Skip to main content

Intensive Insulin Therapy for the Critically Ill Patient

  • Chapter
Controversies in Treating Diabetes

Part of the book series: Contemporary Endocrinology ((COE))

  • 966 Accesses

Summary

More and more evidence argues against the concept that the characteristic dysregulation of glucose homeostasis in critical illness or “diabetes of injury” is an adaptive, benefical response in the modern intensive care era. Stress hyperglycemia has been linked to poor outcome of the patients in several studies. Proof of a causal relationship has been provided by a large, prospective, randomized, controlled study where strict blood glucose control to normoglycemia with intensive insulin therapy strongly reduced mortality and morbidity of surgical intensive care patients. These results were recently confirmed in a medical intensive care patient population. Most of the clinical benefits of intensive insulin therapy appear to be related to the blood glucose control, but also non-glycemic metabolic and non-metabolic actions of insulin contribute. Although substantial progress has been made in the understanding of the pathways involved, more studies are needed to improve our knowledge on their relative importance and that of those yet to be unravelled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med 2001; 345:1359–1367.

    Article  PubMed  Google Scholar 

  2. Murray P, Hall J. Renal replacement therapy for acute renal failure. Am J Respir Crit Care Med 2000; 162:777–781.

    PubMed  CAS  Google Scholar 

  3. Hund E. Neurological complications of sepsis: critical illness polyneuropathy and myopathy. J Neurol 2001; 248:929–934.

    Article  PubMed  CAS  Google Scholar 

  4. Leijten FS, De Weerd AW, Poortvliet DC, et al. Critical illness polyneuropathy in multiple organ dysfunction syndrome and weaning from the ventilator. Intensive Care Med 1996; 22:856–861.

    Article  PubMed  CAS  Google Scholar 

  5. Bolton CF, Young GB. Critical illness polyneuropathy. Curr Treat Options Neurol 2000; 2:489–498.

    Article  PubMed  Google Scholar 

  6. Docke WD, Randow F, Syrbe U, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med 1997; 3:678–681.

    Article  PubMed  CAS  Google Scholar 

  7. Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med 1993; 328: 1471–1477.

    Article  PubMed  CAS  Google Scholar 

  8. Corwin HL, Parsonnet KC, Gettinger A. RBC transfusion in the ICU. Is there a reason? Chest 1995; 108:767–771.

    Article  PubMed  CAS  Google Scholar 

  9. Van den Berghe G, de Zegher F, Bouillon R. Acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab 1998; 83:1827–1834.

    Article  PubMed  Google Scholar 

  10. Van den Berghe G. Dynamic neuroendocrine responses to critical illness. Front Neuroendocrinol 2002; 23:370–391.

    Article  PubMed  CAS  Google Scholar 

  11. Vanhorebeek I, Langouche L, Van den Berghe G. Endocrine aspects of acute and prolonged critical illness. Nat Clin Pract Endocrinol Metab 2006; 2:20–31.

    Article  PubMed  CAS  Google Scholar 

  12. Gamrin L, Andersson K, Hultman E, et al. Longitudinal changes of biochemical parameters in muscle during critical illness. Metabolism 1997; 46:756–762.

    Article  PubMed  CAS  Google Scholar 

  13. Reid CL, Campbell IT, Little RA. Muscle wasting and energy balance in critical illness. Clin Nutr 2004; 23:273–280.

    Article  PubMed  Google Scholar 

  14. Thorell A, Nygren J, Ljungqvist O. Insulin resistance: a marker of surgical stress. Curr Opin Clin Nutr Metab Care 1999; 21:69–78.

    Article  Google Scholar 

  15. McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycae mia. Crit Care Clin 2001; 17:107–124.

    Article  PubMed  CAS  Google Scholar 

  16. Boord JB, Graber AL, Christman JW, et al. Practical management of diabetes in critically ill patients. Am J Respir Crit Care Med 2001; 164:1763–1767.

    PubMed  CAS  Google Scholar 

  17. Pozzilli P, Leslie RD. Infections and diabetes: mechanisms and prospects for prevention. Diabet Med 1994; 11:935–941.

    Article  PubMed  CAS  Google Scholar 

  18. Hill M, McCallum R. Altered transcriptional regulation of phosphoenolpyruvate carboxykinase in rats following endotoxin treatment. J Clin Invest 1991; 88:811–816.

    PubMed  CAS  Google Scholar 

  19. Khani S, Tayek JA. Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin Sci (Lond) 2001; 101:739–747.

    Article  CAS  Google Scholar 

  20. Watt MJ, Howlett KF, Febbraio MA, et al. Adrenalin increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans. J Physiol 2001; 534:269–278.

    Article  PubMed  CAS  Google Scholar 

  21. Flores EA, Istfan N, Pomposelli JJ, et al. Effect of interleukin-1 and tumor necrosis factor/cachectin on glucose turnover in the rat. Metabolism 1990; 39:738–743.

    Article  PubMed  CAS  Google Scholar 

  22. Sakurai Y, Zhang XJ, Wolfe RR. TNF directly stimulates glucose uptake and leucine oxidation and inhibits FFA flux in conscious dogs. Am J Physiol 1996; 270:E864–E872.

    PubMed  CAS  Google Scholar 

  23. Lang CH, Dobrescu C, Bagby GJ. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology 1992; 130:43–52.

    Article  PubMed  CAS  Google Scholar 

  24. Wolfe RR, Durkot MJ, Allsop JR, et al. Glucose metabolism in severely burned patients. Metabolism 1979; 28:1031–1039.

    Article  PubMed  CAS  Google Scholar 

  25. Wolfe RR, Herndon DN, Jahoor F, et al. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 1987; 317:403–408.

    Article  PubMed  CAS  Google Scholar 

  26. Mizock BA. Alterations in carbohydrate metabolism during stress: a review of the literature. Am J Med 1995; 98:75–84.

    Article  PubMed  CAS  Google Scholar 

  27. Yendamuri S, Fulda GJ, Tinkoff GH. Admission hyperglycemia as a prognostic indicator in trauma. J Trauma 2003; 55:33–38.

    PubMed  CAS  Google Scholar 

  28. Laird AM, Miller PR, Kilgo PD, et al. Relationship of early hyperglycemia to mortality in trauma patients. J Trauma 2004; 56:1058–1062.

    PubMed  Google Scholar 

  29. Bochicchio GV, Sung J, Joshi M, et al. Persistent hyperglycemia is predictive of outcome of critically ill trauma patients. J Trauma 2005; 58:921–924.

    PubMed  Google Scholar 

  30. Sung J, Bochicchio GV, Joshi M, et al. Admission hyperglycemia is predictive of outcome in critically ill trauma patients. J Trauma 2005; 59:80–83.

    PubMed  CAS  Google Scholar 

  31. Rovlias A, Kotsou S. The influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery 2000; 46:335–342.

    Article  PubMed  CAS  Google Scholar 

  32. Jeremitsky E, Omert LA, Dunham M, et al. The impact of hyperglycemia on patients with severe brain injury. J Trauma 2005; 58:47–50.

    PubMed  CAS  Google Scholar 

  33. Capes SE, Hunt D, Malmberg K, et al. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 2001; 32:2426–2432.

    Article  PubMed  CAS  Google Scholar 

  34. Bolton CF. Sepsis and the systemic inflammatory response syndrome: neuromuscular manifestations. Crit Care Med 1996; 24:1408–16.

    Article  PubMed  CAS  Google Scholar 

  35. Capes SE, Hunt D, Malmberg K, et al. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 2000; 355:773–778.

    Article  PubMed  CAS  Google Scholar 

  36. Muhlestein JB, Anderson JL, Horne BD, et al. Effect of fasting glucose levels on mortality rate in patients with and without diabetes mellitus and coronary artery disease undergoing percutaneous coronary intervention. Am Heart J 2003; 146:351–358.

    Article  PubMed  CAS  Google Scholar 

  37. Suematsu Y, Sato H, Ohtsuka T, et al. Predictive risk factors for delayed extubation in patients undergoing coronary artery bypass grafting. Heart Vessels 2000; 15:214–220.

    Article  PubMed  CAS  Google Scholar 

  38. Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc 2003; 78:1471–1478.

    PubMed  Google Scholar 

  39. Faustino EV, Apkon M. Persistent hyperglycemia in critically ill children. J Pediatr 2005; 146:30–34.

    Article  PubMed  Google Scholar 

  40. Srinivasan V, Spinella PC, Drott HR, et al. Association of timing, duration, and intensity of hyperglycemia with intensive care unit mortality in critically ill children. Pediatr Crit Care Med 2004; 5:329–336.

    Article  PubMed  Google Scholar 

  41. Gore DC, Chinkes D, Heggers J, et al. Association of hyperglycemia with increased mortality after severe burn injury. J Trauma 2001; 51:540–540.

    PubMed  CAS  Google Scholar 

  42. Van den Berghe G, Schoonheydt K, Becx P, et al. Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology 2005; 64:1348–1353.

    PubMed  Google Scholar 

  43. Van den Berghe G, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med 2006; 354:449–461.

    Article  PubMed  Google Scholar 

  44. Krinsley JS. Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc 2004; 79:992–1000.

    PubMed  Google Scholar 

  45. Grey NJ, Perdrizet GA. Reduction of nosocomial infections in the surgical intensive-care unit by strict glycemic control. Endocr Pract 2004; 10(Suppl 2):46–52.

    PubMed  Google Scholar 

  46. Furnary AP, Wu Y, Bookin SO. Effect of hyperglycemia and continuous intravenous insulin infusions on outcomes of cardiac surgical procedures: the Portland Diabetic Project. Endocr Pract 2004; 10(Suppl 2):21–33.

    PubMed  Google Scholar 

  47. Allen KV, Frier BM. Nocturnal hypoglycemia: clinical manifestations and therapeutic strategies toward prevention. Endocr Pract 2003; 9:530–543.

    PubMed  Google Scholar 

  48. Mesotten D, Swinnen JV, Vanderhoydonc F, et al. Contribution of circulating lipids to the improved outcome of critical illness by glycemic control with intensive insulin therapy. J Clin Endocrinol Metab 2004; 89:219–226.

    Article  PubMed  CAS  Google Scholar 

  49. Mesotten D, Delhanty PJ, Vanderhoydonc F, et al. Regulation of insulin-like growth factor binding protein-1 during protracted critical illness. J Clin Endocrinol Metab 2002; 87:5516–5523.

    Article  PubMed  CAS  Google Scholar 

  50. Thorell A, Rooyackers O, Myrenfors P, et al. Intensive insulin treatment in critically ill trauma patients normalizes glucose by reducing endogenous glucose production. J Clin Endocrinol Metab 2004; 89:5382–5386.

    Article  PubMed  CAS  Google Scholar 

  51. Van den Berghe G, Wouters PJ, Bouillon R, et al. Outcome benefit of intensive insulin therapy in the critically ill: insulin dose versus glycemic control. Crit Care Med 2003; 31:359–366.

    Article  PubMed  CAS  Google Scholar 

  52. Finney SJ, Zekveld C, Elia A, et al. Glucose control and mortality in critically ill patients. JAMA 2003; 290:2041–2047.

    Google Scholar 

  53. Klip A, Tsakiridis T, Marette A, Ortiz PA. Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J 1994; 8:43–53.

    Google Scholar 

  54. Pekala P, Marlow M, Heuvelman D, Connolly D. Regulation of hexose transport in aortic endothelial cells by vascular permeability factor and tumor necrosis factor alfa, but not by insulin. J Biol Chem 1990; 265:18051–18054.

    PubMed  CAS  Google Scholar 

  55. Shikhman AR, Brinson DC, Valbracht J, Lotz MK. Cytokine regulation of facilitated glucose transport in human articular chondrocytes. J Immunol 2001; 167:7001–7008.

    PubMed  CAS  Google Scholar 

  56. Quinn LA, McCumbee WD. Regulation of glucose transport by angiotensin II and glucose in cultured vascular smooth muscle cells. J Cell Physiol 1998; 177:94–102.

    Article  PubMed  CAS  Google Scholar 

  57. Clerici C, Matthay MA. Hypoxia regulates gene expression of alveolar epithelial transport proteins. J Appl Physiol 2000; 88:1890–1896.

    PubMed  CAS  Google Scholar 

  58. Sanchez-Alvarez R, Tabernero A, Medina JM. Endothelin-1 stimulates the translocation and upregulation of both glucose transporter and hexokinase in astrocytes: relationship with gap junctional communication. J Neurochem 2004; 89:703–714.

    Article  PubMed  CAS  Google Scholar 

  59. Tirone TA, Brunicardi C. Overview of glucose regulation. World J Surg 2001; 25: 461–467.

    Article  PubMed  CAS  Google Scholar 

  60. Vanhorebeek I, De Vos R, Mesotten D, et al. Strict blood glucose control with insulin in critically ill patients protects hepatocytic mitochondrial ultrastructure and function. Lancet 2005; 365:53–59.

    Article  PubMed  CAS  Google Scholar 

  61. Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002; 360:219–223.

    Article  PubMed  CAS  Google Scholar 

  62. Brealey D, Karyampudi S, Jacques TS, et al. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 2004; 286:R491–497.

    PubMed  CAS  Google Scholar 

  63. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414:813–820.

    Article  PubMed  CAS  Google Scholar 

  64. Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation. Biochem J 1988; 256:205–212.

    PubMed  CAS  Google Scholar 

  65. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care 2002; 5:561–568.

    Article  PubMed  CAS  Google Scholar 

  66. Aulak KS, Koeck T, Crabb JW, Stuehr DJ. Dynamics of protein nitration in cells and mitochondria. Am J Physiol Heart Circ Physiol 2004; 286:H30–H38.

    Article  PubMed  CAS  Google Scholar 

  67. Frost M, Wang Q, Moncada S, Singer M. Hypoxia accelerates nitric oxide-dependent inhibition of mitochondrial complex I in activated macrophages. Am J Physiol Regul Integr Comp Physiol 2005; 288:R394–R400.

    PubMed  CAS  Google Scholar 

  68. Turina M, Fry DE, Polk HC Jr. Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects. Crit Care Med 2005; 33:1624–1633.

    Article  PubMed  Google Scholar 

  69. Rassias AJ, Marrin CA, Arruda J, et al. Insulin infusion improves neutrophil function in diabetic cardiac surgery patients. Anesth Analg 1999; 88:1011–1016.

    Article  PubMed  CAS  Google Scholar 

  70. Nielson CP, Hindson DA. Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro. Diabetes 1989; 38:1031–1035.

    Article  PubMed  CAS  Google Scholar 

  71. Perner A, Nielsen SE, Rask-Madsen J. High glucose impairs superoxide production from isolated blood neutrophils. Intensive Care Med 2003; 29:642–645.

    PubMed  CAS  Google Scholar 

  72. Rayfield EJ, Ault MJ, Keusch GT, et al. Infection and diabetes: the case for glucose control. Am J Med 1982; 72:439–450.

    Article  PubMed  CAS  Google Scholar 

  73. Furnary AP, Zerr KJ, Grunkemeier GL, Starr A. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann Thorac Surg 1999; 67:352–360.

    Article  PubMed  CAS  Google Scholar 

  74. Weekers F, Van Herck E, Coopmans W, et al. A novel in vivo rabbit model of hypercatabolic critical illness reveals a bi-phasic neuroendocrine stress response. Endocrinology 2002; 143:764–774.

    Article  PubMed  CAS  Google Scholar 

  75. Weekers F, Giuletti A-P, Michalaki M, et al. Endocrine and immune effects of stress hyperglycemia in a rabbit model of prolonged critical illness. Endocrinology 2003, 144:5329–5338.

    Article  PubMed  CAS  Google Scholar 

  76. Lanza-Jacoby S, Wong SH, Tabares A, et al. Disturbances in the composition of plasma lipoproteins during gram-negative sepsis in the rat. Biochim Biophys Acta 1992; 1124:233–240.

    PubMed  CAS  Google Scholar 

  77. Khovidhunkit W, Memon RA, Feingold KR, Grunfeld C. Infection and inflammation-induced proatherogenic changes of lipoproteins. J Infect Dis 2000; 181:S462–S472.

    Article  PubMed  CAS  Google Scholar 

  78. Carpentier YA, Scruel O. Changes in the concentration and composition of plasma lipoproteins during the acute phase response. Curr Opin Clin Nutr Metab Care 2002; 5:153–158.

    Article  PubMed  CAS  Google Scholar 

  79. Jeschke MG, Klein D, Herndon DN. Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann Surg 2004; 239:553–560.

    Article  PubMed  Google Scholar 

  80. Tulenko TN, Sumner AE. The physiology of lipoproteins. J Nucl Cardiol 2002; 9:638–649.

    Article  PubMed  Google Scholar 

  81. Harris HW, Grunfeld C, Feingold KR, Rapp JH. Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice. J Clin Invest 1990; 86:696–702.

    PubMed  CAS  Google Scholar 

  82. Harris HW, Grunfeld C, Feingold KR, et al. Chylomicrons alter the fate of endotoxin, decreasing tumor necrosis factor release and preventing death. J Clin Invest 1993; 91:1028–1034.

    PubMed  CAS  Google Scholar 

  83. Gore DC, Wolf SE, Sanford AP, et al. Extremity hyperinsulinemia stimulates muscle protein synthesis in severely injured patients. Am J Physiol Endocrinol Metab 2004; 286:E529–E534.

    Article  PubMed  CAS  Google Scholar 

  84. Agus MSD, Javid PJ, Ryan DP, Jaksic T. Intravenous insulin decreases protein breakdown in infants on extracorporeal membrane oxygenation. J Pediatr Surg 2004; 39:839–844.

    Article  PubMed  Google Scholar 

  85. Zhang XJ, Chinkes DL, Irtun O, Wolfe RR. Anabolic action of insulin on skin wound protein is augmented by exogenous amino acids. Am J Physiol Endocrinol Metab 2002; 282:E1308–E1315.

    PubMed  CAS  Google Scholar 

  86. Vanhorebeek I, Van den Berghe G. Hormonal and metabolic strategies to attenuate catabolism in critically ill patients. Curr Opin Pharmacol 2004; 4:621–628.

    Article  PubMed  CAS  Google Scholar 

  87. Mesotten D, Wouters PJ, Peeters RP, et al. Regulation of the somatotropic axis by intensive insulin therapy during protracted critical illness. J Clin Endocrinol Metab 2004; 89:3105–3113.

    Article  PubMed  CAS  Google Scholar 

  88. Hansen TK, Thiel S, Wouters PJ, et al. Intensive insulin therapy exerts anti-inflammatory effects in critically ill patients, as indicated by circulating mannose-binding lectin and C-reactive protein levels. J Clin Endocrinol Metab 2003; 88:1082–1088.

    Article  PubMed  CAS  Google Scholar 

  89. Langouche L, Vanhorebeek I, Vlasselaers D, et al. Intensive insulin therapy protects the endothelium of critically ill patients. J Clin Invest 2005; 115:2277–2286.

    Article  PubMed  CAS  Google Scholar 

  90. Jeschke MG, Klein D, Bolder U, Einspanier R. Insulin attenuates the systemic inflammatory response in endotoxemic rats. Endocrinology 2004; 145:4084–4093.

    Article  PubMed  CAS  Google Scholar 

  91. Klein D, Schubert T, Horch RE, et al. Insulin treatment improves hepatic morphology and function through modulation of hepatic signals after severe trauma. Ann Surg 2004; 240:340–349.

    Article  PubMed  Google Scholar 

  92. Brix-Christensen V, Andersen SK, Andersen R, et al. Acute hyperinsulinemia restrains endotoxin-induced systemic inflammatory response: an experimental study in a porcine model. Anesthesiology 2004; 100:861–870.

    Article  PubMed  CAS  Google Scholar 

  93. Das UN. Insulin: an endogenous cardioprotector. Curr Opin Crit Care 2003; 9:375–383.

    Article  PubMed  Google Scholar 

  94. Jonassen A, Aasum E, Riemersma R, et al. Glucose-insulin-potassium reduces infarct size when administered during reperfusion. Cardiovasc Drugs Ther 2000; 14:615–623.

    Article  PubMed  CAS  Google Scholar 

  95. Gao F, Gao E, Yue T, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the role of PI3-kinase, Akt and eNOS phosphorylation. Circulation 2002; 105:1497–1502.

    Article  PubMed  CAS  Google Scholar 

  96. Jonassen A, Sack M, Mjos O, Yellon D. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signalling. Circ Res 2001; 89:1191–1198.

    Article  PubMed  CAS  Google Scholar 

  97. The CREATE-ECLA Trial Group Investigators. Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction. The CREATE-ECLA randomized controlled trial. JAMA 2005; 293:437–446.

    Article  Google Scholar 

  98. Malmberg K, Ryden L, Wedel H, et al. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI-2): effects on mortality and morbidity. Eur Heart J 2005; 26:650–661.

    Article  PubMed  CAS  Google Scholar 

  99. Van den Berghe G. How does blood glucose control with insulin save lives in intensive care? J Clin Invest 2004; 114:1187–1195.

    Article  PubMed  CAS  Google Scholar 

  100. Siroen MPC, van Leeuwen PAM, Nijveldt RJ, et al. Modulation of asymmetric dimethylarginine in critically ill patients receiving intensive insulin treatment: a possible explanation of reduced morbidity and mortality? Crit Care Med 2005; 33:504–510.

    Article  PubMed  CAS  Google Scholar 

  101. Nijveldt RJ, Teerlink T, van Leeuwen PA. The asymmetric dimethylarginine (ADMA)-multiple organ failure hypothesis. Clin Nutr 2003; 22:99–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Vanhorebeek, I., Berghe, G.V. (2008). Intensive Insulin Therapy for the Critically Ill Patient. In: LeRoith, D., Vinik, A.I. (eds) Controversies in Treating Diabetes. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-572-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-572-5_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-708-2

  • Online ISBN: 978-1-59745-572-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics