Global Perspective of Anaerobic Treatment of Industrial Wastewater

  • Kuan Yeow Show
  • Joo Hwa Tay
  • Yung-Tse Hung
Part of the Handbook of Environmental Engineering book series (HEE, volume 11)


While anaerobic process had been widely used for stabilizing concentrated solids, the process long suffered a poor reputation because of lack of understanding regarding its fundamentals. Nearly a century later, anaerobic treatment is now arguably the most promising and favorable wastewater treatment system for meeting the desired criteria for future technology in environmentally sustainable development. The development of anaerobic processes, anaerobic biochemistry and microbiology, global applications, and applications of anaerobic processes for industrial wastewaters are discussed.


Chemical Oxygen Demand Chemical Oxygen Demand Removal Organic Loading Rate Upflow Anaerobic Sludge Blanket Anaerobic Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lettinga G, van der Geest AT, Hobma S, Laan JV (1979) Anaerobic treatment of methanolic wastes. Water Res 13:725–738CrossRefGoogle Scholar
  2. 2.
    McCarty PL 155 NRC (1995) The role of technology in environmentally sustainable development. National Academy Press, Washington, DCGoogle Scholar
  3. 3.
    Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56(3):482–507Google Scholar
  4. 4.
    Barker HA (1956) Biological formation of methane. In: Bacterial fermentations, Wiley, New York, p 1Google Scholar
  5. 5.
    Buswell AM, Hatfield WD (1938) Anaerobic fermentations. Bulletin No. 32. State Water SurveyGoogle Scholar
  6. 6.
    Moigno AF (1881) Mouras’ automatic scavenger. Cosmos 622Google Scholar
  7. 7.
    Metcalf L, Eddy HP (1915) American sewerage practice, III. Disposal of sewage, 1 edn. McGraw Hill Book Company, Inc., New YorkGoogle Scholar
  8. 8.
    Reference Library, I.C.S. (1908) Water supply, sewerage, purification of water, sewage purification and disposal, irrigation. International Textbook Company, LondonGoogle Scholar
  9. 9.
    Buswell AM, Neave SL (1930) Laboratory studies of sludge digestion, No. Bulletin No. 29. State Water SurveyGoogle Scholar
  10. 10.
    Imhoff K (1916) Separate sludge digestion improves Imhoff tank operation by keeping sewage fresh. Eng Record 74:101–102Google Scholar
  11. 11.
    Imhoff K (1938) Sedimentation and digestion in Germany. In: Pearse L (ed) Modern sewage disposal, Lancaster Press, Lancaster, PA, p 47Google Scholar
  12. 12.
    Buswell AM (1957) Fundamentals of anaerobic treatment of organic wastes. Sewage Ind Waste 29:717–721Google Scholar
  13. 13.
    Buswell AM, Boruff CS, Wiesman (1932) Anaerobic stabilization of milk waste. Ind Eng Chem 24:1423–1425CrossRefGoogle Scholar
  14. 14.
    Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44: 550–552CrossRefGoogle Scholar
  15. 15.
    Buswell AM, Sollo FW (1948) The mechanism of the methane fermentation. Am Chem Soc J 70:1778CrossRefGoogle Scholar
  16. 16.
    Buswell AM, Sollo FW Jr (1948) Methane fermentation of a fiberboard waste. Sewage Works J 20:687–694Google Scholar
  17. 17.
    Stander GJ (1950) Effluents from fermentation industries. Part IV. A new method for increasing and maintaining efficiency in the anaerobic digestion of fermentation effluents. J Inst Sewage Purif, part 4:438Google Scholar
  18. 18.
    Stander GJ, Snyders R (1950) Effluents from fermentation industries. Part V. Re-inoculation as an integral part of the anaerobic digestion method of purification of fermentation effluents. J Inst Sewage Purif, Part 4, 447Google Scholar
  19. 19.
    Stander GJ (1966) Water pollution research – a key to wastewater management. J Water Pollut Control Fed 38:774Google Scholar
  20. 20.
    Schroepfer GJ et al (1955) The anaerobic contact process as applied to packinghouse wastes. Sewage Ind Waste 27:460Google Scholar
  21. 21.
    Taylor DW (1972) Full-scale anaerobic filter treatment evaluation. In: Third national symposium on food processing wastes, U.S. Environmental Protection Agency, Washington, DC, p 151Google Scholar
  22. 22.
    Switzenbaum MS, Jewell WJ (1980) Anaerobic-attached film expanded-bed reactor treatment. J Water Pollut Control Fed 52:1953Google Scholar
  23. 23.
    Jeris JS, Beer C, Mueller JA (1974) High-rate biological denitrification using a granular fluidized-bed. J Water Pollut Control Fed 46(9):2118–2128Google Scholar
  24. 24.
    Wolin MJ, Miller TL (1982) Interspecies hydrogen transfer, 15 years later. ASM News 48: 561–565Google Scholar
  25. 25.
    Jeris JS, McCarty PL (1965) The biochemistry of methane fermentation using 14C tracers. J Water Pollut Control Fed 37(2):178–192Google Scholar
  26. 26.
    Zehnder AJ (1978) Ecology of methane formation. Water Pollut Microbiol 2:349–376Google Scholar
  27. 27.
    Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41(2):514–541Google Scholar
  28. 28.
    Mackie RI, Bryant MP (1981) Metabolic activity of fatty acid oxidizing bacteria and the contribution of acetate, propionate, butyrate and carbon dioxide to methanogenesis in cattle waste at 40C and 60C. Appl Environ Microbiol 3:321–361Google Scholar
  29. 29.
    Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296Google Scholar
  30. 30.
    Smith MR, Mah RA (1978) Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36(6):870–879Google Scholar
  31. 31.
    Huser BA, Wuhrmann K, Zehnder AJB (1982) Methonothrix soehngenii gen. nov. sp. Nov., a new acetotrophic non-hydrogen oxidizing methane bacterium. Arch Microbiol 132:1–9CrossRefGoogle Scholar
  32. 32.
    Novak JT, Carlson DA (1970) The kinetics of anaerobic long chain fatty acid degradation. J Water Pollut Control Fed 42(11):1932–1943Google Scholar
  33. 33.
    Ghosh S, Pohland FG (1974) Kinetics of substrate assimilation and product fermentation in anaerobic digestion. J Water Pollut Control Fed 46:748–759Google Scholar
  34. 34.
    Kaspar HF, Wuhrmann K (1978) Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Sci Microbiol 36(1):1–7Google Scholar
  35. 35.
    Pfeffer JT (1980) Anaerobic digestion processes. Proceedings of the 1st international symposium on anaerobic digestion, Carfiff, Wales. In: Stafford DA, Wheatley BI, Hughes DE (eds) Anaerobic digestion, Applied Science Publishers, London, 15–35Google Scholar
  36. 36.
    Cheeseman P, Toms-Wood A, Wolfe RS (1972) Isolation and properties of a fluorescent compound, Factor F420 from Methanobacterium strain M.o.H. J Bacteriol 112:527–531Google Scholar
  37. 37.
    McBride BC, Wolfe RS (1971) A new coenzyme of methyl transfer coenzyme M. Biochemistry 10(12):2317–2324CrossRefGoogle Scholar
  38. 38.
    Gijzen HJ (2001) Anaerobes, aerobes and phototrophs: a winning team for wastewater management. Water Sci Technol 44(8):123–132Google Scholar
  39. 39.
    Fernández JM, Méndez R, Lema JM (1995) Anaerobic treatment of eucalyptus fibreboard manufacturing wastewater by a hybrid USBF lab-scale reactor. Environ Technol 15:677–684CrossRefGoogle Scholar
  40. 40.
    Hu HY, Goto N, Fujie K (1999) Concepts and methodologies to minimize pollutant discharge for zero-emission production. Water Sci Technol 39(19):9–16Google Scholar
  41. 41.
    Omil F, Méndez R, Lema JM (1996) Anaerobic treatment of sea food processing wastewaters in an industrial pilot plant. Water SA 22(2):173–181Google Scholar
  42. 42.
    Parker WJ, Hall ER, Farquhar GJ (1993) Assessment of design and operating parameters for high rate anaerobic dechlorination of segregated Kraft mill bleach plant effluents. Water Environ Res 65(3):264–270CrossRefGoogle Scholar
  43. 43.
    Omil F, Méndez D, Vidal G, Méndez R, Lema JM (1999) Biodegradation of formaldehyde under anaerobic conditions. Enzyme Microb Technol 24(1):255–262CrossRefGoogle Scholar
  44. 44.
    Charest A, Bisaillon JG, Lepine F, Beaudet R (1999) Removal of phenolic compounds from a petrochemical effluent with a methanogenic consortium. Can J Microbiol 45(3):235–241CrossRefGoogle Scholar
  45. 45.
    Kennes C, Méndez-Pampín R, Lema JM (1997) Methanogenic degradation of p-cresol in batch and in continuous UASB reactor. Water Res 31(7):1549–1554CrossRefGoogle Scholar
  46. 46.
    Macarie H (1999) Overview on the application of anaerobic digestion to the treatment of chemical and petrochemical wastewaters. Proceedings of IAWQ symposium on waste minimisation and end of pipe treatment in chemical and petrochemical industries. Nov 14–18, Merida, Yucatan, Mexico, pp 405–412Google Scholar
  47. 47.
    Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, TNGoogle Scholar
  48. 48.
    Rebac S, Ruskova J, Gerbens S, van Lier JB, Stams AJM, Lettinga G (1995) High-rate anaerobic treatment of waste-water under psychrophilic conditions. J Ferment Bioeng 80(5):499–506CrossRefGoogle Scholar
  49. 49.
    Hulshoff Pol LW, Euler H, Schroth S, Wittur T, Grohganz D (1998) GTZ sectoral project promotion of anaerobic technology for the treatment of municipal and industrial wastes and wastewater. Proceedings of the fifth Latin-American seminar on anaerobic wastewater treatment, Vina del Mar, Chile, 27–30 Oct 1998Google Scholar
  50. 50.
    Frankin RJ (2001) Full-scale experiences with anaerobic treatment of industrial wastewater. Water Sci Technol 44(8):1–6Google Scholar
  51. 51.
    Lettinga G, Hulshoff Pol LW (1983) UASB process design for various types of wastewater. Water Sci Technol 24(8):87–107Google Scholar
  52. 52.
    van Duffel J (1993) Anaerobe behandeling van organische zuren. Presented at the national conference on anaerobic treatment of complex wastewaters, Breda, The Netherlands (in Dutch)Google Scholar
  53. 53.
    Zoutberg GR, de Been P (1997) The Biobed EGSB (Expanded Granular Sludge Blanket) system covers shortcomings of the UASB reactor in the chemical industry. Water Sci Technol 35(10):183–188CrossRefGoogle Scholar
  54. 54.
    Hack PJFM, Vellinga SHJ, Habets LHA (1987) Growth of granular sludge in Biopaques IC-reactor. Proceedings of the GASMAT workshop Lunteren, The Netherlands, 25–27 Oct 1987, ISBN 90- 220–0936-XGoogle Scholar
  55. 55.
    Heijnen JJ (1983) Development of a high rate Fluidized Bed Biogas reactor. Proceedings of the European symposium. Nov 23–25, Noordwijkerhout, The NetherlandsGoogle Scholar
  56. 56.
    Versprille AI, Frankin RJ, Zoutberg GR (1994) Biobed, a successful cross breed between UASB and fluidised bed. In: 7th international symposium on anaerobic digestion, RSA(pty) Ltd, Goodwood, 587–590Google Scholar
  57. 57.
    Martin P, Alkalay D, Guerrero L, Chamy R, Schiappacasse MC (1999) Design and startup of an anaerobic fluidized bed reactor. Water Sci Technol 40(8):63–70CrossRefGoogle Scholar
  58. 58.
    Castilla P, Meraz M, Monroy O, Noyola A (2000) Anaerobic treatment of low concentration wastewater in an inverse fluidized bed reactor. Water Sci Technol 41(4–5):245–251Google Scholar
  59. 59.
    Lettinga G, van Velsen AFM, ded Zeeuw W, Hobma SW (1979) Feasibility of the upflow anaerobic sludge blanket process. American Society of Civil Engineers, New York, p 35Google Scholar
  60. 60.
    Lettinga G, van Velsen AFM, Hobma SW, De Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket reactor concept for biological waste water treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–734CrossRefGoogle Scholar
  61. 61.
    Lettinga G, van der Ben J, van der Sar J (1976) Anaerobic treatment of sugarbeet waste water (in Dutch). H2O 9:38Google Scholar
  62. 62.
    Lettinga G, Pette KC, de Vletter R, Wind E (1977) Anaerobic treatment of sugarbeet waste water in a 6 m3 pilot plant (in Dutch). H2O 10:526Google Scholar
  63. 63.
    van Velsen AFM, Lettinga G, den Ottelander D (1979) Anaerobic digestion of piggery waste: 3. Influence of temperature. Netherlands J Agric Sci 27:255–267Google Scholar
  64. 64.
    Hwu CS, van Beek B, van Lier JB, Lettinga G (1997) Thermophilic high-rate anaerobic treatment of wastewater containing long-chain fatty acids: Impact of reactor hydrodynamics. Biotechnol Lett 19:447–451CrossRefGoogle Scholar
  65. 65.
    Hwu CS, van Beek B, van Lier JB, Lettinga G (1997) Thermophilic high-rate anaerobic treatment of wastewater containing long-chain fatty acids: effect of washed out biomass recirculation. Biotechnol Lett 19:453–456CrossRefGoogle Scholar
  66. 66.
    Hwu CS, van Lier JB, Lettinga G (1997) Anaerobic toxicity and degradability of oleic acid under mesophilic and thermophilic conditions. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 62:1825–1832Google Scholar
  67. 67.
    Ten-Brummeler E, Pol LWH, Dolfing J, Lettinga G, Zehnder AJB (1985) Methanogenesis in an upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture. Appl Environ Microbiol 49:1472–1477Google Scholar
  68. 68.
    Sayed S, van Campen L, Lettinga G (1987) Anaerobic treatment of slaughterhouse waste using a granular sludge uasb reactor. Biol Wastes 21:11–28CrossRefGoogle Scholar
  69. 69.
    Sayed S, van der Zanden J, Wijffels R, Lettinga G (1988) Anaerobic degradation of the various fractions of slaughterhouse wastewater. Biol Wastes 23:117–142CrossRefGoogle Scholar
  70. 70.
    Field JA, Lettinga G, Geurts M (1987) Methanogenic toxicity and anaerobic degradability of potato starch phenolic amino acids. Biol Wastes 21(1):37–54CrossRefGoogle Scholar
  71. 71.
    Petruy R, Field JA, Lettinga G (1997) Anaerobic biodegradation of a milk-fat emulsion in an expanded granular sludge bed reactor. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 62:1833–1840Google Scholar
  72. 72.
    Petruy R, Lettinga G (1997) Digestion of a milk-fat emulsion. Bioresour Technol 61:141–149CrossRefGoogle Scholar
  73. 73.
    Lettinga G, Field JA, Sierra-Alvarez R, van Lier JB, Rintala J (1991) Future perspectives for the anaerobic treatment of forest industry wastewaters. Water Sci Technol 24(3–4):91–102Google Scholar
  74. 74.
    Rintala J, Sanz Martin JL, Lettinga G (1991) Thermophilic anaerobic treatment of sulfate-rich pulp and paper integrate process water. Water Sci Technol 24(3–4):149–160Google Scholar
  75. 75.
    Sierra-Alvarez R, Harbrecht J, Kortekaas S, Lettinga G (1990) The continuous anaerobic treatment of pulping wastewaters. J Ferment Bioeng 70:119–127CrossRefGoogle Scholar
  76. 76.
    Bogte JJ, Breure AM, van Andel JG, Lettinga G (1993) Anaerobic treatment of domestic wastewater in small scale UASB reactors. Water Sci Technol 27(9):75–82Google Scholar
  77. 77.
    Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3–28CrossRefGoogle Scholar
  78. 78.
    Lettinga G, de Man A, van der Last ARM, Wiegant W, van Knippenberg K, Frijns J, van Buuren JCL (1993) Anaerobic treatment of domestic sewage and wastewater. Water Sci Technol 27(9):67–73Google Scholar
  79. 79.
    Lettinga G, Roersma R, Grin P (1983) Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed upflow anaerobic sludge blanket reactor. Biotechnol Bioeng 25:1701–1724CrossRefGoogle Scholar
  80. 80.
    van der Last ARM, Lettinga G (1992) Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial velocities. Water Sci Technol 25(7):167–178Google Scholar
  81. 81.
    Puñal A, Melloni P, Roca E, Rozzi A, Lema JM (2001) Automatic start-up of UASB reactors. J Environ Eng 127(5):397–402CrossRefGoogle Scholar
  82. 82.
    Syutsubo K, Harada H, Ohashi A (1998) Granulation and sludge retainment during start-up of a thermophilic UASB reactor. Water Sci Technol 38(8–9):349–357Google Scholar
  83. 83.
    Tay JH, Yan YG (1997) Anaerobic biogranulation as microbial response to substrate adequacy. J Environ Eng 123(10):1002–1010CrossRefGoogle Scholar
  84. 84.
    Fang HHP (1994) Performance and granule characteristics of UASB process treating wastewater with hydrolyzed proteins. Water Sci Technol 30(8):55–63Google Scholar
  85. 85.
    Droste RL, Kennedy KJ, Lu JG, Lentz M (1998) Removal of chlorinated phenols in upflow anaerobic sludge blanket reactors. Water Sci Technol 38(8–9):359–367Google Scholar
  86. 86.
    Lay JJ, Cheng SS (1998) Influence of hydraulic loading rate on UASB reactor treating phenolic wastewater. J Environ Eng 124(9):829–837CrossRefGoogle Scholar
  87. 87.
    Mamouni RE, Leduc R, Guiot SR (1998) Influence of synthetic and natural polymers on the anaerobic granulation process. Water Sci Technol 38(8–9):341–347Google Scholar
  88. 88.
    Zhou GM, Fang HHP (1998) Competition between methanogenesis and sulfidogenesis in anaerobic wastewater treatment. Water Sci Technol 38(8–9):317–324Google Scholar
  89. 89.
    Tay JH, He YX, Yan YG (2001) Improved anaerobic degradation of phenol with supplemental glucose J Environ Eng 127(1):38–45Google Scholar
  90. 90.
    Rintala JA, Lepisto SS (1997) Pilot-scale thermophilic anaerobic treatment of wastewaters from seasonal vegetable processing industry. Water Sci Technol 36(2–3):279–285Google Scholar
  91. 91.
    Polanco FF, Hidalgo MD, Polanco MF, Encina PAG (1999) Anaerobic treatment of polyethylene terephthalate (PET) wastewater from lab to full scale. Water Sci Technol 40(8):229–236CrossRefGoogle Scholar
  92. 92.
    Puñal A, Lema JM (1999) Anaerobic treatment of Wastewater from a fish-canning factory in a full-scale upflow anaerobic sludge blanket reactor. Water Sci Technol 40(8):57–62CrossRefGoogle Scholar
  93. 93.
    Boardman GD, McVeigh PJ (1997) Use of UASB technology to treat crab processing wastewaters. J Environ Eng 123(8):776–785CrossRefGoogle Scholar
  94. 94.
    Annachhatre AP, Amatya PL (2000) UASB treatment of tapioca starch wastewater. J Environ Eng 126(12):1149–1152CrossRefGoogle Scholar
  95. 95.
    Puñal A, Méndez R, Lema JM (1998) Multi-fed upflow anaerobic filter: development and features. J Environ Eng 124(12):1188–1192CrossRefGoogle Scholar
  96. 96.
    Tilche A, Bortone G, Forner G, Indulti M, Stante L, Tesini O (1994) Combination of anaerobic digestion and denitrification in a hybrid upflow anaerobic filter integrated in a nutrient removal treatment plant. Water Sci Technol 30(12):405–414Google Scholar
  97. 97.
    Dubourguier HC, Prensier G, Albagnac G (1988) Structural and microbial activities of granular anaerobic sludge. Proceedings GASNAT workshop, Lunteren, The Netherlands, Oct 25–27, 1987, pp 18–33Google Scholar
  98. 98.
    Ylmazer G, Yenigun O (1999) Two-phase anaerobic treatment of cheese whey. Water Sci Technol 40(1):289–295CrossRefGoogle Scholar
  99. 99.
    Ince O, Ince BK, Donnelly T (2000) Attachment, strength and performance of a porous media in an upflow anaerobic filter treating dairy wastewater. Water Sci Technol 41(4–5):261–270Google Scholar
  100. 100.
    Miyahara T, Noike T (1994) Behavior of suspended solids and anaerobic bacteria in an anaerobic fixed bed reactor. Water Sci Technol 30(12):75–86Google Scholar
  101. 101.
    Miyahara T, Takano M, Noike T (1995) Role of filter media in an anaerobic fixed-bed reactor. Water Sci Technol 31(9):137–144CrossRefGoogle Scholar
  102. 102.
    Kozariszczuk M, Wenzel W, Kraume M, Szewzyk U (2000) Microbiology and chemical engineering-new possibilities for interdisciplinary cooperation in the development of small anaerobic wastewater treatment plants. Water Sci Technol 41(1):17–20Google Scholar
  103. 103.
    Chang YC, Asanuma K, Hatsu M, Takamizawa K (2001) Removal of tetrachloroethylene in an anaerobic fixed-bed reactorimmobilized with Clostridium bifermentans DPH-1. Water Sci Technol: Water Supply 1(2):107–114Google Scholar
  104. 104.
    Skiadas IV, Lyberatos G (1998) The periodic anaerobic baffled reactor. Water Sci Technol 38(8–9):401–408Google Scholar
  105. 105.
    Fox P, Venkatasubbiah V (1996) Coupled anaerobic/aerobic treatment of high-sulfate wastewater with sulfate reduction and biological sulfide oxidation. Water Sci Technol 34(5–6):359–366Google Scholar
  106. 106.
    Setiadi T, Husaini, Djajadiningrat A (1996) Palm oil mill effluent treatment by anaerobic baffled reactors: recycle effects and biokinetic parameters. Water Sci Technol 34(11):59–66CrossRefGoogle Scholar
  107. 107.
    Guti S, Hern A, Vi M (1999) Mechanism of degradation of wool wax in the anaerobic treatment of woolscouring wastewater. Water Sci Technol 40(8):17–24CrossRefGoogle Scholar
  108. 108.
    Uyanik S, Sallis PJ, Anderson GK (2002) Improved split feed anaerobic baffled reactor (SFABR) for shorter start-up period and higher process performance. Water Sci Technol 46(4–5):223–230Google Scholar
  109. 109.
    Lettinga G (1996) Sustainable integrated biological wastewater treatment. Water Sci Technol 33(3):85–98CrossRefGoogle Scholar
  110. 110.
    Lettinga G, van Lier J, Zeeman G, Hulshoff Pol LW (1997) Advanced anaerobic wastewater treatment in the near future. Water Sci Technol 35(10):5–12CrossRefGoogle Scholar
  111. 111.
    Zoutberg GR, Frankin R (1996) Anaerobic treatment of chemical and brewery wastewater with a new type of anaerobic reactor: the Biobed EGSB reactor. Water Sci Technol 35(5–6):375–381Google Scholar
  112. 112.
    van Lier JB, Rebac S, Lettinga G (1997) High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions. Water Sci Technol 35(10):199–206CrossRefGoogle Scholar
  113. 113.
    Rebac S, van Lier JB, Lens P, Stams AJM, Dekkers F, Swinkels KTM, Lettinga G (1999) Psychrophilic anaerobic treatment of low strength wastewaters. Water Sci Technol 39(5): 203–210CrossRefGoogle Scholar
  114. 114.
    Razo-Flores E, Smulders P, Prenafeta-Bold F, Lettinga G, Field JA (1999) Treatment of anthranilic acid in an anaerobic expanded granular sludge bed reactor at low concentrations. Water Sci Technol 40(8):187–194CrossRefGoogle Scholar
  115. 115.
    Weijma J, Haerkens JP, Stams AJ, Hulshoff Pol LW, Lettinga G (2000) Thermophilic sulfate and sulfite reduction with methanol in a high rate anaerobic reactor. Water Sci Technol 42(5–6): 251–258Google Scholar
  116. 116.
    Austermann-Haun U, Meyer H, Seyfried CF, Rosenwinkel KH (1999) Full scale experiences with anaerobic/aerobic treatment plants in the food and beverage industry. Water Sci Technol 40(1):305–312CrossRefGoogle Scholar
  117. 117.
    Jeison D, Chamy R (1999) Comparison of the behaviour of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment. Water Sci Technol 40(8):91–98CrossRefGoogle Scholar
  118. 118.
    Chen GH, Ozaki H, Terashima Y (1998) Modelling containing simultaneous removal of trichlorfon and glucose in a hybrid bioreactor magnetically immobilized biomass. Water Sci Technol 38(4–5):179–186Google Scholar
  119. 119.
    Imai T, Ukita M, Sekine M, Nakanishi H, Fukagawa M (1998) Treatment characteristics of high strength fermentation wastewater consisting of high sulfate and ammonia by UAHB process. Water Sci Technol 38(8–9):377–384Google Scholar
  120. 120.
    Jahren SJ, Rintala JA, Ødegaard H (1999) Anaerobic thermophilic (55C) treatment of TMP whitewater in reactors based on biomass attachment and entrapment. Water Sci Technol 40(11–12):67–76Google Scholar
  121. 121.
    Young JC, Kim IS, Page IC, Wilson DR, Brown GJ, Cocci AA (2000) Two-stage anaerobic treatment of purified terephthalic acid production wastewaters. Water Sci Technol 42(5–6): 277–282Google Scholar
  122. 122.
    Yang PY, Kuroshima M (1995) A simple design and operation for the anaerobic treatment of highly concentrated swine waste in the tropics. Water Sci Technol 32(12):91–97CrossRefGoogle Scholar
  123. 123.
    Beccari M, Majone M, Riccardi C, Savarese F, Torrisi L (1999) Integrated treatment of olive oil mill effluents: effect of chemical and physical pretreatment on anaerobic treatability. Water Sci Technol 40(1):345–355Google Scholar
  124. 124.
    Yeoh BG (1997) Two-phase anaerobic treatment of cane-molasses alcohol stillage. Water Sci Technol 36(6–7):441–448Google Scholar
  125. 125.
    Greben HA, Maree JP, Singmin Y, Mnqanqeni S (2000) Biological sulfate removal from acid mine effluent using ethanol as carbon and energy source. Water Sci Technol 42(3–4):339–344Google Scholar
  126. 126.
    Montenegro MDAP, Moraes EDM, Soares HM, Vazoller RF (2001) Hybrid reactor performance in pentachlorophenol (pcp) removal by anaerobic granules. Water Sci Technol 44(4):137–144Google Scholar
  127. 127.
    O’Reilly J, Chinalia FA, Mahony T, Collins G, Wu J, O’Flaherty V (2009) Cultivation of low-temperature (15C), anaerobic, wastewater treatment granules. Lett Appl Microbiol 49(4): 421–442CrossRefGoogle Scholar
  128. 128.
    Mulder R, Vereijken TLFM, Frijters CMTJ, Vellingaet SHJ (2001) Future perspectives in bioreactor development. Water Sci Technol 44(8):27–32Google Scholar
  129. 129.
    van Lier JB, van der Zee FP, Tan NCG, Rebac S, Kleerebezem R (2001) Advances in high rate anaerobic treatment: staging of reactor systems. Water Sci Technol 44(8):15–25Google Scholar
  130. 130.
    Lettinga G, Lier JB van, Buuren JCL van, Zeeman G (2001) Sustainable development in pollution control and the role of anaerobic treatment. Water Sci Technol 44(6):181–188Google Scholar
  131. 131.
    Lema JM, Omil F (2001) Anaerobic treatment: a key technology for a sustainable management of wastes in Europe. Water Sci Technol 44(8):133–140Google Scholar
  132. 132.
    McCarty PL (2001) The development of anaerobic treatment and its future. Water Sci Technol 44(8):149–156Google Scholar
  133. 133.
    Zhang Z, Tay JH, Show KY, Yan R, Liang TD, Lee DJ, Jiang WJ (2007) Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int J Hydrogen Energy 32(2): 185–191CrossRefGoogle Scholar
  134. 134.
    Wang LK, Ivanov V, Tay JH, Hung YT (eds) (2010) Environmental Biotechnology. Humana Press, Totowa, NJ, 975 ppGoogle Scholar
  135. 135.
    Wang LK, Shammas NK, Hung YT (eds) (2009) Advanced Biological Treatment Processes. Humana Press, Totowa, NJ, 738 ppGoogle Scholar
  136. 136.
    Wang LK, Shammas NK, Hung YT (eds) (2008) Biosolids Engineering and Management. Humana Press, Totowa, NJ, 800 ppGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kuan Yeow Show
    • 1
  • Joo Hwa Tay
    • 2
  • Yung-Tse Hung
    • 3
  1. 1.Faculty of Engineering and Green TechnologyUniversiti Tunku Abdul Rahman Jalan UniversityKamparMalaysia
  2. 2.Department of Environmental Science and EngineeringFudan UniversityShanghaiChina
  3. 3.Department of Civil and Environmental EngineeringCleveland State UniversityClevelandUSA

Personalised recommendations