Skip to main content

Modeling of Biosorption Processes

  • Chapter
  • First Online:
Environmental Bioengineering

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 11))

Abstract

Biosorption entails the use of microbial or plant biomass, usually inactivated, to remove toxic metal ions in aqueous solutions. It is particularly effective in dealing with low concentration, high volume metal waste streams. Although biosorption processes have not yet been commercialized to any significant extent, they offer a promising area for future developments. This chapter presents several process models that can facilitate the design and analysis of batch and fixed bed biosorption systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang JS, Wai CM (2004) Arsenic in drinking water – a global environmental problem. J Chem Educ 81:207–213

    Article  CAS  Google Scholar 

  2. Wang Y-T (2004) Editorial – role of bacteria in arsenic removal from an aqueous environment. J Environ Eng 130:1071

    Article  Google Scholar 

  3. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  4. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  5. Cooney DO (1999) Adsorption design for wastewater treatment. CRC, Boca Raton, FL

    Google Scholar 

  6. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  7. Liu Y, Liu Y-J (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61:229–242

    Article  CAS  Google Scholar 

  8. Teo WK, Ruthven DM (1986) Adsorption of water from aqueous ethanol using 3-Å molecular sieves. Ind Eng Chem Process Des Dev 25:17–21

    Article  CAS  Google Scholar 

  9. Helfferich FG, Hwang Y-L (1991) Ion exchange kinetics. In: Dorfner K (ed) Ion exchangers. De Gruyter, Berlin, pp 1285

    Google Scholar 

  10. Helfferich F (1962) Ion exchange. McGraw-Hill, New York

    Google Scholar 

  11. Crank J (1956) The mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  12. Loebenstein WV (1962) Batch adsorption from solution. J Res Natl Bur Stand – A Phys Chem 66A:503–515

    Article  Google Scholar 

  13. Cooney DO (1991) The importance of axial dispersion in liquid-phase fixed-bed adsorption operations. Chem Eng Comm 110:217–231

    Article  CAS  Google Scholar 

  14. Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J 20:228–238

    Article  CAS  Google Scholar 

  15. Yoshida H, Kataoka T, Ruthven DM (1984) Analytical solution of the breakthrough curve for rectangular isotherm systems. Chem Eng Sci 39:1489–1497

    Article  CAS  Google Scholar 

  16. Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666

    Article  CAS  Google Scholar 

  17. Hiester NK, Vermeulen T (1952) Saturation performance of ion-exchange and adsorption columns. Chem Eng Prog 48:505–516

    CAS  Google Scholar 

  18. Bohart GS, Adams EQ (1920) Some aspects of the behavior of charcoal with respect to chlorine. J Am Chem Soc 42:523–544

    Article  CAS  Google Scholar 

  19. Helfferich F, Plesset MS (1958) Ion-exchange kinetics: a nonlinear diffusion problem. J Chem Phys 28:418–424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chu, K.H., Hung, YT. (2010). Modeling of Biosorption Processes. In: Wang, L., Tay, JH., Tay, S., Hung, YT. (eds) Environmental Bioengineering. Handbook of Environmental Engineering, vol 11. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-031-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-031-1_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-493-7

  • Online ISBN: 978-1-60327-031-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics