Solubilization of Sewage Sludge to Improve Anaerobic Digestion

  • Tsuyoshi Imai
  • Yuyu Liu
  • Masao Ukita
  • Yung-Tse Hung
Part of the Handbook of Environmental Engineering book series (HEE, volume 11)


With the sludge treatment, the solubilization process of sewage sludge invites our attention because of the shortage of a final disposal site. In this chapter, a high-speed rotary disk process was applied to solubilization of sewage sludge from a sewage plant. With anaerobic treatment, the solubilized sludge by high-speed rotary disk process could be shortened from a digestion period of 30 to 10 days. Moreover, by applying the solubilized sludge to the activated sludge process, the excess sludge produced from the final sedimentation tank could be reduced to approximately 60%.


Aeration Tank Treated Sludge Digested Sludge Sludge Volume Index Excess Sludge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ødegaard H (2004) Sludge minimization technologies – an overview. Water Sci Technol 49(10):31–40Google Scholar
  2. 2.
    Ardern E, Lockett WT (1914) Experimental on the oxidation of sewage without the aid of filters. J Soc Chem Ind 33(523):11–22Google Scholar
  3. 3.
    Navia R, Soto M, Vidal G et al (2002) Alkaline pretreatment of Kraft mill sludge to improve its anaerobic digestion. Bull Environ Contam Toxicol 69(6):869–876CrossRefGoogle Scholar
  4. 4.
    U.S. Environmental Protection Agency, Municipal and Industrial Solid Waste Division, Office of Solid Waste. (1999) Biosolids generation, use, and disposal in the United States. EPA530-R-99–009. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  5. 5.
    Renner R (2000) Sewage sludge: pros & cons. Environ Sci Technol 34(19):430A–435ACrossRefGoogle Scholar
  6. 6.
    Ministry of Environment Japan (ed) (2009) Annual Report on the Environment, the Sound Material-Cycle Society and the Biodiversity in Japan 2009. Ministry of Environment Japan, TokyoGoogle Scholar
  7. 7.
    Jokela J, Rintala J, Oikari A, Reinikainen O, Mutka K, Nyronen T (1997) Aerobic composting and anaerobic digestion of pulp and paper mill sludges. Water Sci Technol 36:181–188Google Scholar
  8. 8.
    Weemaes MPJ, Verstraete WH (1998) Review: evaluation of current wet sludge disintegration techniques. J Chem Technol biotechnol 73:83–92CrossRefGoogle Scholar
  9. 9.
    Canales A, Pareilleux A, Rols JL, Goma G, Huyard A (1994) Decreased sludge production strategy for domestic wastewater treatment. Water Sci Technol 30:97–106Google Scholar
  10. 10.
    Huang GH, Anderson WP, Baetz BW (1994) Environmental input-output analysis and its application to regional solid-waste management planning. J Environ Manage 42(1):63–79CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Environment Agency Japan. Law No.110 of 2000Google Scholar
  13. 13.
    Matthews P (1998) Sustentability in biosolids management. Water Sci Technol 38:97–102Google Scholar
  14. 14.
    Kopp J, Müller J, Dichtl N, Schwedes J (1997) Anaerobic digestion and dewatering characteristics of mechanical disintegrated excess sludge. Water Sci Technol 36(11):129–136CrossRefGoogle Scholar
  15. 15.
    Pavlostathis SG, Gossett JM (1988) Preliminary conversion mechanisms in anaerobic digestion of biological sludges. J Energ Eng-ASCE 114:575–592CrossRefGoogle Scholar
  16. 16.
    Nah IW, Kang YW, Hwang KY et al (2000) Mechanical pretreatment of waste activated sludge for anaerobic digestion process. Water Res 34:2362–2368CrossRefGoogle Scholar
  17. 17.
    Baier U, Schmidheiny P (1997) Enhanced anaerobic degradation of mechanically disintegrated biosolids. Water Sci Technol 36(11):137–144CrossRefGoogle Scholar
  18. 18.
    Choi HB, Hwang KY, Shin EB (1997) Effects on anaerobic digestion of sewage sludge pretreatment. Water Sci Technol 35(10, Advanced Wastewater Treatment: Nutrient Removal and Anaerobic Processes):207–211Google Scholar
  19. 19.
    Lin J-G, Ma Y-S, Chao AC, Huang C-L (1998) BMP test on chemically pretreated sludge. Bioresource Technol 68(2):187–192CrossRefGoogle Scholar
  20. 20.
    Hwang KY, Shin EB, Choi HB (1997) A mechanical pretreatment of waste activated sludge for improvement of anaerobic digestion system. Water Sci Technol 36(12):111–116CrossRefGoogle Scholar
  21. 21.
    Groenroos A, Kylloenen H, Korpijaervi K, Pirkonen P, Paavola T, Jokela J, Rintala J (2005) Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion. Ultrason Sonochem 12(1–2):115–120CrossRefGoogle Scholar
  22. 22.
    Bien JB, Malina G, Bien JD, Wolny L (2004) Enhancing anaerobic fermentation of sewage sludge for increasing biogas generation. J Environ Sci Health A Tox Hazard Subst Environ Eng 39(4):939–949CrossRefGoogle Scholar
  23. 23.
    Nickel K (2002) Ultrasonic disintegration of biosolids – benefits, consequences and new strategies. Hamburger Berichte zur Siedlungswasserwirtschaft 35(Ultrasound in Environmental Engineering II):189–199Google Scholar
  24. 24.
    Onyeche TI, Schlafer O, Bormann H, Schroder C, Sievers M (2002) Ultrasonic cell disruption of stabilized sludge with subsequent anaerobic digestion. Ultrasonics 40(1–8):31–35CrossRefGoogle Scholar
  25. 25.
    Clark PB, Nujjoo I (2000) Ultrasonic sludge pretreatment for enhanced sludge digestion. Water Environ Manage 14(1):66–71CrossRefGoogle Scholar
  26. 26.
    Lafitte-Trouque S, Forster CF (2002) The use of ultrasound and gamma-irradiation as pre-treatments for the anaerobic digestion of waste activated sludge at mesophilic and thermophilic temperatures. Bioresour Technol 84(2):113–118CrossRefGoogle Scholar
  27. 27.
    Forster CF, Chacin E, Fernandez N (2003) The use of ultrasound to enhance the thermophilic digestion of waste activated sludge. Environ Technol 21:357–362CrossRefGoogle Scholar
  28. 28.
    McDermott BL, Chalmers AD, Goodwin JAS (2001) Ultrasonication as a pre-treatment method for the enhancement of the psychrophilic anaerobic digestion of aquaculture effluents. Environ Technol 22(7):823–830CrossRefGoogle Scholar
  29. 29.
    Neis U, Nickel K, Tiehm A (2000) Enhancement of anaerobic sludge digestion by ultrasonic disintegration. Water Sci Technol 42(9):73–80Google Scholar
  30. 30.
    Chiu YC, Chang CN, Lin JG et al (1997) Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion. Water Sci Technol 36(11):155–162CrossRefGoogle Scholar
  31. 31.
    Tiehm A, Nickel K, Neis U (1997) The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Sci Technol 36(11):121–128CrossRefGoogle Scholar
  32. 32.
    Rivard CJ, Nagle NJ (1996) Pretreatment technology for the beneficial biological reuse of municipal sewage sludges. Appl Biochem Biotech 57/58(Seventeenth Symposium on Biotechnology for Fuels and Chemicals, 1995):983–991Google Scholar
  33. 33.
    Neis U, Nickel K, Tiehm A (2001) Ultrasonic disintegration of sewage sludge for enhanced anaerobic biodegradation. Adv Sonochem 6:59–90CrossRefGoogle Scholar
  34. 34.
    Tiehm A, Nickel K, Zellhorn M, Neis U (2001) Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res 35(8):2003–2009CrossRefGoogle Scholar
  35. 35.
    Wunsch B, Heine W, Neis U (2002) Combating bulking sludge with ultrasound. Hamburger Berichte zur Siedlungswasserwirtschaft 35(Ultrasound in Environmental Engineering II):201–212Google Scholar
  36. 36.
    Wang Q, Kuninobu M, Ogawa H, Kato Y (1999) Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass Bioener 16(6):407–416CrossRefGoogle Scholar
  37. 37.
    Chu CP, Lee DJ, Chang BV et al (2002) “Weak” ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids. Water Res 36(11):2681–2688CrossRefGoogle Scholar
  38. 38.
    Wang QH, Kuninobu M, Kakimoto K, Ogawa HI, Kata Y (1999) Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Bioresour Technol 68(3):309–313CrossRefGoogle Scholar
  39. 39.
    Neis U, Tiehm A Ultrasound in wastewater and sludge treatment. Hamburger Berichte zur Siedlungswasserwirtschaft (1999) 25(Ultrasound in Environmental Engineering):39–61Google Scholar
  40. 40.
    Quarmby J, Scott JR, Mason AK, Davies G, Parsons SA (1999) The application of ultrasound as a pre-treatment for anaerobic digestion. Environ Technol 20(11):1155–1161CrossRefGoogle Scholar
  41. 41.
    Bien J, Wolny L (1997) Changes of some sewage sludge parameters prepared with an ultrasonic field. Water Sci Technol 36(11):101–106CrossRefGoogle Scholar
  42. 42.
    Shin KS, Kang H (2003) Electron beam pretreatment of sewage sludge before anaerobic digestion. Appl Biochem Biotechnol 109(1–3):227–239CrossRefGoogle Scholar
  43. 43.
    Kopplow O, Barjenbruch M, Heinz V (2004) Sludge pre-treatment with pulsed electric fields. Water Sci Technol 49(10):123–129Google Scholar
  44. 44.
    Gavala HN, Yenal U, Ahring BK (2004) Thermal and enzymatic pretreatment of sludge containing phthalate esters prior to mesophilic anaerobic digestion. Biotechnol Bioeng 85:561–567CrossRefGoogle Scholar
  45. 45.
    Valo A, Carrere H, Delgenes JP (2004) Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. J Chem Technol Biotechnol 79(11):1197–1203CrossRefGoogle Scholar
  46. 46.
    Pinnekamp J (1989) Effects of thermal pretreatment of sewage sludge anaerobic digestion. Water Sci Technol 21:97–108Google Scholar
  47. 47.
    Haug RT, Stuckey DC, Dossett JM, McCarty PL (1978) Effects of thermal pretreatment on digestibility and dewaterability of organic sludges. J Water Pollut Control Fed 50:73–85Google Scholar
  48. 48.
    Haug RT, LeBrun TJ, Tortorici LD (1983) Thermal pretreatment of sludges – a field demonstration. J Water Pollut Control Fed 55:23–34Google Scholar
  49. 49.
    Hiraoka M, Takeda N, Sakai S, Yasuda A (1984) Highly efficient anaerobic digestion with thermal pretreatment. Water Sci Technol 17:529–539Google Scholar
  50. 50.
    Li YY, Noike T (1992) Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. Water Sci Technol 26:857–866Google Scholar
  51. 51.
    Li YY, Noike T (1989) Effects of thermal pretreatment and retention time on the degradation of waste activated sludge in anaerobic digestion. J Water Pollut Res 12(2):112–121 (In Japanese)CrossRefGoogle Scholar
  52. 52.
    Jolis D, Jones B, Zhou G, Jones S, Isleta C, Solheim O (2002) Pilot study of pre-treatment to mesophilic anaerobic digestion for improved biosolids stabilization. In: WEFTEC 02, Conference proceedings, Annual technical exhibition & conference, 75th, Chicago, IL, Sept 28–Oct 2, pp 3061–3070Google Scholar
  53. 53.
    Gossett JM, Stuckey DC, Owen WF, McCarty PL (1982) Heat treatment and anaerobic digestion of refuse. J Environ Eng-ASCE 108:437–454Google Scholar
  54. 54.
    Bonmati A, Flotats X, Mateu L et al (2001) Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. Water Sci Technol 44(4):109–116Google Scholar
  55. 55.
    Stuckey DC, McCarty PL (1984) The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge. Water Res 18:1343–1353CrossRefGoogle Scholar
  56. 56.
    Wechs F (1984) Influence of pretreatment on anaerobic stabilization of sewage sludge. Water Sci Technol 16(12):365–373Google Scholar
  57. 57.
    Lin JG, Chang CN, Chang SC (1997) Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization. Bioresour Technol 62(3):85–90CrossRefGoogle Scholar
  58. 58.
    Vlyssides AG, Karlis PK (2004) Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion. Bioresour Technol 91:201–206CrossRefGoogle Scholar
  59. 59.
    Ray BT, Lin JG, Rajan RV (1990) Low-level alkaline solubilization for enhanced anaerobic digestion. J Water Pollut Control Fed 62(1):81–87Google Scholar
  60. 60.
    Novelli A, Ottonello F, Converti A, Lodi A, Rovatti M, Del Borghi M (1995) Alkaline hydrolysis for the treatment of the organic fraction of municipal solid wastes and sludges. Chem Biochem Eng Quarterly 9(4):195–199Google Scholar
  61. 61.
    Knezevic Z, Mavinic DS, Anderson BC (1995) Pilot scale evaluation of anaerobic codigestion of primary and pretreated waste activated sludge. Water Environ Res 67(5):835–841CrossRefGoogle Scholar
  62. 62.
    Penaud V, Delgenes JP, Moletta R (2000) Characterization of soluble molecules from thermochemically pretreated sludge. J Environ Eng-ASCE 126(5):397–402CrossRefGoogle Scholar
  63. 63.
    Sawayama S, Inoue S, Tsukahara K, Ogi T (1996) Thermalochemical liquidization of anaerobically digested and dewatered sludge and anaerobic retreatment. Bioresour Technol 55:141–144CrossRefGoogle Scholar
  64. 64.
    Delgenes JP, Penaud V, Torrijos M et al (2000) Investigations on the changes in anaerobic biodegradability and biotoxicity of an industrial microbial biomass induced by a thermochemical pretreatment. Water Sci Technol 41(3):137–144Google Scholar
  65. 65.
    Tanaka S, Kobayashi T, Kamiyama K et al (1997) Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge. Water Sci Technol 35(8):209–215CrossRefGoogle Scholar
  66. 66.
    Tanaka S, Kamiyama K (2002) Thermochemical pretreatment in the anaerobic digestion of waste activated sludge. Water Sci Technol 46(10):173–179Google Scholar
  67. 67.
    Sawayama S, Inoue S, Yagishita T et al (1995) Thermochemical liquidization and anaerobic treatment of dewatered sewage-sludge. J Ferment Bioeng 79(3):300–302CrossRefGoogle Scholar
  68. 68.
    Penaud V, Delgenes JP, Moletta R (1999) Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme Microb Technol 25(3–5):258–263CrossRefGoogle Scholar
  69. 69.
    Penaud V, Delgenes JP, Moletta R (2000) Influence of thermochemical pretreatment conditions on solubilization and anaerobic biodegradability of a microbial biomass. Environ Technol 21(1):87–96CrossRefGoogle Scholar
  70. 70.
    Muller JA (2000) Pretreatment processes for the recycling and reuse of sewage sludge. Water Sci Technol 42(9):167–174Google Scholar
  71. 71.
    Rajan RV, Lin JG, Ray BT (1989) Low-level chemical pretreatment for enhanced sludge solubilization. Res J Water Pollut Control Fed 61:1678–1683Google Scholar
  72. 72.
    Ray BT, Rajan RV, Lin JG (1990) Low-level alkaline solubilization for enhanced anaerobic digestion. J Water Pollut Control Fed 62:81–87Google Scholar
  73. 73.
    Goel R, Tokutomi T, Yasui H (2003) Anaerobic digestion of excess activated sludge with ozone pretreatment. Water Sci Technol 47:207–214Google Scholar
  74. 74.
    Weemaes M, Grootaerd H, Simoens F et al (2000) Anaerobic digestion of ozonized biosolids. Water Res 34:2330–2336CrossRefGoogle Scholar
  75. 75.
    Kim JS, Lee YY, Park SC (2000) Pretreatment of wastepaper and pulp mill sludge by aqueous ammonia and hydrogen peroxide. Appl Biochem Biotechnol 84–86:129–139CrossRefGoogle Scholar
  76. 76.
    Hasegawa S, Shiota N, Katsura K et al (2000) Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion. Water Sci Technol 41(3):163–169Google Scholar
  77. 77.
    Imai T, Fukagawa M, Ukita M, Sekine M, Higuchi T, Kawamura T (2003) A study on solubilization of excess sludge by high speed rotary disk process. J Water Environ Technol 1(1):79–84CrossRefGoogle Scholar
  78. 78.
    Murakami Y (2001) A study on solubilization of excess sludge by high-speed rotary disk. Yamaguchi University Graduation Thesis, Ube, Yamaguchi (Japanese)Google Scholar
  79. 79.
    Baba Y (2004) A study on volume reduction process of excess sludge by high-speed rotary disk. Yamaguchi University Master’s Thesis, Ube, Yamaguchi (Japanese)Google Scholar
  80. 80.
    Eto T (2007) Development of volume reduction process of excess sludge with nitrogen and phosphorus removal function. Yamaguchi University Master’s Thesis, Ube, Yamaguchi (Japanese)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tsuyoshi Imai
    • 1
  • Yuyu Liu
    • 1
  • Masao Ukita
    • 1
  • Yung-Tse Hung
    • 2
  1. 1.Division of Environmental Science and Engineering, Graduate School of Science and EngineeringYamaguchi UniversityYamaguchiJapan
  2. 2.Department of Civil and Environmental EngineeringCleveland State UniversityClevelandUSA

Personalised recommendations