Skip to main content

Global Perspective of Anaerobic Treatment of Industrial Wastewater

  • Chapter
  • First Online:

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 11))

Abstract

While anaerobic process had been widely used for stabilizing concentrated solids, the process long suffered a poor reputation because of lack of understanding regarding its fundamentals. Nearly a century later, anaerobic treatment is now arguably the most promising and favorable wastewater treatment system for meeting the desired criteria for future technology in environmentally sustainable development. The development of anaerobic processes, anaerobic biochemistry and microbiology, global applications, and applications of anaerobic processes for industrial wastewaters are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lettinga G, van der Geest AT, Hobma S, Laan JV (1979) Anaerobic treatment of methanolic wastes. Water Res 13:725–738

    Article  CAS  Google Scholar 

  2. McCarty PL 155 NRC (1995) The role of technology in environmentally sustainable development. National Academy Press, Washington, DC

    Google Scholar 

  3. Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56(3):482–507

    CAS  Google Scholar 

  4. Barker HA (1956) Biological formation of methane. In: Bacterial fermentations, Wiley, New York, p 1

    Google Scholar 

  5. Buswell AM, Hatfield WD (1938) Anaerobic fermentations. Bulletin No. 32. State Water Survey

    Google Scholar 

  6. Moigno AF (1881) Mouras’ automatic scavenger. Cosmos 622

    Google Scholar 

  7. Metcalf L, Eddy HP (1915) American sewerage practice, III. Disposal of sewage, 1 edn. McGraw Hill Book Company, Inc., New York

    Google Scholar 

  8. Reference Library, I.C.S. (1908) Water supply, sewerage, purification of water, sewage purification and disposal, irrigation. International Textbook Company, London

    Google Scholar 

  9. Buswell AM, Neave SL (1930) Laboratory studies of sludge digestion, No. Bulletin No. 29. State Water Survey

    Google Scholar 

  10. Imhoff K (1916) Separate sludge digestion improves Imhoff tank operation by keeping sewage fresh. Eng Record 74:101–102

    CAS  Google Scholar 

  11. Imhoff K (1938) Sedimentation and digestion in Germany. In: Pearse L (ed) Modern sewage disposal, Lancaster Press, Lancaster, PA, p 47

    Google Scholar 

  12. Buswell AM (1957) Fundamentals of anaerobic treatment of organic wastes. Sewage Ind Waste 29:717–721

    Google Scholar 

  13. Buswell AM, Boruff CS, Wiesman (1932) Anaerobic stabilization of milk waste. Ind Eng Chem 24:1423–1425

    Article  CAS  Google Scholar 

  14. Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44: 550–552

    Article  CAS  Google Scholar 

  15. Buswell AM, Sollo FW (1948) The mechanism of the methane fermentation. Am Chem Soc J 70:1778

    Article  CAS  Google Scholar 

  16. Buswell AM, Sollo FW Jr (1948) Methane fermentation of a fiberboard waste. Sewage Works J 20:687–694

    CAS  Google Scholar 

  17. Stander GJ (1950) Effluents from fermentation industries. Part IV. A new method for increasing and maintaining efficiency in the anaerobic digestion of fermentation effluents. J Inst Sewage Purif, part 4:438

    Google Scholar 

  18. Stander GJ, Snyders R (1950) Effluents from fermentation industries. Part V. Re-inoculation as an integral part of the anaerobic digestion method of purification of fermentation effluents. J Inst Sewage Purif, Part 4, 447

    Google Scholar 

  19. Stander GJ (1966) Water pollution research – a key to wastewater management. J Water Pollut Control Fed 38:774

    Google Scholar 

  20. Schroepfer GJ et al (1955) The anaerobic contact process as applied to packinghouse wastes. Sewage Ind Waste 27:460

    CAS  Google Scholar 

  21. Taylor DW (1972) Full-scale anaerobic filter treatment evaluation. In: Third national symposium on food processing wastes, U.S. Environmental Protection Agency, Washington, DC, p 151

    Google Scholar 

  22. Switzenbaum MS, Jewell WJ (1980) Anaerobic-attached film expanded-bed reactor treatment. J Water Pollut Control Fed 52:1953

    CAS  Google Scholar 

  23. Jeris JS, Beer C, Mueller JA (1974) High-rate biological denitrification using a granular fluidized-bed. J Water Pollut Control Fed 46(9):2118–2128

    CAS  Google Scholar 

  24. Wolin MJ, Miller TL (1982) Interspecies hydrogen transfer, 15 years later. ASM News 48: 561–565

    Google Scholar 

  25. Jeris JS, McCarty PL (1965) The biochemistry of methane fermentation using 14C tracers. J Water Pollut Control Fed 37(2):178–192

    CAS  Google Scholar 

  26. Zehnder AJ (1978) Ecology of methane formation. Water Pollut Microbiol 2:349–376

    CAS  Google Scholar 

  27. Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41(2):514–541

    CAS  Google Scholar 

  28. Mackie RI, Bryant MP (1981) Metabolic activity of fatty acid oxidizing bacteria and the contribution of acetate, propionate, butyrate and carbon dioxide to methanogenesis in cattle waste at 40C and 60C. Appl Environ Microbiol 3:321–361

    Google Scholar 

  29. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    CAS  Google Scholar 

  30. Smith MR, Mah RA (1978) Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36(6):870–879

    CAS  Google Scholar 

  31. Huser BA, Wuhrmann K, Zehnder AJB (1982) Methonothrix soehngenii gen. nov. sp. Nov., a new acetotrophic non-hydrogen oxidizing methane bacterium. Arch Microbiol 132:1–9

    Article  CAS  Google Scholar 

  32. Novak JT, Carlson DA (1970) The kinetics of anaerobic long chain fatty acid degradation. J Water Pollut Control Fed 42(11):1932–1943

    CAS  Google Scholar 

  33. Ghosh S, Pohland FG (1974) Kinetics of substrate assimilation and product fermentation in anaerobic digestion. J Water Pollut Control Fed 46:748–759

    CAS  Google Scholar 

  34. Kaspar HF, Wuhrmann K (1978) Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Sci Microbiol 36(1):1–7

    CAS  Google Scholar 

  35. Pfeffer JT (1980) Anaerobic digestion processes. Proceedings of the 1st international symposium on anaerobic digestion, Carfiff, Wales. In: Stafford DA, Wheatley BI, Hughes DE (eds) Anaerobic digestion, Applied Science Publishers, London, 15–35

    Google Scholar 

  36. Cheeseman P, Toms-Wood A, Wolfe RS (1972) Isolation and properties of a fluorescent compound, Factor F420 from Methanobacterium strain M.o.H. J Bacteriol 112:527–531

    CAS  Google Scholar 

  37. McBride BC, Wolfe RS (1971) A new coenzyme of methyl transfer coenzyme M. Biochemistry 10(12):2317–2324

    Article  CAS  Google Scholar 

  38. Gijzen HJ (2001) Anaerobes, aerobes and phototrophs: a winning team for wastewater management. Water Sci Technol 44(8):123–132

    CAS  Google Scholar 

  39. Fernández JM, Méndez R, Lema JM (1995) Anaerobic treatment of eucalyptus fibreboard manufacturing wastewater by a hybrid USBF lab-scale reactor. Environ Technol 15:677–684

    Article  Google Scholar 

  40. Hu HY, Goto N, Fujie K (1999) Concepts and methodologies to minimize pollutant discharge for zero-emission production. Water Sci Technol 39(19):9–16

    CAS  Google Scholar 

  41. Omil F, Méndez R, Lema JM (1996) Anaerobic treatment of sea food processing wastewaters in an industrial pilot plant. Water SA 22(2):173–181

    CAS  Google Scholar 

  42. Parker WJ, Hall ER, Farquhar GJ (1993) Assessment of design and operating parameters for high rate anaerobic dechlorination of segregated Kraft mill bleach plant effluents. Water Environ Res 65(3):264–270

    Article  CAS  Google Scholar 

  43. Omil F, Méndez D, Vidal G, Méndez R, Lema JM (1999) Biodegradation of formaldehyde under anaerobic conditions. Enzyme Microb Technol 24(1):255–262

    Article  CAS  Google Scholar 

  44. Charest A, Bisaillon JG, Lepine F, Beaudet R (1999) Removal of phenolic compounds from a petrochemical effluent with a methanogenic consortium. Can J Microbiol 45(3):235–241

    Article  CAS  Google Scholar 

  45. Kennes C, Méndez-Pampín R, Lema JM (1997) Methanogenic degradation of p-cresol in batch and in continuous UASB reactor. Water Res 31(7):1549–1554

    Article  CAS  Google Scholar 

  46. Macarie H (1999) Overview on the application of anaerobic digestion to the treatment of chemical and petrochemical wastewaters. Proceedings of IAWQ symposium on waste minimisation and end of pipe treatment in chemical and petrochemical industries. Nov 14–18, Merida, Yucatan, Mexico, pp 405–412

    Google Scholar 

  47. Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, TN

    Google Scholar 

  48. Rebac S, Ruskova J, Gerbens S, van Lier JB, Stams AJM, Lettinga G (1995) High-rate anaerobic treatment of waste-water under psychrophilic conditions. J Ferment Bioeng 80(5):499–506

    Article  CAS  Google Scholar 

  49. Hulshoff Pol LW, Euler H, Schroth S, Wittur T, Grohganz D (1998) GTZ sectoral project promotion of anaerobic technology for the treatment of municipal and industrial wastes and wastewater. Proceedings of the fifth Latin-American seminar on anaerobic wastewater treatment, Vina del Mar, Chile, 27–30 Oct 1998

    Google Scholar 

  50. Frankin RJ (2001) Full-scale experiences with anaerobic treatment of industrial wastewater. Water Sci Technol 44(8):1–6

    CAS  Google Scholar 

  51. Lettinga G, Hulshoff Pol LW (1983) UASB process design for various types of wastewater. Water Sci Technol 24(8):87–107

    Google Scholar 

  52. van Duffel J (1993) Anaerobe behandeling van organische zuren. Presented at the national conference on anaerobic treatment of complex wastewaters, Breda, The Netherlands (in Dutch)

    Google Scholar 

  53. Zoutberg GR, de Been P (1997) The Biobed EGSB (Expanded Granular Sludge Blanket) system covers shortcomings of the UASB reactor in the chemical industry. Water Sci Technol 35(10):183–188

    Article  CAS  Google Scholar 

  54. Hack PJFM, Vellinga SHJ, Habets LHA (1987) Growth of granular sludge in Biopaques IC-reactor. Proceedings of the GASMAT workshop Lunteren, The Netherlands, 25–27 Oct 1987, ISBN 90- 220–0936-X

    Google Scholar 

  55. Heijnen JJ (1983) Development of a high rate Fluidized Bed Biogas reactor. Proceedings of the European symposium. Nov 23–25, Noordwijkerhout, The Netherlands

    Google Scholar 

  56. Versprille AI, Frankin RJ, Zoutberg GR (1994) Biobed, a successful cross breed between UASB and fluidised bed. In: 7th international symposium on anaerobic digestion, RSA(pty) Ltd, Goodwood, 587–590

    Google Scholar 

  57. Martin P, Alkalay D, Guerrero L, Chamy R, Schiappacasse MC (1999) Design and startup of an anaerobic fluidized bed reactor. Water Sci Technol 40(8):63–70

    Article  Google Scholar 

  58. Castilla P, Meraz M, Monroy O, Noyola A (2000) Anaerobic treatment of low concentration wastewater in an inverse fluidized bed reactor. Water Sci Technol 41(4–5):245–251

    CAS  Google Scholar 

  59. Lettinga G, van Velsen AFM, ded Zeeuw W, Hobma SW (1979) Feasibility of the upflow anaerobic sludge blanket process. American Society of Civil Engineers, New York, p 35

    Google Scholar 

  60. Lettinga G, van Velsen AFM, Hobma SW, De Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket reactor concept for biological waste water treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–734

    Article  CAS  Google Scholar 

  61. Lettinga G, van der Ben J, van der Sar J (1976) Anaerobic treatment of sugarbeet waste water (in Dutch). H2O 9:38

    Google Scholar 

  62. Lettinga G, Pette KC, de Vletter R, Wind E (1977) Anaerobic treatment of sugarbeet waste water in a 6 m3 pilot plant (in Dutch). H2O 10:526

    Google Scholar 

  63. van Velsen AFM, Lettinga G, den Ottelander D (1979) Anaerobic digestion of piggery waste: 3. Influence of temperature. Netherlands J Agric Sci 27:255–267

    Google Scholar 

  64. Hwu CS, van Beek B, van Lier JB, Lettinga G (1997) Thermophilic high-rate anaerobic treatment of wastewater containing long-chain fatty acids: Impact of reactor hydrodynamics. Biotechnol Lett 19:447–451

    Article  CAS  Google Scholar 

  65. Hwu CS, van Beek B, van Lier JB, Lettinga G (1997) Thermophilic high-rate anaerobic treatment of wastewater containing long-chain fatty acids: effect of washed out biomass recirculation. Biotechnol Lett 19:453–456

    Article  CAS  Google Scholar 

  66. Hwu CS, van Lier JB, Lettinga G (1997) Anaerobic toxicity and degradability of oleic acid under mesophilic and thermophilic conditions. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 62:1825–1832

    CAS  Google Scholar 

  67. Ten-Brummeler E, Pol LWH, Dolfing J, Lettinga G, Zehnder AJB (1985) Methanogenesis in an upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture. Appl Environ Microbiol 49:1472–1477

    CAS  Google Scholar 

  68. Sayed S, van Campen L, Lettinga G (1987) Anaerobic treatment of slaughterhouse waste using a granular sludge uasb reactor. Biol Wastes 21:11–28

    Article  CAS  Google Scholar 

  69. Sayed S, van der Zanden J, Wijffels R, Lettinga G (1988) Anaerobic degradation of the various fractions of slaughterhouse wastewater. Biol Wastes 23:117–142

    Article  CAS  Google Scholar 

  70. Field JA, Lettinga G, Geurts M (1987) Methanogenic toxicity and anaerobic degradability of potato starch phenolic amino acids. Biol Wastes 21(1):37–54

    Article  CAS  Google Scholar 

  71. Petruy R, Field JA, Lettinga G (1997) Anaerobic biodegradation of a milk-fat emulsion in an expanded granular sludge bed reactor. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 62:1833–1840

    CAS  Google Scholar 

  72. Petruy R, Lettinga G (1997) Digestion of a milk-fat emulsion. Bioresour Technol 61:141–149

    Article  CAS  Google Scholar 

  73. Lettinga G, Field JA, Sierra-Alvarez R, van Lier JB, Rintala J (1991) Future perspectives for the anaerobic treatment of forest industry wastewaters. Water Sci Technol 24(3–4):91–102

    CAS  Google Scholar 

  74. Rintala J, Sanz Martin JL, Lettinga G (1991) Thermophilic anaerobic treatment of sulfate-rich pulp and paper integrate process water. Water Sci Technol 24(3–4):149–160

    CAS  Google Scholar 

  75. Sierra-Alvarez R, Harbrecht J, Kortekaas S, Lettinga G (1990) The continuous anaerobic treatment of pulping wastewaters. J Ferment Bioeng 70:119–127

    Article  CAS  Google Scholar 

  76. Bogte JJ, Breure AM, van Andel JG, Lettinga G (1993) Anaerobic treatment of domestic wastewater in small scale UASB reactors. Water Sci Technol 27(9):75–82

    CAS  Google Scholar 

  77. Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3–28

    Article  CAS  Google Scholar 

  78. Lettinga G, de Man A, van der Last ARM, Wiegant W, van Knippenberg K, Frijns J, van Buuren JCL (1993) Anaerobic treatment of domestic sewage and wastewater. Water Sci Technol 27(9):67–73

    CAS  Google Scholar 

  79. Lettinga G, Roersma R, Grin P (1983) Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed upflow anaerobic sludge blanket reactor. Biotechnol Bioeng 25:1701–1724

    Article  CAS  Google Scholar 

  80. van der Last ARM, Lettinga G (1992) Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial velocities. Water Sci Technol 25(7):167–178

    Google Scholar 

  81. Puñal A, Melloni P, Roca E, Rozzi A, Lema JM (2001) Automatic start-up of UASB reactors. J Environ Eng 127(5):397–402

    Article  Google Scholar 

  82. Syutsubo K, Harada H, Ohashi A (1998) Granulation and sludge retainment during start-up of a thermophilic UASB reactor. Water Sci Technol 38(8–9):349–357

    CAS  Google Scholar 

  83. Tay JH, Yan YG (1997) Anaerobic biogranulation as microbial response to substrate adequacy. J Environ Eng 123(10):1002–1010

    Article  CAS  Google Scholar 

  84. Fang HHP (1994) Performance and granule characteristics of UASB process treating wastewater with hydrolyzed proteins. Water Sci Technol 30(8):55–63

    CAS  Google Scholar 

  85. Droste RL, Kennedy KJ, Lu JG, Lentz M (1998) Removal of chlorinated phenols in upflow anaerobic sludge blanket reactors. Water Sci Technol 38(8–9):359–367

    CAS  Google Scholar 

  86. Lay JJ, Cheng SS (1998) Influence of hydraulic loading rate on UASB reactor treating phenolic wastewater. J Environ Eng 124(9):829–837

    Article  CAS  Google Scholar 

  87. Mamouni RE, Leduc R, Guiot SR (1998) Influence of synthetic and natural polymers on the anaerobic granulation process. Water Sci Technol 38(8–9):341–347

    Google Scholar 

  88. Zhou GM, Fang HHP (1998) Competition between methanogenesis and sulfidogenesis in anaerobic wastewater treatment. Water Sci Technol 38(8–9):317–324

    CAS  Google Scholar 

  89. Tay JH, He YX, Yan YG (2001) Improved anaerobic degradation of phenol with supplemental glucose J Environ Eng 127(1):38–45

    CAS  Google Scholar 

  90. Rintala JA, Lepisto SS (1997) Pilot-scale thermophilic anaerobic treatment of wastewaters from seasonal vegetable processing industry. Water Sci Technol 36(2–3):279–285

    CAS  Google Scholar 

  91. Polanco FF, Hidalgo MD, Polanco MF, Encina PAG (1999) Anaerobic treatment of polyethylene terephthalate (PET) wastewater from lab to full scale. Water Sci Technol 40(8):229–236

    Article  Google Scholar 

  92. Puñal A, Lema JM (1999) Anaerobic treatment of Wastewater from a fish-canning factory in a full-scale upflow anaerobic sludge blanket reactor. Water Sci Technol 40(8):57–62

    Article  Google Scholar 

  93. Boardman GD, McVeigh PJ (1997) Use of UASB technology to treat crab processing wastewaters. J Environ Eng 123(8):776–785

    Article  CAS  Google Scholar 

  94. Annachhatre AP, Amatya PL (2000) UASB treatment of tapioca starch wastewater. J Environ Eng 126(12):1149–1152

    Article  CAS  Google Scholar 

  95. Puñal A, Méndez R, Lema JM (1998) Multi-fed upflow anaerobic filter: development and features. J Environ Eng 124(12):1188–1192

    Article  Google Scholar 

  96. Tilche A, Bortone G, Forner G, Indulti M, Stante L, Tesini O (1994) Combination of anaerobic digestion and denitrification in a hybrid upflow anaerobic filter integrated in a nutrient removal treatment plant. Water Sci Technol 30(12):405–414

    CAS  Google Scholar 

  97. Dubourguier HC, Prensier G, Albagnac G (1988) Structural and microbial activities of granular anaerobic sludge. Proceedings GASNAT workshop, Lunteren, The Netherlands, Oct 25–27, 1987, pp 18–33

    Google Scholar 

  98. Ylmazer G, Yenigun O (1999) Two-phase anaerobic treatment of cheese whey. Water Sci Technol 40(1):289–295

    Article  Google Scholar 

  99. Ince O, Ince BK, Donnelly T (2000) Attachment, strength and performance of a porous media in an upflow anaerobic filter treating dairy wastewater. Water Sci Technol 41(4–5):261–270

    CAS  Google Scholar 

  100. Miyahara T, Noike T (1994) Behavior of suspended solids and anaerobic bacteria in an anaerobic fixed bed reactor. Water Sci Technol 30(12):75–86

    CAS  Google Scholar 

  101. Miyahara T, Takano M, Noike T (1995) Role of filter media in an anaerobic fixed-bed reactor. Water Sci Technol 31(9):137–144

    Article  Google Scholar 

  102. Kozariszczuk M, Wenzel W, Kraume M, Szewzyk U (2000) Microbiology and chemical engineering-new possibilities for interdisciplinary cooperation in the development of small anaerobic wastewater treatment plants. Water Sci Technol 41(1):17–20

    CAS  Google Scholar 

  103. Chang YC, Asanuma K, Hatsu M, Takamizawa K (2001) Removal of tetrachloroethylene in an anaerobic fixed-bed reactorimmobilized with Clostridium bifermentans DPH-1. Water Sci Technol: Water Supply 1(2):107–114

    CAS  Google Scholar 

  104. Skiadas IV, Lyberatos G (1998) The periodic anaerobic baffled reactor. Water Sci Technol 38(8–9):401–408

    CAS  Google Scholar 

  105. Fox P, Venkatasubbiah V (1996) Coupled anaerobic/aerobic treatment of high-sulfate wastewater with sulfate reduction and biological sulfide oxidation. Water Sci Technol 34(5–6):359–366

    CAS  Google Scholar 

  106. Setiadi T, Husaini, Djajadiningrat A (1996) Palm oil mill effluent treatment by anaerobic baffled reactors: recycle effects and biokinetic parameters. Water Sci Technol 34(11):59–66

    Article  CAS  Google Scholar 

  107. Guti S, Hern A, Vi M (1999) Mechanism of degradation of wool wax in the anaerobic treatment of woolscouring wastewater. Water Sci Technol 40(8):17–24

    Article  Google Scholar 

  108. Uyanik S, Sallis PJ, Anderson GK (2002) Improved split feed anaerobic baffled reactor (SFABR) for shorter start-up period and higher process performance. Water Sci Technol 46(4–5):223–230

    CAS  Google Scholar 

  109. Lettinga G (1996) Sustainable integrated biological wastewater treatment. Water Sci Technol 33(3):85–98

    Article  CAS  Google Scholar 

  110. Lettinga G, van Lier J, Zeeman G, Hulshoff Pol LW (1997) Advanced anaerobic wastewater treatment in the near future. Water Sci Technol 35(10):5–12

    Article  CAS  Google Scholar 

  111. Zoutberg GR, Frankin R (1996) Anaerobic treatment of chemical and brewery wastewater with a new type of anaerobic reactor: the Biobed EGSB reactor. Water Sci Technol 35(5–6):375–381

    Google Scholar 

  112. van Lier JB, Rebac S, Lettinga G (1997) High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions. Water Sci Technol 35(10):199–206

    Article  Google Scholar 

  113. Rebac S, van Lier JB, Lens P, Stams AJM, Dekkers F, Swinkels KTM, Lettinga G (1999) Psychrophilic anaerobic treatment of low strength wastewaters. Water Sci Technol 39(5): 203–210

    Article  CAS  Google Scholar 

  114. Razo-Flores E, Smulders P, Prenafeta-Bold F, Lettinga G, Field JA (1999) Treatment of anthranilic acid in an anaerobic expanded granular sludge bed reactor at low concentrations. Water Sci Technol 40(8):187–194

    Article  CAS  Google Scholar 

  115. Weijma J, Haerkens JP, Stams AJ, Hulshoff Pol LW, Lettinga G (2000) Thermophilic sulfate and sulfite reduction with methanol in a high rate anaerobic reactor. Water Sci Technol 42(5–6): 251–258

    CAS  Google Scholar 

  116. Austermann-Haun U, Meyer H, Seyfried CF, Rosenwinkel KH (1999) Full scale experiences with anaerobic/aerobic treatment plants in the food and beverage industry. Water Sci Technol 40(1):305–312

    Article  CAS  Google Scholar 

  117. Jeison D, Chamy R (1999) Comparison of the behaviour of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment. Water Sci Technol 40(8):91–98

    Article  CAS  Google Scholar 

  118. Chen GH, Ozaki H, Terashima Y (1998) Modelling containing simultaneous removal of trichlorfon and glucose in a hybrid bioreactor magnetically immobilized biomass. Water Sci Technol 38(4–5):179–186

    CAS  Google Scholar 

  119. Imai T, Ukita M, Sekine M, Nakanishi H, Fukagawa M (1998) Treatment characteristics of high strength fermentation wastewater consisting of high sulfate and ammonia by UAHB process. Water Sci Technol 38(8–9):377–384

    CAS  Google Scholar 

  120. Jahren SJ, Rintala JA, Ødegaard H (1999) Anaerobic thermophilic (55C) treatment of TMP whitewater in reactors based on biomass attachment and entrapment. Water Sci Technol 40(11–12):67–76

    CAS  Google Scholar 

  121. Young JC, Kim IS, Page IC, Wilson DR, Brown GJ, Cocci AA (2000) Two-stage anaerobic treatment of purified terephthalic acid production wastewaters. Water Sci Technol 42(5–6): 277–282

    CAS  Google Scholar 

  122. Yang PY, Kuroshima M (1995) A simple design and operation for the anaerobic treatment of highly concentrated swine waste in the tropics. Water Sci Technol 32(12):91–97

    Article  CAS  Google Scholar 

  123. Beccari M, Majone M, Riccardi C, Savarese F, Torrisi L (1999) Integrated treatment of olive oil mill effluents: effect of chemical and physical pretreatment on anaerobic treatability. Water Sci Technol 40(1):345–355

    Google Scholar 

  124. Yeoh BG (1997) Two-phase anaerobic treatment of cane-molasses alcohol stillage. Water Sci Technol 36(6–7):441–448

    CAS  Google Scholar 

  125. Greben HA, Maree JP, Singmin Y, Mnqanqeni S (2000) Biological sulfate removal from acid mine effluent using ethanol as carbon and energy source. Water Sci Technol 42(3–4):339–344

    CAS  Google Scholar 

  126. Montenegro MDAP, Moraes EDM, Soares HM, Vazoller RF (2001) Hybrid reactor performance in pentachlorophenol (pcp) removal by anaerobic granules. Water Sci Technol 44(4):137–144

    CAS  Google Scholar 

  127. O’Reilly J, Chinalia FA, Mahony T, Collins G, Wu J, O’Flaherty V (2009) Cultivation of low-temperature (15C), anaerobic, wastewater treatment granules. Lett Appl Microbiol 49(4): 421–442

    Article  CAS  Google Scholar 

  128. Mulder R, Vereijken TLFM, Frijters CMTJ, Vellingaet SHJ (2001) Future perspectives in bioreactor development. Water Sci Technol 44(8):27–32

    CAS  Google Scholar 

  129. van Lier JB, van der Zee FP, Tan NCG, Rebac S, Kleerebezem R (2001) Advances in high rate anaerobic treatment: staging of reactor systems. Water Sci Technol 44(8):15–25

    Google Scholar 

  130. Lettinga G, Lier JB van, Buuren JCL van, Zeeman G (2001) Sustainable development in pollution control and the role of anaerobic treatment. Water Sci Technol 44(6):181–188

    CAS  Google Scholar 

  131. Lema JM, Omil F (2001) Anaerobic treatment: a key technology for a sustainable management of wastes in Europe. Water Sci Technol 44(8):133–140

    CAS  Google Scholar 

  132. McCarty PL (2001) The development of anaerobic treatment and its future. Water Sci Technol 44(8):149–156

    CAS  Google Scholar 

  133. Zhang Z, Tay JH, Show KY, Yan R, Liang TD, Lee DJ, Jiang WJ (2007) Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int J Hydrogen Energy 32(2): 185–191

    Article  CAS  Google Scholar 

  134. Wang LK, Ivanov V, Tay JH, Hung YT (eds) (2010) Environmental Biotechnology. Humana Press, Totowa, NJ, 975 pp

    Google Scholar 

  135. Wang LK, Shammas NK, Hung YT (eds) (2009) Advanced Biological Treatment Processes. Humana Press, Totowa, NJ, 738 pp

    Google Scholar 

  136. Wang LK, Shammas NK, Hung YT (eds) (2008) Biosolids Engineering and Management. Humana Press, Totowa, NJ, 800 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Show, K.Y., Tay, J.H., Hung, YT. (2010). Global Perspective of Anaerobic Treatment of Industrial Wastewater. In: Wang, L., Tay, JH., Tay, S., Hung, YT. (eds) Environmental Bioengineering. Handbook of Environmental Engineering, vol 11. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-031-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-031-1_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-493-7

  • Online ISBN: 978-1-60327-031-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics