Skip to main content

An Integrated Biotechnological Process for Fungal Biomass Protein Production and Wastewater Reclamation

  • Chapter
  • First Online:
Environmental Bioengineering

Abstract

An integrated biotechprocess has been developed for fungal biomass protein production and wastewater reclamation from starch processing wastewater. The process resulted in producing 9.0 g/L fungal biomass, and removing total suspended solids, 95% BOD and 75% nitrogen. The biomass products contained 45% protein and appreciable quantities of amino acids, and they would be nutritive and edible for animal consumption. The reclaimed wastewater could be used for farm irrigation. This technology appeared to be technically feasible and economically beneficial for food and agricultural industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin B (1998) Microbial biomass protein production by microfungi in starch processing wastewater treatment. Ph.D Thesis, The University of New England, Australia

    Google Scholar 

  2. Lopes A, Sabaini NM, Gomes-Da-Costa SM (2009) Biomass production of sun-mushroom and shiitake in liquid culture media with agro-industrial residues. Boletim Do Centro De Pesquisa De Processamento De Alimentos 27:183–190

    CAS  Google Scholar 

  3. Bergmann FW, Abe J, Hizukurii S (1988) Selection of microorganisms which produce raw-starch degrading amylases. Appl Microbiol Biotechnol 27:443–446

    CAS  Google Scholar 

  4. Carlsen M, Nielsen J, Villadsen J (1995) Growth and α-amylase production by Aspergillus oryzae during continuous cultivation. J Biotechnol 45:81–93

    Article  Google Scholar 

  5. Fogarty WM, Kelly C (1980) Amylase, amyloglucosidase and related gluconases. In: Rose AH (ed) Microbial enzymes and bioconversions economic microbiology, vol 5. Academic Press, London, pp 115–170

    Google Scholar 

  6. Shipman CH, Kao IC, Fan IT (1975) Single cell protein production by photosynthetic bacterium cultivation in agricultural by-products. Biotechnol Bioeng 17:1561–1570

    Article  CAS  Google Scholar 

  7. Jin B, Yan XQ, Yu Q, van Leeuwen J (Hans) (2002) A comprehensive pilot plant system for fungal biomass protein production and wastewater reclamation. Adv Environ Res 6:179–189

    Article  CAS  Google Scholar 

  8. Jin B, Yu Q, van Leeuwen J (Hans) (2001) A bioprocessing mode for fungal biomass protein production and wastewater treatment using external air-lift bioreactor. J Chem Technol Biotechnol 76:1041–1048

    Article  CAS  Google Scholar 

  9. Jin B, van Leeuwen J (Hans), Patel B, Yu Q (1988) Utilization of starch processing wastewater for production of microbial biomass protein and fungal α-amylase by Aspergillus oryzae. Bioresour Technol 66:201–206

    Article  Google Scholar 

  10. FAO (WHO) (1974) Protein advisory group guidelines no. 15 on the nutritional and safety aspects of novel sources of protein for animal feeding. United Nations, Rome

    Google Scholar 

  11. Barbesgard P, Heldt-Hansen HP, Diterichsen B (1992) On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol 9:569–572

    Google Scholar 

  12. Manjunath P, Shenoy BC, Rao MR (1983) Review: fungal glucoamylases. J Appl Biochem 5:235–260

    CAS  Google Scholar 

  13. Chen S, Wayman M (1992) Novel inducers derived from starch for cellulase production by Trichoderma reesei. Process Biochem 27:327–334

    Article  CAS  Google Scholar 

  14. Ikenebomeh MJ (1981) Upgrading “garri” with single cell protein of Geotrichum candidum: preliminary investigation. J Canad Inst Food Sci Technol 14:168–173

    Google Scholar 

  15. Kositanont C, Charoensiri K, Bhumirtana M (1981) SCP Production from cellulosic material. In: Taguchi H (ed) Microbial utilisation of tenewable resources. II, Osaka University, Japan, 47–65

    Google Scholar 

  16. Tan KH, Ferguson LB, Carlton C (1984) Conversion of cassava starch to biomass, carbohydrates, and acids by Aspergillus niger. J Appl Biochem 6:80–90

    CAS  Google Scholar 

  17. Byrne GS, Ward OP (1989) Growth of Rhizopus in fermentation media. J Ind Microbiol 4:155–161

    Article  Google Scholar 

  18. Romantschuk H, Lehtomaki M (1978) Operation experiments of first full scale Pekilo SCP-mill application. Process Biochem 13:16–29

    CAS  Google Scholar 

  19. Balagopal C, Maini SB (1977) Fungal protein from starch. J Root Crops 3:33–44

    CAS  Google Scholar 

  20. Collen SA, Kenneth FG (1987) Production of microbial biomass protein from potato process waste by Cephalosporim eichhoriae. Appl Environ Microbiol 53:824–291

    Google Scholar 

  21. Friendrich J, Cimerman A, Perdih A (1987) Mixed culture of Aspergillus awamori and Trichoderma reesei for bioconversion of apple distillery waste. Appl Microbiol Biotechnol 26:299–303

    Article  Google Scholar 

  22. Moo-Young M, Chistri Y, Vilach D (1992) Fermentation conversion of cellulosic substrates to microbial protein by Neurospora sitophila. Biotechnol Lett 14(9):863–869

    Article  CAS  Google Scholar 

  23. Jin B, van Leeuwen J (Hans), Yu Q, Patel B (1999) Screening and selection of microfungi for microbial biomass protein production and water reclamation from starch processing wastewater. J Chem Technol Biotechnol 74:106–110

    Article  CAS  Google Scholar 

  24. Jin B, Yu Q, Yan XQ, van Leeuwen J (Hans) (2000) Characterization and improvement of oxygen transfer in pilot plant external air-lift bioreactor for mycelial biomass production from wastewater. World J Appl Microbiol Biotechnol 17:265–272

    Article  Google Scholar 

  25. Malfait JL, Wilcox DJ, Mercer DG, Barker LD (1981) Cultivation of a filamentous mould in a glass pilot scale airlift fermentor. Biotechnol Bioeng 23:863–877

    Article  Google Scholar 

  26. Jin B, van Leeuwen J (Hans), Doelle HW, Yu Q (1999) The influence of geometry on hydrodynamic and mass transfer characteristics in a new external airlift reactor for the cultivation of filamentous fungi. World J Microbiol Biotechnol 15:73–79

    Article  Google Scholar 

  27. Yoshinori K, Moo-Young M (1986) Mixing and mass transfer in concentric-tube airlift fermentors: Newtonian and non-Newtonian media. J Chem Technol Biotechnol 36:527–538

    Google Scholar 

  28. Frohlich S, Lotz B, Larson B, Seekamp M (1990) Characterization of a pilot plant tower loop reactor: III. Evaluation of local properties of the dispersed gas phase during yeast cultivation and in model media. Biotechnol Bioeng 38:56–64

    Google Scholar 

  29. Wang LK, Pereira NC, Hung YT, Shammas NK (2009) Biological Treatment Processes. Humana Press, Totowa, NJ, 818 pp

    Book  Google Scholar 

  30. Wang LK, Shammas NK, Hung YT (2009) Advanced Biological Treatment Proceses. Humana Press, Totowa, NJ, 737 pp

    Book  Google Scholar 

  31. Wang LK, Ivanov V, Tay JH, Hung YT (2010) Environmental Biotechnology. Humana Press, Totowa, NJ, 975 pp

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jin, B., Yu, Q., van Leeuwen, J.H., Hung, YT. (2010). An Integrated Biotechnological Process for Fungal Biomass Protein Production and Wastewater Reclamation. In: Wang, L., Tay, JH., Tay, S., Hung, YT. (eds) Environmental Bioengineering. Handbook of Environmental Engineering, vol 11. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-031-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-031-1_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-493-7

  • Online ISBN: 978-1-60327-031-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics