Advertisement

Anaerobic Treatment of Milk Processing Wastewater

  • Maria Helena G. A. G. Nadais
  • Maria Isabel A. P. F. Capela
  • Luís Manuel G. A. Arroja
  • Yung-Tse Hung
Chapter
Part of the Handbook of Environmental Engineering book series (HEE, volume 11)

Abstract

Anaerobic processes are widely used for the treatment of milk and dairy effluents. This technology has been subjected to significant development and real-scale application in the last few decades and offers highly favorable perspectives to accomplish a complete biodegradation of the components present in milk processing wastewaters such as sugars, proteins, and fats. Nowadays, anaerobic systems for the treatment of milk wastes can be operated successfully constituting an important contribution for the preservation of environmental quality.

Keywords

Chemical Oxygen Demand Anaerobic Digestion Hydraulic Retention Time Long Chain Fatty Acid Granular Sludge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Angenent L, Karim K, Al-Dahhan MH, Wrenn B, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485Google Scholar
  2. 2.
    Rajeshwari K, Balakrishnan M, Kansal A, Lata K, Kishore V (2000) State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renewable Sustain Energy Rev 4:135–156Google Scholar
  3. 3.
    Ramasamy E, Gajalakshmi S, Sanjeevi R, Jithesh M, Abbasi S (2004) Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors. Bioresour Technol 93(2):209–212Google Scholar
  4. 4.
    FAOSTAT data base (2005) http://faostat.fao.org/default.aspx?alias=faostat&lang=en
  5. 5.
    Abdulgader M, Yu QJ, Zinatizadeh A, Williams P (2009) Biological treatment of milk processing wastewater in a sequencing batch flexible fibre biofilm reactor. Asia-Pac J Chem Eng 4(5):698–703Google Scholar
  6. 6.
    Carta-Escobar F, Pereda-Martín J, Álvarez-Mateus P, Romero-Guzmán F, Durán-Barrantes M, Barriga-Mateos F (2004) Aerobic purification of dairy wastewater in continuous regime. Part I: analysis of the biodegradation process in two reactor configurations. Biochem Eng J 21:183–191Google Scholar
  7. 7.
    González J, García A, Romero F (1982) Características del vertido de una central lechera. Revista de Agroquímica e Technologia Alimentar 22(4):501–510Google Scholar
  8. 8.
    de Haast J, Britz T, Novello J (1984) The management of waste water in the milk processing industry. S Afr J Dairy Technol 16(2):67–73Google Scholar
  9. 9.
    Mann J (1997) Whey utilization – Part 1. Dairy Ind Int 62(3):17, 18Google Scholar
  10. 10.
    Brown, H., Pico, R. (1979) Characterization and treatment of dairy wastes in the municipal treatment systems. In: Proceedings of 34th Purdue industrial waste conference, pp 326–334Google Scholar
  11. 11.
    Royal L (1978) Reduction of milk and milk products wastage. IDF Doc 104:17–27Google Scholar
  12. 12.
    Danalewich J, Papagiannis T, Belyea R (1998) Characterization of dairy waste streams. Current treatment practices and potential for biological nutrient removal. Water Res 32(12):3555–3568Google Scholar
  13. 13.
    Nadais H (2002) Treatment of dairy effluents in UASB reactors with intermittent operation. Ph.D Thesis. University of Aveiro, Portugal (in Portuguese)Google Scholar
  14. 14.
    Wheatland AB (1974) Treatment of waste waters from dairies and dairy – product factories – methods and systems. J Soc Dairy Technol 27(2):71–79Google Scholar
  15. 15.
    de Man G, de Bekker P (1986) New technology in dairy wastewater treatment. Dairy Ind Int 51(5):21–25Google Scholar
  16. 16.
    Totzke D (1992) Anaerobic treatment in the dairy industry. In: Proceedings of food industry environmental conference, pp 3–16Google Scholar
  17. 17.
    Kirk-Othmer (ed) (1995) Encyclopedia of chemical technology, 4th edn, vol 16. Wiley, New York, pp 700–746Google Scholar
  18. 18.
    Hui Y (ed) (1992) Encyclopedia of food science and technology. Wiley, New YorkGoogle Scholar
  19. 19.
    Strydom J, Mostert J, Britz T (1995) Anaerobic treatment of a synthetic dairy effluent using a hybrid digester. Water SA 21(2):125–130Google Scholar
  20. 20.
    Fang H (1991) Treatment of wastewater from a whey processing plant using activated sludge and anaerobic processes. J Dairy Sci 74:2015–2019Google Scholar
  21. 21.
    Mawson AJ (1994) Bioconversions for whey utilization and waste abatement. Bioresour Technol 47:195–203Google Scholar
  22. 22.
    Malaspina F, Stante L, Cellamare CM, Tilche A (1995) Cheese whey and cheese factory wastewater treatment with a biological anaerobic-aerobic process. Water Sci Technol 32(12):59–72Google Scholar
  23. 23.
    Sam-Soon P, Loewenthal R, Wentzel M, Marais GVR (1991) A long-chain fatty acid, oleate, as sole substrate in up-flow anaerobic sludge bed (UASB) reactor systems. Water SA 17(1):31–36Google Scholar
  24. 24.
    Hickey R, Wu W-M, Veiga M, Jones R (1991) Start-up, operation, monitoring and control of high rate anaerobic treatment systems. Water Sci Technol 24(8):207–255Google Scholar
  25. 25.
    Hansen C, Hang S (1992) Two-phase anaerobic pilot plant for cheese waste. ASAE paper, 92–6605Google Scholar
  26. 26.
    García PA, Rico JL, Fdz-Polanco F (1991) Anaerobic treatment of cheese whey in a two-phase UASB reactor. Environ Technol 12(4):355–362Google Scholar
  27. 27.
    de Haast J, Britz TJ, Novello J (1996) Effect of different neutralizing treatments on the efficiency of an anaerobic digester fed with deproteinated cheese whey. J Dairy Res 53:467–476Google Scholar
  28. 28.
    Méndez R, Blázquez R, Lorenzo F, Lema JM (1989) Anaerobic treatment of cheese whey: start-up and operation. Water Sci Technol 21:1857–1860Google Scholar
  29. 29.
    Anonymous (1990) Anaerobic treatment of dairy effluents. Bulletin IDF 252:3–23Google Scholar
  30. 30.
    Streicher C, Milande N, Capdeville B, Roques H (1991) Improvement of the anaerobic digestion of diluted whey in a fluidized bed by nutrient additions. Environ Technol 12(4):333–341Google Scholar
  31. 31.
    Desai M, Madamwar D (1994) Surfactants in anaerobic digestion of cheese whey, poultry waste, and cattle dung for improved biomethanation. Trans ASAE 37(3):959–962Google Scholar
  32. 32.
    Cohen A, Thiele JH, Zeikus JG (1994) Pilot-scale anaerobic treatment of cheese whey by the substrate. Water Sci Technol 30(12):433–442Google Scholar
  33. 33.
    Bickers P, Bhamidimarri R (1998) Aerobic treatment of reverse osmosis permeate in the dairy industry for reuse. Water Sci Technol 38(4/5):61–67Google Scholar
  34. 34.
  35. 35.
    Anaerobic Digestion of Dairy Factory Effluents. FWR, Report No 455/1/01, available online @ http://www.fwr.org/wrcsa/455101.htm
  36. 36.
    Batstone D (1999) High rate anaerobic treatment of complex wastewater. Ph.D. Thesis. University of Queensland, Brisbane, AustraliaGoogle Scholar
  37. 37.
    Lettinga G, Hulshoff Pol L, Zeeman G (1998) Lecture notes on biological wastewater treatment – Part I anaerobic wastewater treatment. Agricultural University of Wageningen, Sub-Department of Environmental Technology, Wageningen, The NetherlandsGoogle Scholar
  38. 38.
    Pavlostathis S, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment. Water Sci Technol 24(8):35–59Google Scholar
  39. 39.
    Ramsay I (1997) Modelling and control of high-rate anaerobic wastewater treatment systems. Department of Chemical Engineering, University of Queensland, Brisbane, AustraliaGoogle Scholar
  40. 40.
    Finerty W (1988) β-oxidation of fatty acids. In: Ratledge C, Wilkinson S (eds) Microbial lipids. Academic, LondonGoogle Scholar
  41. 41.
    Verger R, Riviere C, Moreau H, Gargouri Y, Rogalska E, Moulin A, Ransac S, Carriere F, Cudrey C, Tretout N (1991) Enzyme kinetics of lypolysis. Lipase inhibition by proteins. In: Alberghina L, Schmid R, Verger R (eds) Lipases: structure, mechanism and genetic engineering, vol 16. GBF Monographs. VCH, Weinheim, pp 105–116Google Scholar
  42. 42.
    Heukelekian H, Mueller P (1958) Transformations of some lipids in anaerobic sludge digestion. Sewage Ind Waste 30:1108–1120Google Scholar
  43. 43.
    Leenders H (1995) Afbraak van vet tijdens de anaërobe slibvergisting, invloed van de concentraties hogere vetzuren en de H2-spanning op de hydrolyse. Doktoraal verslagen serie, nr. 95–134. Vakgroep Milieutechnologie, LU (in Dutch)Google Scholar
  44. 44.
    Perle M, Kimchie S, Shelef G (1995) Some biological aspects of the anaerobic degradation of dairy wastewater. Water Res 29(6):1549–1554Google Scholar
  45. 45.
    Jeris J, McCarty P (1965) The biochemistry of methane fermentation using C14 tracers. J Water Pollut Control Fed 37(2):178–192Google Scholar
  46. 46.
    Novak J, Carlson D (1970) The kinetics of anaerobic long chain fatty acid degradation. J Water Pollut Control Fed 42(11):1932–1943Google Scholar
  47. 47.
    McInerney M, Bryant M, Hespell R, Costerton R (1981) Syntrophomonas Wolfei gen. nov. sp. sov., an anaerobic, syntrophic, fatty acid oxidising bacterium. Appl Environ Microb 41:1029–1039Google Scholar
  48. 48.
    Hwu C-S (1997) Enhancing anaerobic treatment of wastewaters containing oleic acid. Ph.D Thesis. Agricultural University of Wageningen, Wageningen, the NetherlandsGoogle Scholar
  49. 49.
    Rinzema A, Boone M, Knippenberg K, Lettinga G (1994) Bactericidal effect of long chain fatty acids in anaerobic digestion. Water Environ Res 66(1):40–48Google Scholar
  50. 50.
    Angelidaki I, Ahring BK (1992) Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl Microbiol Biotechnol 37:808–812Google Scholar
  51. 51.
    Angenent LT, Sung S, Raskin L (2002) Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res 36:4648–4654Google Scholar
  52. 52.
    Rinzema A (1988) Anaerobic treatment of wastewater with high concentration of lipids or sulphate. Ph.D Thesis. Agricultural University of Wageningen, Wageningen, the NetherlandsGoogle Scholar
  53. 53.
    Hulshoff Pol L, Lettinga G (1986) New technologies in anaerobic wastewater treatment. Water Sci Technol 18(12):41–53Google Scholar
  54. 54.
    Lettinga G (1996) Sustainable integrated biological wastewater treatment. Water Sci Technol 33(3):85–98Google Scholar
  55. 55.
    van Lier J, Lettinga G (1999) Appropriate technologies for effective management of industrial and domestic waste waters: the decentralized approach. Water Sci Technol 40(7):171–183Google Scholar
  56. 56.
    Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek 67:3–28Google Scholar
  57. 57.
    IEA Bioenergy (1997) Systems and markets overview of anaerobic digestion. In: Anaerobic digestion activity, Patrick.wheeler@aeat.co.ukGoogle Scholar
  58. 58.
    Wheatley A, Fisher M, Grobicki A (1997) Application of anaerobic digestion for the treatment of industrial wastewaters in europe. J CIWEM 11:39–46Google Scholar
  59. 59.
    Riggle D (1998) Acceptance improves for large-scale anaerobic digestion. Biocycle 39(6):51–55Google Scholar
  60. 60.
    van Lier JB, Tilche A, Ahring BK, Macarie H, Moletta R, Dohanyos M, Hulshoff Pol LW, Lens P, Verstraete W (2001) New perspectives in anaerobic digestion. Water Sci Technol 43(1):1–18Google Scholar
  61. 61.
    Barnes D, Forster CF, Hrudey SE (1984) Surveys in industrial wastewater treatment, food and allied industries. Pitman Publishing Ltd., London, EnglandGoogle Scholar
  62. 62.
    Choi E, Burkhead C (1984) Anaerobic treatment of dairy wastes using fixed-film and without media reactors. In: Proceedings of 39th Purdue industrial waste conference, pp 223–233Google Scholar
  63. 63.
    Ghaly A (1989) Biogas production from acid cheese whey using a two-stage digester. Energy Source 11:237–250Google Scholar
  64. 64.
    Kissalita W, Lo K, Pinder K (1989) Influence of dilution rate on the acidogenic phase products distribution during two-phase Lactose anaerobiosis. Biotechnol Bioeng 34:1235–1250Google Scholar
  65. 65.
    Yan J, Lo K, Liao P (1989) Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor. Biol Waste 27:289–305Google Scholar
  66. 66.
    Yang S-T, Guo M (1990) Kinetics of methanogenesis from whey permeate in packed bed immobilized cells bioreactor. Biotechnol Bioeng 36:427–436Google Scholar
  67. 67.
    Glenn A (1976) Production of extracellular proteins by bacteria. Annu Rev Microbiol 30:41–62Google Scholar
  68. 68.
    Wiersma M, Harder W (1978) A continuous culture study of the regulation of extracellular protease production in vitro. Antonie van Leeuwenhoek 44:141–155Google Scholar
  69. 69.
    Whooley M, O’Callaghan A, McLoughlin A (1983) Effect of substrate on the regulation of exoprotease production by Pseudomonas Aeroginosas. J Gen Microbiol 129:981–988Google Scholar
  70. 70.
    Pausare A, Venugopal V, Lewis N (1985) A note on nutritional influence on extracellular protease synthesis in Aeromonas hydrophila. J Appl Bacteriol 58:101–104Google Scholar
  71. 71.
    Breure A, Mooijman K, van Andel J (1986) Protein degradation in anaerobic digestion: influence of VFA and carbohydrates on hydrolysis and acidogenic fermentation of gelatin. Appl Microbiol Biotechnol 24:426–431Google Scholar
  72. 72.
    Petruy R (1999) Anaerobic treatment of protein, lipid and carbohydrate containing wastewaters using the EGSB technology. Ph.D. Thesis. Agricultural University of Wageningen, Wageningen, the NetherlandsGoogle Scholar
  73. 73.
    Shin H, Paik B (1990) Improved performance of UASB reactors by operating alternatives. Biotechnol Lett 22(6):469–474Google Scholar
  74. 74.
    Lettinga G, Hulshoff Pol L (1991) UASB-Process design for various types of wastewaters. Water Sci Technol 24(8):87–107Google Scholar
  75. 75.
    Yang J, Anderson G (1993) Effects of wastewater composition on stability of UASB. J Environ Eng 119(5):958–977Google Scholar
  76. 76.
    Annachhatre A (1996) Anaerobic treatment of industrial wastewaters. Resour Conserv Recycling 16:161–166Google Scholar
  77. 77.
    Samson R, van den Berg B, Peters P, Hade C (1985) Dairy waste treatment using industrial-scale fixed-film and up-flow sludge bed anaerobic digesters: design and start-up experience. In: Proceedings industrial wastewater conference, vol 39, pp 235–241Google Scholar
  78. 78.
    van Andel J, Breure A (1988) Anaerobic purification of proteineous waste water. Poster Paper Book 5th international symposium on anaerobic digestion, Bologna, pp 463–467Google Scholar
  79. 79.
    Verstraete W, Vandevivere P (1999) New and broader applications of anaerobic digestion. Crit Rev Food Sci 28(2):151–173Google Scholar
  80. 80.
    Caine M, Anderson G, Donnelly T (1991) A study into the effect of a series of shocks on a pilot-scale anaerobic filter. In: Proceedings of 45th Purdue industrial waste conference, pp 451–462Google Scholar
  81. 81.
    Petruy R, Lettinga G (1997) Digestion of a milk-fat emulsion. Bioresour Technol 61:141–149Google Scholar
  82. 82.
    Sayed S (1987) Anaerobic treatment of slaughterhouse wastewater using the UASB process. Ph.D thesis. Agricultural University of Wageningen, Wageningen, the NetherlandsGoogle Scholar
  83. 83.
    Nadais H, Capela I, Arroja L, Duarte A (2001) Kinetic analysis of anaerobic degradation of dairy wastewater. In: Proceedings of 9th world congress on anaerobic digestion 2001, Antwerp, Part I, pp 203–208Google Scholar
  84. 84.
    Boari G, Brunetti A, Passino R, Rozzi A (1984) Anaerobic digestion of olive mill wastewaters. Agric Waste 10:161–175Google Scholar
  85. 85.
    Hanaki K, Matsuo T, Nagase M (1981) Mechanisms of inhibition caused by long chain fatty acids in anaerobic digestion process. Biotechnol Bioeng 23:1591–1560Google Scholar
  86. 86.
    Koster I, Cramer A (1987) Inhibition of methanogenesis from acetate in granular sludge by long-chain fatty acids. Appl Environ Microbiol 53(2):403–409Google Scholar
  87. 87.
    Nadais H, Capela I,Arroja, L, Duarte A (2003) Biosorption of milk substrates onto anaerobic flocculent and granular sludge. Biotechnol Prog 19:1053–1055Google Scholar
  88. 88.
    Hwu C-S, Donlon B, Lettinga G (1996) Comparative toxicity of long-chain fatty acids to anaerobic sludges from various origins. Water Sci Technol 34(5/6):351–358Google Scholar
  89. 89.
    Galbraith H, Miller T (1973) Effect of metal cations and pH on the antibacterial activity and uptake of long chain fatty acids. J Appl Bacteriol 36:634–646Google Scholar
  90. 90.
    Galbraith H, Miller T (1973) Physicochemical effects of LCFA on the bacterial cells and their protoplasts. J Appl Bacteriol 36:647–658Google Scholar
  91. 91.
    Nadais H, Capela I, Arroja L, Duarte A (2001) Effects of organic, hydraulic and fat shocks on the performance of UASB reactors with intermittent operation. Water Sci Technol 44(4):45–56Google Scholar
  92. 92.
    Nadais H, Capela I,Arroja, L, Duarte A (2005) Treatment of dairy wastewater in UASB reactors inoculated with flocculent biomass. Water SA 31(4):603–607Google Scholar
  93. 93.
    Fang H, Chui H-K (1994) Comparison of startup performance of four anaerobic reactors for the treatment of high-strength wastewater. Resour Conserv Recycling 11:123–138Google Scholar
  94. 94.
    Hattingh W, Kotzé J, Thiel P, Toerien D, Siebert M (1967) Biological changes during the adaptation of an anaerobic digester to a synthetic substrate. Water Res 1:255–277Google Scholar
  95. 95.
    Sørensen A, Winther-Nielsen M, Ahring B (1991) Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Appl Microbiol Biotechnol 34:3–827Google Scholar
  96. 96.
    Kettunen R, Rintala J (1997) The effect of low temperature \((5 - 2{9}^{\circ }\mathrm{C})\) and adaptation on the methanogenic activity of biomass. Appl Microbiol Biotechnol 48:570–576Google Scholar
  97. 97.
    Pereira A, Mota M, Alves M (1999) Efeito da aclimatização do inóculo e da recirculação da biomassa na degradação de ácido oleíco em filtro anaeróbio. In: Proceedings of 6a Conferência Nacional sobre a Qualidade do Ambiente, vol 3, Lisboa, Portugal, pp 153–162Google Scholar
  98. 98.
    Yang J, Speece R (1985) Effects of engineering controls on methane fermentation toxicity response. J Water Pollut Control Fed 57:1134–1141Google Scholar
  99. 99.
    Alves MM, Vieira JA, Pereira RM, Pereira MA, Mota M (2001) Effect of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part I: biofilm growth and activity. Water Res 35(1):255–263Google Scholar
  100. 100.
    Morgan J, Evison L, Forster C (1991) Changes in the microbial ecology in anaerobic digesters treating ice cream wastewater during start-up. Water Res 25(6):639–653Google Scholar
  101. 101.
    Schroepfer GJ, Ziemke NR (1959) Development of the anaerobic contact process I. Pilot Plant Investigations and Economics. Sewage Ind Waste 31(2):164–190Google Scholar
  102. 102.
    Schroepfer GJ, Ziemke NR (1959) Development of the anaerobic contact process II. Ancillary Investigations and Special Experiments. Sewage Ind Waste 31(6):697–711Google Scholar
  103. 103.
    Sung S, Dague R (1992) Fundamental principles of the anaerobic sequencing batch reactor process. In: Proceedings of 47th Purdue industrial waste conference, pp 393–408Google Scholar
  104. 104.
    Riffat R, Dague R (1995) Laboratory studies on the anaerobic biosorption process. Water Environ Res 67(7):1104–1110Google Scholar
  105. 105.
    Tsetzos M, Bell J (1989) Comparison of the biosorption and desorption of hazardous organic pollutants by live and dead biomass. Water Res 23(5):561–568Google Scholar
  106. 106.
    Bell J, Tsetzos M (1987) Removal of hazardous organic pollutants by biomass adsorption. J Water Pollut Control Fed 59(4):191–198Google Scholar
  107. 107.
    Kennedy K, Pham T (1995) Effect of anaerobic sludge source and condition on biosorption of halogenated aromatics. Water Res 29:2360–2366Google Scholar
  108. 108.
    Ning J, Kennedy K, Fernandes L (1996) Biosorption of 2,4-dichlorophenol by live and chemically inactivated anaerobic granules. Water Res 30(9):2039–2044Google Scholar
  109. 109.
    Hwu C-S, Tseng S-K, Yuan C-Y, Kulik Z, Letinga G (1998) Biosorption of long-chain fatty acids in UASB treatment process. Water Res 32(5):1571–1579Google Scholar
  110. 110.
    Daffonchio D, Thaveesri J, Verstraete W (1995) Contact angle measurement and cell hydrophobicity of granular sludge from up-flow anaerobic sludge bed reactors. Appl Environ Microbiol 61:3676–3680Google Scholar
  111. 111.
    Rinzema A (1993) Anaerobic digestion of long-chain fatty acids in UASB and expanded granular sludge bed reactors. Process Biochem 28:527–537Google Scholar
  112. 112.
    Rinzema A, van Veen H, Lettinga G (1993) Anaerobic digestion of triglyceride emulsions in expanded granular sludge bed reactors with modified sludge separators. Environ Technol 14:423–432Google Scholar
  113. 113.
    Nadais H, Capela I, Arroja L, Duarte A (2005) Optimum cycle time for intermittent UASB reactors treating dairy wastewater. Water Res 39:1511–1518Google Scholar
  114. 114.
    Weiland P, Rozzi A (1991) The start-up, operation and monitoring of high-rate anaerobic treatment systems: a discusser’s report. Water Sci Technol 24(8):257–277Google Scholar
  115. 115.
    Totzke D (2004) Personal communication (detotzke@ati-ae.com)Google Scholar
  116. 116.
    Young J, Dahab M (1983) Effect of media design on the performance of fixed-bed anaerobic reactors. Water Sci Technol 15(8/9):369–376Google Scholar
  117. 117.
    Dubourguier H, Prensier G, Albagnac G (1988) Structure and microbial activities of granular anaerobic sludge. In: Lettinga G, Zhender A, Grotenhuis J, Hulshoff Pol L (eds) Proceedings of GASMAT-workshop. Pudoc Wageningen, Lunteren, the Netherlands, pp 18–26Google Scholar
  118. 118.
    Zeeman G, Sanders W, Wang K, Lettinga G (1997) Anaerobic treatment of complex wastewater and waste activated sludge – application of an upflow anaerobic solid removal (UASR) reactor for the removal and pre-hydrolysis of suspended COD. Water Sci Technol 35(10):121–128Google Scholar
  119. 119.
    van Lier J, Boersma F, Debets M, Lettinga G (1994) ‘High-rate’ thermophilic anaerobic wastewater treatment in compartmentalized up-flow reactors. Water Sci Technol 30(12):251–261Google Scholar
  120. 120.
    van Lier J, Groeneveld N, Lettinga G (1996) Characteristics and development of thermophilic methanogenic sludge in compartmentalized up-flow reactors. Biotechnol Bioeng 50:115–124Google Scholar
  121. 121.
    Bachmann A, Beard V, McCarty P (1985) Performance characteristics of the anaerobic baffled reactor. Water Res 19:99–106Google Scholar
  122. 122.
    Nachaiyasit S, Stuckey D (1997) The effect of shock loads on the performance of an anaerobic baffled reactor (ABR). 2. Step and transient hydraulic shocks at constant feed strength. Water Res 31(11):2747–2754Google Scholar
  123. 123.
    Nachaiyasit S, Stuckey D (1995) Microbial response to environmental changes in an Anaerobic Baffled Reactor (ABR). Antonie van Leeuwenhoek 67:111–123Google Scholar
  124. 124.
    Boopathy R, Larsen V, Senior E (1988) Performance of anaerobic baffled reactor (ABR) in treating distillery wastewater from a Scotch Whisky factory. Biomass 16:133–143Google Scholar
  125. 125.
    Polprasert C, Kemmandamrong P, Tran F (1992) Anaerobic baffle reactor (ABR) process for treating a slaughterhouse wastewater. Environ Technol 13:857–865Google Scholar
  126. 126.
    Totzke DE (2001) Anaerobic treatment technology overview. Internal Report, Applied Technologies, Inc., detotzke@ati-ae.comGoogle Scholar
  127. 127.
    Page I, Cocci A, Landine R (1998) Low-rate anaerobic pretreatment of high-fat cheese wastewater. In: Proceedings of industrial wastes technical conference, Nashville, TN, pp 173–181Google Scholar
  128. 128.
    Paris JM, Lema JM, Casas C (1983) Criterios de selección de tecnología anaerobia de aguas residuales. Ingenieria Química 175:143–150Google Scholar
  129. 129.
    Burke DA (2001) Dairy waste anaerobic digestion handbook: options for recovering beneficial products from dairy manure. Environmental Energy Company (www.makingenergy.com)
  130. 130.
    Ahring BK (1994) Status on science and application of thermophilic anaerobic digestion. Water Sci Technol 30(12):241–249Google Scholar
  131. 131.
    Pereboom JHF, De Man G, Su IT (1994) Start-up of full-scale UASB reactor for the treatment of terephthalic acid wastewater. In: Proceedings of 7th int. symposium on anaerobic digestion, Cape Town, pp 307–312Google Scholar
  132. 132.
    Hulshoff L, Euler H, Eitner A, Wucke A (1997) GTZ sectoral project ‘Promotion of anaerobic technology for the treatment of municipal and industrial sewage and wastes’. In: Anaerobic conversions for environmental protection, sanitation and re-use of residues. REUR Technological series vol 51, pp 96–107, FAOGoogle Scholar
  133. 133.
    De Zeeuw W (1984) Acclimatization of anaerobic sludge for UASB reactor start-up. Ph.D Thesis. Agricultural University of Wageningen, the NetherlandsGoogle Scholar
  134. 134.
    Thaveesri J, Liessens B, Verstraete W (1995) Granular sludge growth under different reactor liquid surface tensions in lab-scale up-flow anaerobic sludge blanket reactors treating wastewater from sugar-beet processing. Appl Microbiol Biotechnol 43:1122–1127Google Scholar
  135. 135.
    Wirtz RA, Dague RR (1996) Enhancement of granulation and start-up in the anaerobic sequencing batch reactor. Water Environ Res 68:883–892Google Scholar
  136. 136.
    Leal MCMR, Cammarota MC, Freire DMG, Sant’Anna GL (2002) Hydrolytic enzymes as coadjuvants in the anaerobic treatment of dairy wastewaters. Braz J Chem Eng 19(2):175–180Google Scholar
  137. 137.
    Yang YP (1994) Treatment of milk powder wastewater with lipids. Internal Report. Agricultural University of Wageningen, the NetherlandsGoogle Scholar
  138. 138.
    Motta Marques D, Cayless S, Lester J (1990) Process aiders for start-up of anaerobic fluidised bed systems. Environ Technol 11:1093–1105Google Scholar
  139. 139.
    Guitonas A, Paschalidis G, Zouboulis A (1994) Treatment of strong wastewaters by fixed bed anaerobic reactors with organic support. Water Sci Technol 29(9):257–263Google Scholar
  140. 140.
    Anderson G, Kasapgil B, Ince O (1994) Comparison of porous and non-porous media in up-flow anaerobic filters when treating dairy wastewater. Water Res 28(7):1619–1624Google Scholar
  141. 141.
    Sayed S, van der Spoel H, Truijen G (1993) A complete treatment of slaughterhouse wastewater combined with sludge stabilisation using a two stage high rate UASB process. Water Sci Technol 27(9):83–90Google Scholar
  142. 142.
    Fergala M (1995) The anaerobic treatment of complex wastewater. Ph.D Thesis. Department of Water Pollution Control, Van Hall Institute, the NetherlandsGoogle Scholar
  143. 143.
    Lettinga G, Hulshoff Pol LW (1991) UASB-Process design for various types of wastewaters. Water Sci Technol 24(8):87–107Google Scholar
  144. 144.
    Yamamoto K, Hissa M, Mahmood T, Matsuo T (1989) Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Sci Technol 21:43–54Google Scholar
  145. 145.
    Ueda T, Hata K, Kikuoka Y (1996) Treatment of domestic sewage from rural settlements by a membrane bioreactor. Water Sci Technol 34:189–196Google Scholar
  146. 146.
    Ueda T, Hata K, Kikuoka Y (1997) Effects of aeration on suction pressure in a submerged membrane bioreactor. Water Res 31:489–494Google Scholar
  147. 147.
    Hansen CL, Hwang SH (1990) Use of up-flow anaerobic sludge blanket (UASB) reactor to treat whey permeate. In: Proceedings of the 6th international symposium on agriculture and food processing wastes. Am Soc Agric Eng I11:124Google Scholar
  148. 148.
    Rico JL, García P, Fdz-Polanco F (1991) Anaerobic treatment of cheese production wastewater using a UASB reactor. Bioresour Technol 37:271–276Google Scholar
  149. 149.
    Hawkes F, Donnelly T, Anderson G (1995) Comparative performance of anaerobic digesters operating on ice-cream wastewater. Water Res 29(2):525–533Google Scholar
  150. 150.
    Ozturk I, Ubay G, Demir I (1993) Hybrid up-flow anaerobic sludge blanket reactor treatment of dairy effluent (HUASBR). Water Sci Technol 28(2):77–81Google Scholar
  151. 151.
    Viraraghavan T, Kikkeri S (1990) Effect of temperature on anaerobic filter treatment of dairy wastewater. Water Sci Technol 22(9):191–198Google Scholar
  152. 152.
    Veiga MC, Pan M, Blázquez R, Méndez R, Lema JM (1994) A double-feed anaerobic filter for the treatment of high strength wastewaters. Biotechnol Tech 8(2):77–82Google Scholar
  153. 153.
    Radick K (1992) Dairy wastes. Water Environ Res 64(4):417–418Google Scholar
  154. 154.
    Kárpáti I, Bencze L, Borszérki J (1995) New process for physico-chemical pre-treatment of dairy effluents with agricultural use of sludge produced. Water Sci Technol 22(9):93–100Google Scholar
  155. 155.
    Ruston B (1993) Chemical pre-treatment of dairy wastewater. Water Sci Technol 28(2):67–72Google Scholar
  156. 156.
    Vidal G, Carvalho A, Méndez R, Lema JM (2000) Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresour Technol 74:231–239Google Scholar
  157. 157.
    Braun R, Steffen R (1997) Anaerobic digestion of agroindustrial by-products and wastes. In: Anaerobic conversions for environmental protection, sanitation and re-use of residues. REUR Technological series vol 51, pp 27–41, FAO (ISSN 1024–2368)Google Scholar
  158. 158.
    Wang LK, Hung YT, Lo HH, Yapijakis (2004) Handbook of Industrial and Hazardous Wastes Treatment, CRC Press, NY, 1345 ppGoogle Scholar
  159. 159.
    Wang LK, Hung YT, Lo HH, Yapijakis (2006) Waste Treatment in the Food Processing Industry. CRC Press, NY, 333 ppGoogle Scholar
  160. 160.
    Wang LK, Hung YT, Shammas NK (2010) Handbook of Advanced Industrial and Hazardous Wastes Treatment. CRC Press, NY, 1237–1240Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maria Helena G. A. G. Nadais
    • 1
  • Maria Isabel A. P. F. Capela
    • 1
  • Luís Manuel G. A. Arroja
    • 1
  • Yung-Tse Hung
    • 2
  1. 1.Department of Environment and PlanningUniversity of AveiroAveiroPortugal
  2. 2.Department of Civil and Environmental EngineeringCleveland State UniversityClevelandUSA

Personalised recommendations