30. 30.
    Kascak JS, Kominek J, Roehr M (1996) Lactic acid. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6, 2nd edn. VCH Verlagsgesellschaft, Weinheim, Germany pp 294–303Google Scholar
  31. 31.
    Buchta K (1983). Organic acids of minor importance, In: Rehm HJ, Reed G (eds) Biotechnology vol 3, 1st edn. Verlag Chemie, Weinheim, pp 467–478Google Scholar
  32. 32.
    Sakai K, Taniguchi M, Miura S, Ohara H, Matsumoto T, Shirai Y (2004) Making plastics from garbage: a novel process for poly-lactate production from municipal food waste. Res Anal 7:63–74Google Scholar
  33. 33.
    Sakai K, Murata Y, Yamazumi H, Tau Y, Mori M, Moriguchi M, Shirai Y (2000) Selective proliferation of lactic acid bacteria and accumulation of lactic acid during an open fermentation of food waste with intermittent pH adjustment. Food Sci Technol Res 6:140–145CrossRefGoogle Scholar
  34. 34.
    Cheong WC (2002) Production of l-lactic acid using various carbon sources by Enterococcus gallinarium. Master Thesis, Universiti Putra MalaysiaGoogle Scholar
  35. 35.
    Yamane T (1993) Yield of poly-d-(–)-3-hydroxybutyrate from various carbon sources: a theoretical study. Biotechnol Bioeng 41:165–170CrossRefGoogle Scholar
  36. 36.
    Hassan MA, Shirai Y, Kusubayashi N, Abdul Karim MI, Nakanishi K, Hashimoto K (1997) The production of polyhydroxybutyrate from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides. J Ferment Bioeng 83(5):485–488CrossRefGoogle Scholar
  37. 37.
    Hassan MA, Shirai Y, Umeki H, Abdul Karim MI, Nakanishi K, Hashimoto K (1997) Acetic acid separation from anaerobically treated palm oil mill effluent for the production of polyhydroxy- butyrate by Alcaligenes eutrophus. J Biosci Biotech Biochem 61(9):1465–1468CrossRefGoogle Scholar
  38. 38.
    Hassan MA, Nawata O, Abdul Rahman N, Phang LY, Shirai Y, Ariff AB, Abdul Karim MI (2002) Production of polyhydroxyalkanoates from palm oil mill effluent within a zero emission system. J Chem Eng Jpn 35:9–14CrossRefGoogle Scholar
  39. 39.
    Linko S, Vaheri H, Seppala J (1993) Production of poly-3-hydroxybutyrate by Alcaligenes eutrophus on different carbon sources. Appl Microbiol Biotechnol 39:11–15Google Scholar
  40. 40.
    Salehizadeh H, Van Loosdrecht MCM (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22:261–279CrossRefGoogle Scholar
  41. 41.
    Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96CrossRefGoogle Scholar
  42. 42.
    Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates J Biosci Bioeng 6:579–584Google Scholar
  43. 43.
    Yan Q, Du G, Chen J (2003) Biosynthesis of polyhydroxylalkanoates (PHAs) with continuous feeding of mixed organic acids as carbon sources by Ralstonia eutropha. Process Biochem 39:387–391CrossRefGoogle Scholar
  44. 44.
    Linko S, Vaheri H, Seppala J (1993) Production of poly-3-hydroxybutyrate on lactic acid by Alcaligenes eutrophus H16 in a 3-l bioreactor. Enzyme Microb Biotechnol 15:401–406CrossRefGoogle Scholar
  45. 45.
    Cargill (2005). Developing products that protect the environment (http://www.cargill.com/about/citizenship/developingproducts.htm)
  46. 46.
    Ehhalt D, Prather M (2001) Atmospheric chemistry and greenhouse gases. In: Joos F, McFarland M (eds) Climate change 2001: the scientific basis, Cambridge University Press, Cambridge, pp 241–287Google Scholar
  47. 47.
    Intergovernmental Panel on Climate Change (IPCC) (1992) Climate change 1992, the supplementary report to the IPCC scientific assessment. Cambridge University Press, Cambridge, pp 25–27Google Scholar
  48. 48.
    Bogner J, Spokas K, Burton E, Sweeney R, Corona V (1995) Landfills as atmospheric methane sources and sinks. Chemosphere 9:4119–4130CrossRefGoogle Scholar
  49. 49.
    El-Fadel M, Massoud M (2001) Methane emission from wastewater management. Environ Pollut 114:177–185CrossRefGoogle Scholar
  50. 50.
    Hunte C, Hettiaratchi P, Meegoda JN, Hettiarachchi CH ASCE Conf. Proc. 226, 6 (2007) Denver, CO, USA, Settlement of Bioreactor Landfills during Filling OperationGoogle Scholar
  51. 51.
    Wang LK, Hung YT, Lo HH, Yapijakis (2006) Waste treatment in the food processing industry. CRC Press, NY, 333 pGoogle Scholar
  52. 52.
    Beno Z, Boran J, Houdkova L, Dlabaja T, Sponar J (2009) Cofermentation of kitchen waste with sewage sludge. Chemical Engineering Transactions. Vol. 18, pp 677–682Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mohd Ali Hassan
    • 1
  • Shahrakbah Yacob
    • 1
  • Cheong Weng Chung
    • 1
  • Yoshihito Shirai
    • 2
  • Yung-Tse Hung
    • 3
  1. 1.Department of Bioprocess TechnologyUniversity Putra MalaysiaSelangorMalaysia
  2. 2.Graduate School of Life Science and System EngineeringKyushu Institute of TechnologyKitakyushuJapan
  3. 3.Department of Civil and Environmental EngineeringCleveland State UniversityClevelandUSA

Personalised recommendations