Skip to main content

Proteomic Methods in Cancer Research

  • Chapter
  • First Online:
Bioinformatics in Cancer and Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1256 Accesses

Abstract

Recent advancements and progress in proteomics technologies and research protocols have made a demonstrable impact upon clinical investigations, particularly in the area of cancer research. This chapter reviews the overall requirements and approaches involved in clinical proteomics research with particular emphasis on and review of accomplishments in the field of cancer research and therapy. A detailed discussion of the challenges in clinical proteomic research is presented along with a valuable review of protein purification and protein analytical platforms. Extensive discussion on the use of various clinical proteomic mass spectrometric approaches is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins, J. N. et al. 2002. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol Cell Proteomics 1:947–955.

    PubMed  CAS  Google Scholar 

  • Aebersold, R. et al. 2000. New approaches to quantitative proteome analysis. Biotecnol Apl 17:46–47.

    CAS  Google Scholar 

  • Alessandro, R. et al. 2005. Proteomic approaches in colon cancer: promising tools for new cancer markers and drug target discovery. Clin Colorectal Cancer 4:396–402.

    PubMed  CAS  Google Scholar 

  • Alfonso, P. et al. 2005. Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics 5:2602–2611.

    PubMed  CAS  Google Scholar 

  • Appel, R. et al. 1988. Automatic classification of two-dimensional gel electrophoresis pictures by heuristic clustering analysis: a step toward machine learning. Electrophoresis 9:136–142.

    PubMed  CAS  Google Scholar 

  • Appel, R. D. et al. 1991. The MELANIE project: from a biopsy to automatic protein map interpretation by computer. Electrophoresis 12:722–735.

    PubMed  CAS  Google Scholar 

  • Arnott, D. P. et al. 1996. Identification of proteins from two-dimensional electrophoresis gels by peptide mass fingerprinting. ACS Symp Ser 619:226–243.

    CAS  Google Scholar 

  • Beer, I. et al. 2004. Improving large-scale proteomics by clustering of mass spectrometry data. Proteomics 4:950–960.

    PubMed  CAS  Google Scholar 

  • Benzinger, A. et al. 2005. Targeted proteomic analysis of 14-3-3s, a p53 effector commonly silenced in cancer. Mol Cell Proteomics 4:785–795.

    PubMed  CAS  Google Scholar 

  • Bergen, H. R. III et al. 2003. Discovery of ovarian cancer biomarkers in serum using NanoLC electrospray ionization TOF and FT-ICR mass spectrometry. Dis Markers 19:239–249.

    PubMed  CAS  Google Scholar 

  • Bern, M. et al. 2004. Automatic quality assessment of Peptide tandem mass spectra. Bioinformatics 20(Suppl 1):I49–I54.

    PubMed  CAS  Google Scholar 

  • Bienvenut, W. V. et al. 2002. Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins. Proteomics 2:868–876.

    PubMed  CAS  Google Scholar 

  • Borisov, O. V. et al. 2002. Low-energy collision-induced dissociation fragmentation analysis of cysteinyl-modified peptides. Anal Chem 74:2284–2292.

    PubMed  CAS  Google Scholar 

  • Boschetti, E. 1994. Advanced sorbents for preparative protein separation purposes. J Chromatogr 658:207.

    CAS  Google Scholar 

  • Brill, L. M. et al. 2004. Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Anal Chem 76:2763.

    PubMed  CAS  Google Scholar 

  • Brzeski, H. et al. 2003. Albumin depletion method for improved plasma glycoprotein analysis by two-dimensional difference gel electrophoresis. Biotechniques 35:1128.

    PubMed  CAS  Google Scholar 

  • Cargile, B. J. et al. 2004. Potential for false positive identifications from large databases through tandem mass spectrometry. J Proteome Res 3:1082–1085.

    PubMed  CAS  Google Scholar 

  • Castagna, A. et al. 2005. Exploring the hidden human urinary proteome via ligand library beads. J Proteome Res 4:1917–1930.

    PubMed  CAS  Google Scholar 

  • Chamrad, D. C. et al. 2004. Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data. Proteomics 4:619–628.

    PubMed  CAS  Google Scholar 

  • Chen, E. I. et al. 2005. Maspin alters the carcinoma proteome. FASEB J 19:1123–1124, 10 1096/fj 04-2970fje.

    PubMed  CAS  Google Scholar 

  • Chong, B. E. et al. 2001. Differential screening and mass mapping of proteins from premalignant and cancer cell lines using nonporous reversed-phase HPLC coupled with mass spectrometric analysis. Anal Chem 73:1219–1227.

    PubMed  CAS  Google Scholar 

  • Chong, P. K. et al. 2006. Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: Implication of multiple injections. J Proteome Res 5:1232–1240.

    PubMed  CAS  Google Scholar 

  • Clarke, W., and Chan, D. W. 2005. ProteinChips: the essential tools for proteomic biomarker discovery and future clinical diagnostics. Clin Chem Lab Med 43:1279–1280.

    PubMed  CAS  Google Scholar 

  • Corthals, G. L. et al. 2000b. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21:1104.

    CAS  Google Scholar 

  • Davis, M. T. et al. 2001a. Automated LC-LC-MS-MS platform using binary ion-exchange and gradient reversed-phase chromatography for improved proteomic analyses. J Chromatogr B: Biomed Sci Appl 752:281–291.

    CAS  Google Scholar 

  • Davis, M. T. et al. 2001b. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. II. Limitations of complex mixture analyses. Proteomics 1:108–117.

    CAS  Google Scholar 

  • Demirev, P. A. et al. 2001. Tandem mass spectrometry of intact proteins for characterization of biomarkers from Bacillus cereus T spores. Anal Chem 73:5725–5731.

    PubMed  CAS  Google Scholar 

  • DeSouza, L. et al. 2005. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 4:377–386.

    PubMed  CAS  Google Scholar 

  • Ding, L. et al. 1999. High-efficiency MALDI-QIT-ToF mass spectrometer. Proc SPIE-Int Soc Opt Eng 3777:144–155.

    CAS  Google Scholar 

  • Durr, E. et al. 2004. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22:985–992.

    PubMed  CAS  Google Scholar 

  • Fernandez, M. A. et al. 1996. Characterization of protein adsorption by composite silica-polyacrylamide gel anion exchangers II. Mass transfer in packed columns and predictability of breakthrough behavior. J Chromatogr 746:185–198.

    CAS  Google Scholar 

  • Ficarro, S. B. et al. 2002. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cervisiae. Nat Biotechnol 20:301–305.

    PubMed  CAS  Google Scholar 

  • Figeys, D. et al. 2001. Mass spectrometry for the study of protein–protein interactions. Methods 24:230.

    PubMed  CAS  Google Scholar 

  • Fountoulakis, M., and Juranville, J. F. 2003. Enrichment of low-abundance brain proteins by preparative electrophoresis. Anal Biochem 313:267.

    PubMed  CAS  Google Scholar 

  • Fountoulakis, M. et al. 1999. Enrichment of low-copy-number gene products by hydrophobic interaction chromatography. J Chromatogr A 833:157–168.

    PubMed  CAS  Google Scholar 

  • Friedman, D. B. et al. 2004. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4:793–811.

    PubMed  CAS  Google Scholar 

  • Fung, E. T. et al. 2001. Protein biochips for differential profiling. Curr Opin Biotechnol 12:65–69.

    PubMed  CAS  Google Scholar 

  • Fung, E. T. et al. 2005. Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. Int J Cancer 115:783–789.

    PubMed  CAS  Google Scholar 

  • Ge, Y. et al. 2002. Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. J Am Chem Soc 124:672–678.

    PubMed  CAS  Google Scholar 

  • Geho, D. H. et al. 2004. Opportunities for nanotechnology-based innovation in tissue proteomics. Biomed Microdevices 6:231–239.

    PubMed  CAS  Google Scholar 

  • Geng, M. et al. 2001. Proteomics of glycoproteins based on affinity selection of glycopeptides from tryptic digests. J Chromatogr 752:293.

    CAS  Google Scholar 

  • Ghosh, D. et al. 2004. Lectin affinity as an approach to the proteomic analysis of membrane glycoproteins. J Proteome Res 3:841.

    PubMed  CAS  Google Scholar 

  • Goerg, A. et al. 2004. Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685.

    CAS  Google Scholar 

  • Gorg, A. et al. 2002. Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels. Proteomics 2:1652–1657.

    PubMed  CAS  Google Scholar 

  • Gronborg, M. et al. 2002. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics 1:517–527.

    PubMed  CAS  Google Scholar 

  • Gygi, S. P. et al. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999.

    PubMed  CAS  Google Scholar 

  • Gygi et al. 2000. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 17:9390–9395

    Google Scholar 

  • Henzel, W. J. et al. 1993. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Nat Acad Sci USA 90:5011–5015

    PubMed  CAS  Google Scholar 

  • Higdon, R. et al. 2004. LIP index for peptide classification using MS/MS and SEQUEST search via logistic regression. OMICS 8:357–369.

    PubMed  CAS  Google Scholar 

  • Hoffman, P. et al. 2001. Continuous free-flow electrophoresis separation of cytosolic proteins from the human colon carcinoma cell line LIM 1215: a non two-dimensional gel electrophoresis-based proteome analysis strategy. Proteomics 1:807–818.

    Google Scholar 

  • Horn, D. M. et al. 2000a. Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. Proc Nat Acad Sci USA 97:10313–10317.

    CAS  Google Scholar 

  • Horn, D. M. et al. 2000b. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom 11:320–332.

    CAS  Google Scholar 

  • Jain, K. K. 2002. Role of Proteomics in diagnosis of Cancer. Technol Cancer Res Treat 4: 281–286.

    Google Scholar 

  • Jessani, N. et al. 2005. A streamlined platform for high-content functional proteomics of primary human specimens. Nat Methods 2:691–697.

    PubMed  CAS  Google Scholar 

  • Juhasz, P. et al. 2002. MALDI-TOF/TOF technology for peptide sequencing and protein identification. Mass Spectrom Hyphenated Techn Neuropeptide Res 375–413.

    Google Scholar 

  • Kachman, M. T. et al. 2002. A 2-D liquid separations/mass mapping method for interlysate comparison of ovarian cancers. Anal Chem 74:1779–1791.

    PubMed  CAS  Google Scholar 

  • Kaiser, R. E. Jr. et al. 1990. Collisionally activated dissociation of peptides using a quadrupole ion-trap mass spectrometer. Rapid Commun Mass Spectrom 4:30–33.

    CAS  Google Scholar 

  • Kaufman, R. et al. 1993. Mass spectrometric sequencing of linear peptides by product-ion analysis in a felfectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization. Rapid Commun Mass Spectrom 7:902–910.

    Google Scholar 

  • Kelleher, N. L. et al. 1999. Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J Am Chem Soc 121:806–812.

    CAS  Google Scholar 

  • Kislinger, T., and Emili, A. 2005. Multidimensional protein identification technology: current status and future prospects. Expert Rev Proteomics 2:27–39.

    PubMed  CAS  Google Scholar 

  • Kobayashi, H. et al. 2003. Free-flow electrophoresis in a microfabricated chamber with a micromodule fraction separator continuous separation of proteins. J Chromatogr A 990:169–178.

    PubMed  CAS  Google Scholar 

  • Krutchinksy, A. N. et al. 1998. Orthogonal injection of matrix-assisted laser desorption/ionization ions into a time-of-flight spectrometer through a collisional damping interface. Rapid Commun Mass Spectrom 12:508–518.

    Google Scholar 

  • Lin, S. et al. 2003. Means of hydrolyzing proteins isolated upon ProteinChip array surfaces: Chemical and enzymatic approaches. P. Michael Conn (ed.). Handbook of Proteomic Methods. Totowa, NJ: Humana, pp. 59–72.

    Google Scholar 

  • Link, A. J. et al. 1997. A strategy for the identification of proteins localized to subcellular spaces: applications to E. coli periplasmic proteins. Int J Mass Spectrom Ion Proc 160:303–316.

    CAS  Google Scholar 

  • Loo, R. R. O. et al. 1996. Interfacing polyacrylamide gel electrophoresis with mass spectrometry. Techniques in Protein Chemistry VII Symposium of the Protein Society, 9th, Boston, July 8–12, 1995, 305–313.

    Google Scholar 

  • Loo, R. R. O. et al. 2001. Virtual 2-D gel electrophoresis: visualization and analysis of the E. coli proteome by mass spectrometry. Anal Chem 73:4063–4070.

    PubMed  CAS  Google Scholar 

  • Lopez, M. F. 2000. Better approaches to finding the needle in a haystack: optimizing proteome analysis through automation. Electrophoresis 21:1082–1093.

    PubMed  CAS  Google Scholar 

  • Lopez, M. F. et al. 2000. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis 21:3427–3440.

    PubMed  CAS  Google Scholar 

  • MacCoss, M. J. et al. 2003. A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal Chem 75:6912–6921.

    PubMed  CAS  Google Scholar 

  • Mann, M. et al. 1993. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 22:338–345.

    PubMed  CAS  Google Scholar 

  • Martosella, J. et al. 2005. Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower abundant proteins. J Proteome Res 4:1522–1537.

    PubMed  CAS  Google Scholar 

  • Mauri, P. et al. 2005. Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J 19:1125–1127, doi:10.1096/fj 04–3000fje.

    PubMed  CAS  Google Scholar 

  • McLafferty, F. W. 2001. Tandem mass spectrometric analysis of complex biological mixtures. Int J Mass Spectrom 212:81–87.

    CAS  Google Scholar 

  • McLuckey, S. A. et al. 1991. Ion spray liquid chromatography/ion trap mass spectrometry determination of biomolecules. Anal Chem 63:375–383.

    CAS  Google Scholar 

  • Meehan, K. L., and Sadar, M. D. 2004. Quantitative profiling of LNCaP prostate cancer cells using isotope-coded affinity tags and mass spectrometry. Proteomics 4:1116–1134.

    PubMed  CAS  Google Scholar 

  • Mehta, A. I. et al. 2003. Biomarker amplification by serum carrier protein binding. Disease Markers 19:1–10.

    PubMed  CAS  Google Scholar 

  • Melander, W. R. et al. 1984. Salt-mediated retention of proteins in hydrophobic-interaction chromatography. Application of solvophobic theory. J Chromatogr 317:67–85.

    PubMed  CAS  Google Scholar 

  • Meng, F. et al. 2004. Molecular-level description of proteins from saccharomyces cerevisiae using Q-FT mass spectrometry for top down proteomics. Anal Chem 76:2852–2858.

    PubMed  CAS  Google Scholar 

  • Merchant, M., and Weinberger, S. R. 2000. Recent advancements in surface-enhanced laser desoprtion/ionization time-of-flight mass spectrometry. Electrophoresis 21:1164–1177.

    PubMed  CAS  Google Scholar 

  • Michel, P. et al. 2003. Protein fractionation in a multicompartment device using Off-Gel isoelectric focusing. Electrophoresis 24:3–11.

    PubMed  CAS  Google Scholar 

  • Opiteck, G. J. et al. 1998. Comprehensive two-dimensional higher-performance liquid chromatography for the isolation of overexpressed proteins and proteome mapping. Anal Biochem 258:349–361.

    PubMed  CAS  Google Scholar 

  • Overall, C. M., and Dean, R. A. 2006. Degradomics: Systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev 25:69–75.

    PubMed  Google Scholar 

  • Paoletti, A. C. et al. 2004. Principles and applications of multidimensional protein identification technology. Exp Review of Proteomics 1:275–282.

    CAS  Google Scholar 

  • Park, O. K. 2004. Proteomic studies in plants. J Biochem Mol Biol 37:133–138.

    PubMed  CAS  Google Scholar 

  • Pawlik, T. M. et al. 2006. Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein. BMC Cancer 6:68.

    PubMed  Google Scholar 

  • Pun, T. et al. 1988. Computerized classification of two-dimensional gel electrophoretograms by correspondence analysis and ascendant hierarchical clustering. Appl Theor Electrophor 1:3–9.

    PubMed  CAS  Google Scholar 

  • Qin, J., and Chait, B. T. 1995. Preferential fragmentation of protonated gas-phase peptide ions adjacent to acidic amino acid residues. J Am Chem Soc 117:5411–5412.

    CAS  Google Scholar 

  • Ramamoorthy, S. et al. 2004. Intracellular mechanisms mediating the anti-apoptotic action of gastrin. Biochem Biophys Res Commun 323:44–48.

    PubMed  CAS  Google Scholar 

  • Razumovskaya, J. et al. 2004. A computational method for assessing peptide- identification reliability in tandem mass spectrometry analysis with SEQUEST. Proteomics 4:961–969.

    PubMed  CAS  Google Scholar 

  • Reid, G. E., and McLuckey, S. A. 2002.\“Top down\” protein characterization via tandem mass spectrometry. J Mass Spectrom 37:663–675.

    PubMed  CAS  Google Scholar 

  • Ren, L. et al. 2003. Improved immunomatrix methods to detect protein:protein interactions. J Biochem Biophys Methods 57:143–157.

    PubMed  CAS  Google Scholar 

  • Righetti, P. G. et al. 1990. Preparative purification of human monoclonal antibody isoforms in a multi-compartment electrolyser with immobiline membranes. J Chromatogr 500:681–696.

    PubMed  CAS  Google Scholar 

  • Righetti, P. G. et al. 2005. Proteome analysis in the clinical chemistry laboratory: Myth or reality? Clinica Chimica Acta 357:123–139.

    CAS  Google Scholar 

  • Ros, A. et al. 2002. Protein purification by off-gel electrophoresis. Proteomics 2:151–156.

    PubMed  CAS  Google Scholar 

  • Schulze, W. X., and Mann, M. 2004. Novel proteomic screen for peptide-protein interactions. J Biol Chem 279:10756–10764.

    PubMed  CAS  Google Scholar 

  • Senko, M. W. et al. 1995. Automated assignment of charge states from resolved isotopic peaks for multiply charged ions. J Am Soc Mass Spectrom 6:52–56.

    CAS  Google Scholar 

  • Shadforth, I. P. et al. 2005. i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6:145.

    PubMed  Google Scholar 

  • Shang, T. Q. et al. 2003. Carrier ampholyte-free solution isoelectric focusing as a prefractionation method for the proteomic analysis of complex protein mixtures. Electrophoresis 24:2359–2368.

    PubMed  CAS  Google Scholar 

  • Shevchenko, A. et al. 1997. Rapid ‘de Novo’ peptide sequencing by a combination of nanoelectrospray isotopic labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 11:1015–1024.

    PubMed  CAS  Google Scholar 

  • Smith, S. D. et al. 2004. Using immobilized metal affinity chromatography, two-dimensional electrophoresis and mass spectrometry to identify hepatocellular proteins with copper-binding ability. J Proteome Res 3:834–840.

    PubMed  CAS  Google Scholar 

  • Somiari, R. I. et al. 2005. Proteomics of breast carcinoma. J Chromatogr B Anal Technol Biomed Life Sci 815:215–225.

    CAS  Google Scholar 

  • Staby, A., and Mollerup, J. 1996. Solute retention of lysozyme in hydrophobic interaction perfusion chromatography. J Chromatogr A 734:205–212.

    CAS  Google Scholar 

  • Tao, W. A., and Aebersold, R. 2003. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr Opin Biotechnol 14:110–118.

    PubMed  CAS  Google Scholar 

  • Thadikkaran, L. et al. 2005. Recent advances in blood-related proteomics. Proteomics 5:3019–3034.

    PubMed  CAS  Google Scholar 

  • Thulasiraman, V. et al. 2005. Reduction of the concentration difference of proteins in biological liquids using a library of combinatorial ligands. Electrophoresis 26:3561–3571.

    PubMed  CAS  Google Scholar 

  • Tirumalai, R. S. et al. 2003. Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2:1096–1103.

    PubMed  CAS  Google Scholar 

  • Tissot, J. D. et al. 1991. High-resolution two-dimensional protein electrophoresis of pathological plasma/serum. Appl Theor Electrophoresis 2:7–12.

    CAS  Google Scholar 

  • Tomlinson, A. J., and Chicz, R. M. 2003. Microcapillary liquid chromatography/tandem mass spectrometry using alkaline pH mobile phases and positive ion detection. Rapid Commun Mass Spectrom 17:909–916.

    PubMed  CAS  Google Scholar 

  • Unlu, M. et al. 1997. Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077.

    PubMed  CAS  Google Scholar 

  • Van Berkel, G. J. et al. 1990. Electrospray ionization combined with ion trap mass spectrometry. Anal Chem 62:1284–1295.

    Google Scholar 

  • Wagner, K. et al. 2002. An automated on-line multidimensional HPLC system for protein and peptide mapping with integrated sample preparation. Anal Chem 74:809–820.

    PubMed  CAS  Google Scholar 

  • Walker, A. K. et al. 2001. Mass spectrometric imaging of immobilized pH gradient gels and creation of\“virtual\” two-dimensional gels. Electrophoresis 22:933–945.

    PubMed  CAS  Google Scholar 

  • Wall, D. B. et al. 2000. Isoelectric focusing nonporous RP HPLC: a two-dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass spectrometry. Anal Chem 72:1099–1111.

    PubMed  CAS  Google Scholar 

  • Wall, D. B. et al. 2001. Isoelectric focusing nonporous silica reversed-phase high-performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry: a three-dimensional liquid-phase protein separation method as applied to the human erythroleukemia cell-line. Rapid Commun Mass Spectrom 15:1649–1661.

    PubMed  CAS  Google Scholar 

  • Washburn, M. P. 2004. Technique review: Utilisation of proteomics datasets generated via multidimensional protein identification technology (MudPIT). Brief Funct Genomic Proteomic 3:280–286.

    PubMed  CAS  Google Scholar 

  • Washburn, M. P. et al. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247.

    PubMed  CAS  Google Scholar 

  • Wasinger, V. C. et al. 1995. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094.

    PubMed  CAS  Google Scholar 

  • Watts, A. D. et al. 1997. Separation of tumor necrosis factor alpha isoforms by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 18:1806–1091.

    Google Scholar 

  • Weinberger, S. R. et al. 2002. Current achievements using ProteinChip array technology. Curr Opin Chem Biol 6:86–91.

    PubMed  CAS  Google Scholar 

  • Wenger, P. et al. 1987. Amphoteric, isoelectric immobiline membranes for preparative isoelectric focusing. J Biochem Biophys Methods 14:29–43.

    PubMed  CAS  Google Scholar 

  • Wilkins, M. R. et al. 1996a. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Bio/technology 14:61–65.

    CAS  Google Scholar 

  • Wilkins, M. R. et al. 1996b. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genetic Eng Rev 13:19–50.

    CAS  Google Scholar 

  • Wilkins, M. R. et al. 1996c. Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis 17:830–838.

    CAS  Google Scholar 

  • Williams, K. L. et al. 1996. Analytical biotechnology and proteome analysis. Australasian Biotechnol 6:162–164, 166–167.

    CAS  Google Scholar 

  • Wilson, L. L. et al. 2004. Detection of differentially expressed proteins in early-stage melanoma patients using SELDI-TOF mass spectrometry. Ann N Y Acad Sci 1022:317–322.

    PubMed  CAS  Google Scholar 

  • Wolters, D. A. 2004. Applications of MudPIT technology. BIOspektrum 10:162–164.

    CAS  Google Scholar 

  • Wolters, D. A. et al. 2001. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690.

    PubMed  CAS  Google Scholar 

  • Wright, M. E., and Aebersold, R. 2003. Differential expression proteomic analysis using isotope coded affinity tags. Proteomic Genomic Anal Cardiovasc Dis 213–233.

    Google Scholar 

  • Wright, M. E. et al. 2004. Identification of androgen-coregulated protein networks from the microsomes of human prostate cancer cells. Genome Biol 5(1):R4.

    Google Scholar 

  • Wu, Q. et al. 1995. Characterization of cytochrome c variants with high-resolution FTICR mass spectrometry: Correlation of fragmentation and structure. Anal Chem 67:2498–2509.

    PubMed  CAS  Google Scholar 

  • Wu, W. W. et al. 2006. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5:651–658.

    PubMed  CAS  Google Scholar 

  • Yan, B. et al. 2005. A graph-theoretic approach for the separation of b and y ions in tandem mass spectra. Bioinformatics 21:563–574.

    PubMed  CAS  Google Scholar 

  • Yates, J. R. III et al. 1995. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426–1436.

    PubMed  CAS  Google Scholar 

  • Yergey, A. L. et al. 2002. De novo sequencing of peptides using MALDI/TOF-TOF. J Am Soc Mass Spectrom 13:784–791.

    PubMed  CAS  Google Scholar 

  • Yu, L. R. et al. 2002. Isotope-coded affinity tag analysis of native and camptothecin-treated cortical neurons. Bioforum Int 6:328–331.

    CAS  Google Scholar 

  • Yuan, X., and Desiderio, D. M. 2003. Proteomics analysis of phosphotyrosyl-proteins in human lumbar cerebrospinal fluid. J Proteome Res 5:476–487.

    Google Scholar 

  • Zhang, Z. et al. 2004a. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 64:5882–5890.

    CAS  Google Scholar 

  • Zhang, Z. et al. 2004b. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 64:5882–5890.

    CAS  Google Scholar 

  • Zhou, H. et al. 2004a. Quantitative protein analysis by solid phase isotope tagging and mass spectrometry. Methods Mol Biol 261:511–518.

    CAS  Google Scholar 

  • Zhou, M. et al. 2004b. An investigation into the human serum “interactome”. Electrophoresis 25:1289.

    CAS  Google Scholar 

  • Zhu, Y., and Lubman, D. M. 2004. Narrow-band fractionation of proteins from whole cell lysates using isoelectric membrane focusing and nonporous reversed-phase separations. Electrophoresis 25:949–958.

    PubMed  CAS  Google Scholar 

  • Zolotarjova, N. et al. 2005. Differences among techniques for high-abundant protein depletion. Proteomics 5:3304–3313.

    PubMed  CAS  Google Scholar 

  • Zuo, X., and Speicher, D. W. 2002. Comprehensive analysis of complex proteomes using microscale solution isoelectricfocusing prior to narrow pH range two-dimensional electrophoresis. Proteomics 2:58–68.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scot Weinberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Weinberger, S., Boschetti, E. (2009). Proteomic Methods in Cancer Research. In: Gordon, G. (eds) Bioinformatics in Cancer and Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-576-3_6

Download citation

Publish with us

Policies and ethics