Heavy Metal Removal by Microbial Biosorbents

  • Dae Haeng Cho
  • Eui Yong Kim
  • Yung-Tse Hung
Part of the Handbook of Environmental Engineering book series (HEE, volume 11)


Conventional methods for heavy metal removal are precipitation, coagulation, reduction, ion exchange, evaporation, and membrane processes. This chapter describes the use of microbial biosorbents in removing heavy metals. Environmental factors, mechanisms, and isotherms of biosorption were discussed. Biosorption kinetics includes pseudo-first-order, pseudo-second-order, and Elovich kinetics model.


Heavy Metal Fungal Cell Wall Biosorption Process Heavy Metal Removal Metal Sorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Eccles H (1999) Treatment of metal-contaminated wastes: why select a biological process? Trends Biotech 17:462–465CrossRefGoogle Scholar
  2. 2.
    Choi A, Wang S, Lee M (2009) Biosorption of cadmium, copper, and lead ions from aqueous solutions by Ralstonia sp. and Bacillus sp. isolated from diesel and heavy metal contaminated soil. Geosci J 13:331–341CrossRefGoogle Scholar
  3. 3.
    Kapoor A, Viraraghavan T (1995) Fungal biosorption – an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206Google Scholar
  4. 4.
    Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316CrossRefGoogle Scholar
  5. 5.
    Hu MZC, Norman JM, Faison BD, Reeves ME (1996) Biosorption of uranium by Pseudomonas aeruginosa strain CSU: characterization and comparison studies. Biotechnol Bioeng 51:237–247CrossRefGoogle Scholar
  6. 6.
    Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250CrossRefGoogle Scholar
  7. 7.
    Sag Y Kustal T (1995) Biosorption of heavy metals by Zoogloea ramizera: use of adsorption isotherms and a comparison of biosorption characteristics. Chem Eng J 60:181–188Google Scholar
  8. 8.
    Cheung WH, Ng JCY Mckay G (2003) Kinetic analysis of the sorption of copper(II) ions on chitosan. J Chem Tech Biotech 78:562–571CrossRefGoogle Scholar
  9. 9.
    Ho YS, Ng JCY, McKay G (2000) Kinetic of pollutant sorption by biosorbents: review. Sep Pur Method 29:189–232CrossRefGoogle Scholar
  10. 10.
    Remacle J (1990) The cell wall and metal binding. In: Volesky B (ed) Biosorption of heavy metals. CRC, Boca Raton, FL, pp 83–92Google Scholar
  11. 11.
    Tchobanoglous G Burtonm FL (1991) Wastewater engineering 3rd edn Metcarf and Eddy Inc. Wakefield, MA, pp 756–759Google Scholar
  12. 12.
    Kuyucak N Volesky B (1997) Biosorption by algal biomass. In: Volesky B (ed) Biosorption of heavy metals CRC, Boca Raton, FL, pp 173–198Google Scholar
  13. 13.
    EPA (1978) Manual of treatment techniques for meeting the interim primary drinking water regulations, EPA 600/8–77–005Google Scholar
  14. 14.
    Zouboulis AI, Matis KA Lazaridis NK (2001) Removal of metal ions from simulated wastewater by Saccharomyces yeast biomass: combining biosorption and floatation precesses. Sep Sci Technol 36:349–365CrossRefGoogle Scholar
  15. 15.
    Beveridge TC Doyle RJ (1989) Metal ions and bacteria Wiley Interscience, New YorkGoogle Scholar
  16. 16.
    Norris PR Kelly DP (1979) Accumulation of metals by bacteria and yeasts Dev Ind Microbiol 20:299–308Google Scholar
  17. 17.
    Strandberg GW, Shumate SE Parrot JR (1981) Microbial cells as biosorbents for heavy metals: Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol 41:237–245Google Scholar
  18. 18.
    Tobin JM Cooper DG Neuffld RJ (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 47:821–824Google Scholar
  19. 19.
    Kasan HC (1993) The role of waste activated sludge and bacteria in metal-ion removal from solution. Crit Rev Environ Sci Technol 23:79–117CrossRefGoogle Scholar
  20. 20.
    Aldor I, Fourest E Volesky B (1995) Desorption of cadmium from algal biosorbent. Can J Chem Eng 73:516–522CrossRefGoogle Scholar
  21. 21.
    Ariff AB, Mel M, Hasan MA Karim MIA (1999) The kinetics and mechanism of lead (II) biosorption by powderized Rhizopus oligosporus. World J Microbiol Biotechnol 15:291–298CrossRefGoogle Scholar
  22. 22.
    Cho DH, Chae HJ, Kim EY (2001) Synthesis and characterization of a novel extracellular polysaccharide from Rhodotorula glutinis. Appl Biochem Biotechnol 95:183–193CrossRefGoogle Scholar
  23. 23.
    Cho DH, Kim EY (2003) Characterization of Pb2 + biosorption from aqueous solution by Rhodotorula glutinis. Bioprocess Biosyst Eng 25:271–277Google Scholar
  24. 24.
    Cho DH, Yoo MH, Kim EY (2004) Biosorption of Lead (Pb2 +) from aqueous solution by Rhodotorula aurantiaca. J Microbiol Biotechnol 14:250–255Google Scholar
  25. 25.
    Padmavathy V, Vasudevan P Dhingra SC (2003) Biosorption of nickel(II) ions on baker’s yeast. Process Biochem 38:1389–1395CrossRefGoogle Scholar
  26. 26.
    Salinas E, Orellano M, Rezza I, Martinez L, Marchesvky E, Tosetti M (2000) Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra. Bioresour Technol 72:107–112CrossRefGoogle Scholar
  27. 27.
    White C, Gadd GM (1990) Biosorption of radionuclides by fungal biomass. J Chem Technol Biotechnol 49:331–343CrossRefGoogle Scholar
  28. 28.
    Blackwell KJ, Singleton I, Tobin JM (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43:579–584CrossRefGoogle Scholar
  29. 29.
    Rapoport AI, Muter OA (1995) Biosorption of hexavalent chromium by yeasts. Process Biochem 30:145–149Google Scholar
  30. 30.
    Brady D, Duncan JR (1994) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41:149–154CrossRefGoogle Scholar
  31. 31.
    Volesky B, May-Philips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:797–806CrossRefGoogle Scholar
  32. 32.
    Falih AM (1998) Comparative toxicity of heavy metals to some yeasts isolated from Saudi Arabian soil. Bioresour Technol 64:193–198CrossRefGoogle Scholar
  33. 33.
    Kurek E, Czaban J, Bollag JM (1982) Sorption of cadmium by microorganisms in competition with other soil constituents. Appl Environ Microbiol 43:1011–1015Google Scholar
  34. 34.
    Dias CT, Gomes NCM, Rosa CA, Linardi VR (1996) Yeast occurrence in a gold mining plant and screening for degradation of cyano-metals. Int J Biodeterior biodegrad 37:133CrossRefGoogle Scholar
  35. 35.
    Rezza I, Salinas E, Elorza M, Tosetti M, Donati E (2001) Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem 36:495–500CrossRefGoogle Scholar
  36. 36.
    Veglio F, Beolchini F, Gasbarro A (1997) Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochem 32:99–105CrossRefGoogle Scholar
  37. 37.
    Brierley CL (1990) Bioremediation of metal-contaminated surfaces and groundwaters. Geomicrobiol J 8:201–223CrossRefGoogle Scholar
  38. 38.
    Figueira MMF, Volesky B Ciminelli VST (2000) Biosorption of metals in brown seaweed biomass. Water Res 34:196–204CrossRefGoogle Scholar
  39. 39.
    Volesky B (1994) Advances in biosorption of metals: Selection of biomass types. FEMS Micobiol Rev 14:291–302CrossRefGoogle Scholar
  40. 40.
    Aksu Z, Dönmez, G. (2001) Comparison of copper(II) biosorptive properties of live and treated Candida sp. J Environ Sci Health 36:367–381Google Scholar
  41. 41.
    Volesky B (1990) Biosorption of fungal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC, Boca Raton, FL, pp 139–171Google Scholar
  42. 42.
    Luef E, Prey T Kubieck, CP (1991) Biosorption of zinc by fungal mycelial wastes. Appl. Microbiol Biotechnol 24:688–692CrossRefGoogle Scholar
  43. 43.
    Wilhelm BS, Duncan JR (1995) Metal recovery from Saccharomyces cerevisiae biosorpion columns. Biotechnol. Lett 17:1007–1012CrossRefGoogle Scholar
  44. 44.
    Fourest E, Roux J (1992) Heavy metals biosorption by fungal mycelial by-product: mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403CrossRefGoogle Scholar
  45. 45.
    Lopez A, Lazaro N, Priego, JM, Marques AM (2000) Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. J Ind Microbiol Biotechnol 24:146–151CrossRefGoogle Scholar
  46. 46.
    Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain MCMB-181: characterization studies. Biotechnol Prog 15:228–237CrossRefGoogle Scholar
  47. 47.
    Bedell GW, Darnal DW (1990) Immobilization of nonviable, biosorbent, algar biomass for the recovery of metal ions. In: Volesky B (ed) Biosorption of heavy metals. CRC, Boca Raton, FL,pp 313–326Google Scholar
  48. 48.
    Ahija P, Gupta R, Saxena RK (1999) Zn2 + biosorption by Oscillatoria anguistissima. Process Biochem 34:77–85CrossRefGoogle Scholar
  49. 49.
    Mogollon L, Rodriguez R, Larrota W, Ramirez N, Torres R (1998) Biosorption of nickel using filamentous fungi. Appl Biochem Biotech 72:593–601CrossRefGoogle Scholar
  50. 50.
    Sudha BR, Abraham TE (2001) Biosorption of Cr(VI) from aqueous solution by Rhizopus niglicans. Bioresour Technol 79:73–81CrossRefGoogle Scholar
  51. 51.
    Matheickal JT, Yu Q (1997) Biosorption of lead(II) from aqueous solutions by Phellinus badius. Miner Eng 10:945–957CrossRefGoogle Scholar
  52. 52.
    Schiwer S Volesky B (1996) Modeling of multi metal ion exchange in biosorption. Environ Sci Technol 30:2921–2917CrossRefGoogle Scholar
  53. 53.
    Sag Y (2001) Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Sep Puri Meth 30:1–48CrossRefGoogle Scholar
  54. 54.
    Davidova E Kasparova S (1992) Adsorption of metals by yeast cell walls. Mikrobiologiya 61:1018–1022Google Scholar
  55. 55.
    Nguyen VAT, Senoo K, Michima T Hisamatsu M (2001) Multiple tolerance of Rhodotorula glutinis R-1 to acid, aluminum ion and manganese ion, and its unusual ability of neutralizing acidic medium. J Biosci Bioeng 92:366–371Google Scholar
  56. 56.
    Reidl HH, Grover TA Takemoto JY (1989) 31P-NMR evidence for cytoplasmic acidification and phosphate extrusion in syringomycin-treated cells of Rhodotorula pilimanae. Biochim Biophys Acta 1010:325–329CrossRefGoogle Scholar
  57. 57.
    Greenfield NJ, Hussain M Lenard J (1987) Effects of growth stage and amines on cytoplasmic and vacuolar pH, phosphate levels in Saccharomyces cerevisiae: a P-nuclear magnetic resonance study. Biochim Biophys Acta 926:205–214CrossRefGoogle Scholar
  58. 58.
    Harold FM (1966) Inorganic polyphosphate in biology: structure, metabolism and function. Bacteriol Rev 13:772–794Google Scholar
  59. 59.
    Berthe MC, Charpentier C, Lenatre J Bonaly R (1981) Glucosamine and chitin accumulation in cell walls of the yeast Rhodotorula glutinis CBS 3044. Influence of culture conditions. Biochem Biophys Res Commun 100:1504–1514CrossRefGoogle Scholar
  60. 60.
    Bahmed K, Quiles F, Bonaly R Coulon J (2003) Fluorescence and infrared spectrometric study of cell walls from Candida, Kluyveromyces, Rhodotorula and Schizosaccharomyces yeasts in relation with their chemical composition. Biomacromolecules 4:1763–177CrossRefGoogle Scholar
  61. 61.
    Langmuir I (1916) The adsorption of gases on plane surface of glass, mica and platinum. J Am Chem Soc 40:1361–1368CrossRefGoogle Scholar
  62. 62.
    Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470Google Scholar
  63. 63.
    Redlich O Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024CrossRefGoogle Scholar
  64. 64.
    Lagergren S (1989) About the theory of so-called adsorption of soluble substances Kung Sven Veten Hand 24:1–39Google Scholar
  65. 65.
    Aharoni C Spark DL (1981) Kinetics of soil chemical reactions – a theoretical treatment In: Spark DL Suarez DL (eds) Rates of soil chemical processes Soil Society of America, Madison, WI, p 1Google Scholar
  66. 66.
    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dae Haeng Cho
    • 1
  • Eui Yong Kim
    • 2
  • Yung-Tse Hung
    • 3
  1. 1.Department of Chemical EngineeringKwangwoon UniversitySeoulKorea
  2. 2.Department of Chemical EngineeringThe University of SeoulSeoulKorea
  3. 3.Department of Civil and Environmental EngineeringCleveland State UniversityClevelandUSA

Personalised recommendations