Skip to main content

Coming of Age for the Incretins

  • Chapter
Controversies in Treating Diabetes

Part of the book series: Contemporary Endocrinology ((COE))

  • 967 Accesses

Summary

The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), may be responsible for up to 70% of postprandial insulin secretion. In type 2 diabetes (2DM), the incretin effect is severely reduced. Secretion of GIP is normal, but its effect on insulin is lost. GLP-1 secretion may be impaired, but its actions may restore insulin secretion to near normal levels. Substitution therapy with GLP-1 might therefore be possible. GLP-1 actions include potentiation of glucose-induced insulin secretion, up-regulation of insulin and other β-cell genes, stimulation of β-cell proliferation and neogenesis and inhibition of β-cell apoptosis, inhibition of glucagon secretion, inhibition of gastric emptying, and inhibition of appetite and food intake. It may also have cardioprotective and neuroprotective actions. These actions make GLP-1 particularly attractive as a therapeutic agent for 2DM, but GLP-1 is rapidly destroyed in the body by the enzyme, dipeptidyl peptidase IV (DPP-IV). Clinical strategies therefore include (i) the development of metabolically stable activators of the GLP-1 receptor and (ii) inhibition of DPP-IV. Orally active DPP-IV inhibitors are currently undergoing clinical trials, and recent clinical studies have provided long-term proof of concept. Metabolically stable analogs/activators include the structurally related lizard peptide, exendin-4, or analogs thereof, as well as GLP-1-derived molecules that bind to albumin and thereby assume the pharmacokinetics of albumin. These molecules are effective in animal experimental models of 2DM and have been employed successfully in clinical studies of up to 82 weeks’ duration, and exendin-4 has just been approved for add-on therapy of 2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McIntyre, N., Holdsworth, C. D., Turner, D. S. New interpretation of oral glucose tolerance. Lancet 1964, 2, 20–21.

    Article  PubMed  CAS  Google Scholar 

  2. Perley, M., Kipnis, D. M. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 1967, 46, 1954–1962.

    Article  PubMed  CAS  Google Scholar 

  3. Mari, A., Schmitz, O., Gastaldelli, A., Oestergaard, T., Nyholm, B., Ferrannini, E. Meal and oral glucose tests for assessment of beta-cell function: modeling analysis in normal subjects. Am J Physiol Endocrinol Metab 2002, 283(6), E1159–E1166.

    Google Scholar 

  4. Holst, J. J., Orskov, C. Incretin hormones–an update. Scand J Clin Lab Invest Suppl 2001, 234, 75–85.

    PubMed  CAS  Google Scholar 

  5. Nauck, M., Schmidt, W. E., Ebert, R., Strietzel, J., Cantor, P., Hoffmann, G., Creutzfeldt, W. Insulinotropic properties of synthetic human gastric inhibitory polypeptide in man: interactions with glucose, phenylalanine, and cholecystokinin-8. J Clin Endocrinol Metab 1989, 69(3), 654–662.

    PubMed  CAS  Google Scholar 

  6. Kreymann, B., Williams, G., Ghatei, M. A., Bloom, S. R. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 1987, 2(8571), 1300–1304.

    Google Scholar 

  7. Kolligs, F., Fehmann, H. C., Goke, R., Goke, B. Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39) amide. Diabetes 1995, 44(1), 16–19.

    Article  PubMed  CAS  Google Scholar 

  8. Gault, V. A., O’Harte, F. P., Harriott, P., Mooney, M. H., Green, B. D., Flatt, P. R. Effects of the novel (Pro3)GIP antagonist and exendin(9-39)amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin. Diabetologia 2003, 46(2), 222–230.

    PubMed  CAS  Google Scholar 

  9. Vilsboll, T., Krarup, T., Madsbad, S., Holst, J. J. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 2003, 114(2–3), 115–121.

    Article  PubMed  CAS  Google Scholar 

  10. Nauck, M. A., Bartels, E., Orskov, C., Ebert, R., Creutzfeldt, W. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 1993, 76(4), 912–917.

    Article  PubMed  CAS  Google Scholar 

  11. Hansotia, T., Baggio, L., Delmeire, D., Hinke, S. A., Preitner, F., Yamada, Y., Tsukiyama, K., Thorens, B., Seino, Y., Holst, J. J., Schuit, F., Drucker, D. J. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory action of DPP-IV inhibitors. Diabetes, 2004, 53: 1326–1335.

    Article  PubMed  CAS  Google Scholar 

  12. Pratley, R. E., Weyer, C. The role of impaired early insulin secretion in the pathogenesis of type II diabetes mellitus. Diabetologia 2001, 44(8), 929–945.

    Article  PubMed  CAS  Google Scholar 

  13. Nauck, M., Stockmann, F., Ebert, R., Creutzfeldt, W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986, 29(1), 46–52.

    Article  PubMed  CAS  Google Scholar 

  14. Vilsboll, T., Agerso, H., Krarup, T., Holst, J. J. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab 2003, 88(1), 220–224.

    Article  PubMed  CAS  Google Scholar 

  15. Nauck, M. A., Heimesaat, M. M., Orskov, C., Holst, J. J., Ebert, R., Creutzfeldt, W. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993, 91(1), 301–307.

    PubMed  CAS  Google Scholar 

  16. Elahi, D., McAloon Dyke, M., Fukagawa, N. K., Meneilly, G. S., Sclater, A. L., Minaker, K. L., Habener, J. F., Andersen, D. K. The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul Pept 1994, 51(1), 63–74.

    Article  PubMed  CAS  Google Scholar 

  17. Kjems, L. L., Holst, J. J., Volund, A., Madsbad, S. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003, 52(2), 380–386.

    Article  PubMed  CAS  Google Scholar 

  18. Vilsboll, T., Krarup, T., Madsbad, S., Holst, J. J. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients. Diabetologia 2002, 45(8), 1111–1119.

    Article  PubMed  CAS  Google Scholar 

  19. Toft-Nielsen, M. B., Damholt, M. B., Madsbad, S., Hilsted, L. M., Hughes, T. E., Michelsen, B. K., Holst, J. J. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001, 86(8), 3717–3723.

    Article  PubMed  CAS  Google Scholar 

  20. Vaag, A. A., Holst, J. J., Volund, A., Beck-Nielsen, H. B. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)–evidence for decreased glucagon- like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 1996, 135(4), 425–432.

    PubMed  CAS  Google Scholar 

  21. Nyholm, B., Walker, M., Gravholt, C. H., Shearing, P. A., Sturis, J., Alberti, K. G., Holst, J. J., Schmitz, O. Twenty-four-hour insulin secretion rates, circulating concentrations of fuel substrates and gut incretin hormones in healthy offspring of Type II (non-insulin-dependent) diabetic parents: evidence of several aberrations. Diabetologia 1999, 42(11), 1314–1323.

    Article  PubMed  CAS  Google Scholar 

  22. Meier, J. J., Hucking, K., Holst, J. J., Deacon, C. F., Schmiegel, W. H., Nauck, M. A. Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes 2001, 50(11), 2497–2504.

    Article  PubMed  CAS  Google Scholar 

  23. Vilsboll, T., Knop, F. K., Krarup, T., Johansen, A., Madsbad, S., Larsen, S., Hansen, T., Pedersen, O., Holst, J. J. The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype. J Clin Endocrinol Metab 2003, 88(10), 4897–4903.

    Article  PubMed  CAS  Google Scholar 

  24. Meier, J. J., Gallwitz, B., Askenas, M., Vollmer, K., Deacon, C. F., Holst, J. J., Schmidt, W. E., Nauck, M. A. Secretion of incretin hormones and the insulinotropic effect of gastric inhibitory polypeptide in women with a history of gestational diabetes. Diabetologia 2005, 48(9), 1872–1881.

    Article  PubMed  CAS  Google Scholar 

  25. Irwin, N., Green, B. D., Mooney, M. H., Greer, B., Harriott, P., Bailey, C. J., Gault, V. A., O’Harte, F. P., Flatt, P. R. A novel, long-acting agonist of glucose dependent insulinotropic polypeptide (GIP) suitable for once daily administration in type 2 diabetes. J Pharmacol Exp Ther 2005, 314(3): 1181–1194.

    Article  CAS  Google Scholar 

  26. Fehmann, H. C., Habener, J. F. Insulinotropic hormone glucagon-like peptide-I(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 1992, 130(1), 159–166.

    Article  PubMed  CAS  Google Scholar 

  27. Holz, G. G. Epac: a new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 2004, 53(1), 5–13.

    Article  PubMed  CAS  Google Scholar 

  28. Kemp, D. M., Habener, J. F. Insulinotropic hormone glucagon-like peptide 1 (GLP-1) activation of insulin gene promoter inhibited by p38 mitogen-activated protein kinase. Endocrinology 2001, 142(3), 1179–1187.

    Article  PubMed  CAS  Google Scholar 

  29. Li, Y., Cao, X., Li, L. X., Brubaker, P. L., Edlund, H., Drucker, D. J. Beta-cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1. Diabetes 2005, 54(2), 482–491.

    Article  PubMed  CAS  Google Scholar 

  30. Buteau, J., Roduit, R., Susini, S., Prentki, M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 1999, 42(7), 856–864.

    Article  PubMed  CAS  Google Scholar 

  31. Holz, G. H., Kuhtreiber, W. M., Habener, J. F. Induction of glucose competence in pancreatic beta cells by glucagon-like peptide-1(7–37). Trans Assoc Am Physicians 1992, 105, 260–267.

    PubMed  CAS  Google Scholar 

  32. Gromada, J., Holst, J. J., Rorsman, P. Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Arch 1998, 435(5), 583–594.

    Article  PubMed  CAS  Google Scholar 

  33. Flamez, D., Van Breusegem, A., Scrocchi, L. A., Quartier, E., Pipeleers, D., Drucker, D. J., Schuit, F. Mouse pancreatic beta-cells exhibit preserved glucose competence after disruption of the glucagon-like peptide-1 receptor gene. Diabetes 1998, 47(4), 646–652.

    Article  PubMed  CAS  Google Scholar 

  34. Egan, J. M., Bulotta, A., Hui, H., Perfetti, R. GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells. Diabetes Metab Res Rev 2003, 19(2), 115–123.

    Article  PubMed  CAS  Google Scholar 

  35. Xu, G., Stoffers, D. A., Habener, J. F., Bonner-Weir, S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999, 48(12), 2270–2276.

    Article  PubMed  CAS  Google Scholar 

  36. Stoffers, D. A., Kieffer, T. J., Hussain, M. A., Drucker, D. J., Bonner-Weir, S., Habener, J. F., Egan, J. M. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000, 49(5), 741–748.

    Article  PubMed  CAS  Google Scholar 

  37. Zhou, J., Wang, X., Pineyro, M. A., Egan, J. M. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells. Diabetes 1999, 48(12), 2358–2366.

    Article  PubMed  CAS  Google Scholar 

  38. Buteau, J., El-Assaad, W., Rhodes, C. J., Rosenberg, L., Joly, E., Prentki, M. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 2004, 47(5), 806–815.

    Article  PubMed  CAS  Google Scholar 

  39. Brubaker, P. L., Drucker, D. J. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004, 145(6), 2653–2659.

    Article  PubMed  CAS  Google Scholar 

  40. Sinclair, E. M., Drucker, D. J. Proglucagon-derived peptides: mechanisms of action and therapeutic potential. Physiology (Bethesda) 2005, 20, 357–365.

    CAS  Google Scholar 

  41. Orskov, C., Holst, J. J., Nielsen, O. V. Effect of truncated glucagon-like peptide-1 [proglucagon-(78–107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 1988, 123(4), 2009–2013.

    Article  PubMed  CAS  Google Scholar 

  42. Shah, P., Vella, A., Basu, A., Basu, R., Schwenk, W. F., Rizza, R. A. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 2000, 85(11), 4053–4059.

    Article  PubMed  CAS  Google Scholar 

  43. Creutzfeldt, W. O., Kleine, N., Willms, B., Orskov, C., Holst, J. J., Nauck, M. A. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7–36) amide in type I diabetic patients. Diabetes Care 1996, 19(6), 580–586.

    Article  PubMed  CAS  Google Scholar 

  44. Wettergren, A., Schjoldager, B., Mortensen, P. E., Myhre, J., Christiansen, J., Holst, J. J. Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993, 38(4), 665–673.

    Article  PubMed  CAS  Google Scholar 

  45. Nauck, M. A., Niedereichholz, U., Ettler, R., Holst, J. J., Orskov, C., Ritzel, R., Schmiegel, W. H. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997, 273(5 Pt 1), E981–E988.

    PubMed  CAS  Google Scholar 

  46. Willms, B., Werner, J., Holst, J. J., Orskov, C., Creutzfeldt, W., Nauck, M. A. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7–36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab 1996, 81(1), 327–332.

    Article  PubMed  CAS  Google Scholar 

  47. Schirra, J., Nicolaus, M., Roggel, R., Katschinski, M., Storr, M., Woerle, H. J., Goke, B. Endogenous glucagon-like peptide 1 controls endocrine pancreatic secretion and antro-pyloro-duodenal motility in humans. Gut 2006, 55(2), 243–251.

    Article  PubMed  CAS  Google Scholar 

  48. Naslund, E., Barkeling, B., King, N., Gutniak, M., Blundell, J. E., Holst, J. J., Rossner, S., Hellstrom, P. M. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 1999, 23(3), 304–311.

    Article  PubMed  CAS  Google Scholar 

  49. Gutzwiller, J. P., Drewe, J., Goke, B., Schmidt, H., Rohrer, B., Lareida, J., Beglinger, C. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999, 276(5 Pt 2), R1541–R1544.

    PubMed  CAS  Google Scholar 

  50. Verdich, C., Flint, A., Gutzwiller, J. P., Naslund, E., Beglinger, C., Hellstrom, P. M., Long, S. J., Morgan, L. M., Holst, J. J., Astrup, A. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 2001, 86(9), 4382–4389.

    Article  PubMed  CAS  Google Scholar 

  51. Bullock, B. P., Heller, R. S., Habener, J. F. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 1996, 137(7), 2968–2978.

    Article  PubMed  CAS  Google Scholar 

  52. Gros, R., You, X., Baggio, L. L., Kabir, M. G., Sadi, A. M., Mungrue, I. N., Parker, T. G., Huang, Q., Drucker, D. J., Husain, M. Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 2003, 144(6), 2242–2252.

    Article  PubMed  CAS  Google Scholar 

  53. Bose, A. K., Mocanu, M. M., Mensah, K. N., Brand, C. L., Carr, R. D., Yellon, D. M. GLP-1 protects schemic and reperfused myocardium via PI3Kinase and p42/p44 MAPK signalling pathways. Diabetes 2004, 53(suppl. 2), A1.

    Google Scholar 

  54. Nikolaidis, L. A., Mankad, S., Sokos, G. G., Miske, G., Shah, A., Elahi, D., Shannon, R. P. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004, 109(8), 962–965.

    Article  PubMed  CAS  Google Scholar 

  55. Nikolaidis, L. A., Elahi, D., Hentosz, T., Doverspike, A., Huerbin, R., Zourelias, L., Stolarski, C., Shen, Y. T., Shannon, R. P. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004, 110(8), 955–961.

    Article  PubMed  CAS  Google Scholar 

  56. Nystrom, T., Gutniak, M. K., Zhang, Q., Zhang, F., Holst, J. J., Ahren, B., Sjoholm, A. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab 2004, 287(6): 1209–1215.

    Article  CAS  Google Scholar 

  57. Perry, T., Haughey, N. J., Mattson, M. P., Egan, J. M., Greig, N. H. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J Pharmacol Exp Ther 2002, 302(3), 881–888.

    Article  PubMed  CAS  Google Scholar 

  58. During, M. J., Cao, L., Zuzga, D. S., Francis, J. S., Fitzsimons, H. L., Jiao, X., Bland, R. J., Klugmann, M., Banks, W. A., Drucker, D. J., Haile, C. N. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 2003, 9(9), 1173–1179.

    Article  PubMed  CAS  Google Scholar 

  59. Perry, T. A., Greig, N. H. A new Alzheimer’s disease interventive strategy: GLP-1. Curr Drug Targets 2004, 5(6), 565–571.

    Article  PubMed  CAS  Google Scholar 

  60. Nauck, M. A., Kleine, N., Orskov, C., Holst, J. J., Willms, B., Creutzfeldt, W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993, 36(8), 741–744.

    Article  PubMed  CAS  Google Scholar 

  61. Rachman, J., Barrow, B. A., Levy, J. C., Turner, R. C. Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia 1997, 40(2), 205–211.

    Article  PubMed  CAS  Google Scholar 

  62. Larsen, J., Hylleberg, B., Ng, K., Damsbo, P. Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulphonylurea treatment. Diabetes Care 2001, 24(8), 1416–1421.

    Article  PubMed  CAS  Google Scholar 

  63. Nauck, M. A., Wollschlager, D., Werner, J., Holst, J. J., Orskov, C., Creutzfeldt, W., Willms, B. Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7–36 amide]) in patients with NIDDM. Diabetologia 1996, 39(12), 1546–1553.

    Article  PubMed  CAS  Google Scholar 

  64. Ritzel, R., Orskov, C., Holst, J. J., Nauck, M. A. Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7–36 amide] after subcutaneous injection in healthy volunteers. Dose-response-relationships. Diabetologia 1995, 38(6), 720–725.

    Article  PubMed  CAS  Google Scholar 

  65. Deacon, C. F., Johnsen, A. H., Holst, J. J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 1995, 80(3), 952–957.

    Article  PubMed  CAS  Google Scholar 

  66. Deacon, C. F., Nauck, M. A., Toft-Nielsen, M., Pridal, L., Willms, B., Holst, J. J. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995, 44(9), 1126–1131.

    Article  PubMed  CAS  Google Scholar 

  67. Knudsen, L. B., Pridal, L. Glucagon-like peptide-1-(9–36) amide is a major metabolite of glucagon-like peptide-1-(7–36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 1996, 318(2–3), 429–435.

    Google Scholar 

  68. Zander, M., Madsbad, S., Deacon, C. F., Holst, J. J. The metabolite generated by dipeptidyl-peptidase 4 metabolism of glucagon-like peptide-1 has no influence on plasma glucose levels in patients with type 2 diabetes. Diabetologia 2006, 49(2), 369–374.

    Article  PubMed  CAS  Google Scholar 

  69. Zander, M., Madsbad, S., Madsen, J. L., Holst, J. J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002, 359(9309), 824–830.

    Article  PubMed  CAS  Google Scholar 

  70. Ehlers, M. R. W., Roderick, E. H., Schneider, R. L., Kipnes, M. S. Continuous subcutaneous infusion of recombinant GLP-1 for 7 days dose-dependently improved glycemic controls in type 2 diabetes. Diabetes 2002, 51(suppl 2), A579.

    Google Scholar 

  71. Deacon, C. F., Knudsen, L. B., Madsen, K., Wiberg, F. C., Jacobsen, O., Holst, J. J. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia 1998, 41(3), 271–278.

    Article  PubMed  CAS  Google Scholar 

  72. Deacon, C. F., Hughes, T. E., Holst, J. J. Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes 1998, 47(5), 764–769.

    Article  PubMed  CAS  Google Scholar 

  73. Edwards, C. M., Stanley, S. A., Davis, R., Brynes, A. E., Frost, G. S., Seal, L. J., Ghatei, M. A., Bloom, S. R. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am J Physiol Endocrinol Metab 2001, 281(1), E155–E161.

    PubMed  CAS  Google Scholar 

  74. Simonsen, L., Holst, J. J., Deacon, C. F. Exendin-4, but not glucagon-like peptide-1, is cleared exclusively by glomerular filtration in anaesthetised pigs. Diabetologia 2006, 49(4): 706–712.

    Article  PubMed  CAS  Google Scholar 

  75. Kolterman, O. G., Kim, D. D., Shen, L., Ruggles, J. A., Nielsen, L. L., Fineman, M. S., Baron, A. D. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm 2005, 62(2), 173–181.

    PubMed  CAS  Google Scholar 

  76. Buse, J. B., Henry, R. R., Han, J., Kim, D. D., Fineman, M. S., Baron, A. D. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004, 27(11), 2628–2635.

    Article  PubMed  CAS  Google Scholar 

  77. Defronzo, R. A., Ratner, R. E., Han, J., Kim, D. D., Fineman, M. S., Baron, A. D. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005, 28(5), 1092–1100.

    Article  PubMed  CAS  Google Scholar 

  78. Kendall, D. M., Riddle, M. C., Rosenstock, J., Zhuang, D., Kim, D. D., Fineman, M. S., Baron, A. D. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005, 28(5), 1083–1091.

    Article  PubMed  CAS  Google Scholar 

  79. Lamari, Y., Boissard, C., Moukhtar, M. S., Jullienne, A., Rosselin, G., Garel, J. M. Expression of glucagon-like peptide 1 receptor in a murine C cell line: regulation of calcitonin gene by glucagon-like peptide. FEBS Lett 1996, 393(2–3), 248–252.

    Article  Google Scholar 

  80. Gedulin, B. R., Smith, P., Prickett, K. S., Tryon, M., Barnhill, S., Reynolds, J., Nielsen, L. L., Parkes, D. G., Young, A. A. Dose-response for glycaemic and metabolic changes 28 days after single injection of long-acting release exenatide in diabetic fatty Zucker rats. Diabetologia 2005, 48(7), 1380–1385.

    Article  PubMed  CAS  Google Scholar 

  81. Degn, K. B., Juhl, C. B., Sturis, J., Jakobsen, G., Brock, B., Chandramouli, V., Rungby, J., Landau, B. R., Schmitz, O. One week’s treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes. Diabetes 2004, 53(5), 1187–1194.

    Article  PubMed  CAS  Google Scholar 

  82. Knudsen, L. B., Agersø, H., Bjenning, C., Bregenholt, S., Gotfredsen, C., Holst, J. J., Huusfeldt, P. O., Larsen, M. Ø., Larsen, P. J., Nielsen, P. F., Ribel, U., Rolin, B., Rø mer, J., Wilken, M., Kristensen, P. GLP-1 derivatives as novel compounds for the treatment of type 2 diabetes. Drugs Future 2001, 26, 677–685.

    Article  CAS  Google Scholar 

  83. Madsbad, S., Schmitz, O., Ranstam, J., Jakobsen, G., Matthews, D. R. Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 2004, 27(6), 1335–1342.

    Article  PubMed  CAS  Google Scholar 

  84. Nauck, M., Hompesch, M., Filipczak, R., Le, T. T. D., Nielsen, L., Zdravkovic, M., Gumprecht, J. Liraglutide as add-on to metformin in type 2 diabetes: significant improvement in glycaemic control with a reduction in body weight compared with glimepiride. Diabetologia 2004, 47(suppl 1) A281.

    Google Scholar 

  85. Baggio, L. L., Huang, Q., Brown, T. J., Drucker, D. J. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (Albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 2004, 53(9), 2492–2500.

    Article  PubMed  CAS  Google Scholar 

  86. Bloom, M., Bock, J., Duttaroy, A., Grzegorzewski, K., Moor, P., Ou, Y., Wojcik, S., Zhou, X., Bell, A. Albugon fusion protein: a long acting analogue of GLP-1 that provides lasting antidiabetic effect in animals. Diabetes 2003, 52(suppl 1), A112.

    Google Scholar 

  87. Pospisilik, J. A., Stafford, S. G., Demuth, H. U., Brownsey, R., Parkhouse, W., Finegood, D. T., McIntosh, C. H., Pederson, R. A. Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes 2002, 51(4), 943–950.

    Article  PubMed  CAS  Google Scholar 

  88. Sudre, B., Broqua, P., White, R. B., Ashworth, D., Evans, D. M., Haigh, R., Junien, J. L., Aubert, M. L. Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes 2002, 51(5), 1461–1469.

    Article  PubMed  CAS  Google Scholar 

  89. Reimer, M. K., Holst, J. J., Ahren, B. Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice. Eur J Endocrinol 2002, 146(5), 717–727.

    Article  PubMed  CAS  Google Scholar 

  90. Nagakura, T., Yasuda, N., Yamazaki, K., Ikuta, H., Yoshikawa, S., Asano, O., Tanaka, I. Improved glucose tolerance via enhanced glucose-dependent insulin secretion in dipeptidyl peptidase IV-deficient Fischer rats. Biochem Biophys Res Commun 2001, 284(2), 501–506.

    Article  PubMed  CAS  Google Scholar 

  91. Marguet, D., Baggio, L., Kobayashi, T., Bernard, A. M., Pierres, M., Nielsen, P. F., Ribel, U., Watanabe, T., Drucker, D. J., Wagtmann, N. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci USA 2000, 97(12), 6874–6879.

    Article  PubMed  CAS  Google Scholar 

  92. Mitani, H., Takimoto, M., Kimura, M. Dipeptidyl peptidase IV inhibitor NVP-DPP728 ameliorates early insulin response and glucose tolerance in aged rats but not in aged Fischer 344 rats lacking its enzyme activity. Jpn J Pharmacol 2002, 88(4), 451–458.

    Article  PubMed  CAS  Google Scholar 

  93. Mitani, H., Takimoto, M., Hughes, T. E., Kimura, M. Dipeptidyl peptidase IV inhibition improves impaired glucose tolerance in high-fat diet-fed rats: study using a Fischer 344 rat substrain deficient in its enzyme activity. Jpn J Pharmacol 2002, 88(4), 442–450.

    Article  PubMed  CAS  Google Scholar 

  94. Yasuda, N., Nagakura, T., Yamazaki, K., Inoue, T., Tanaka, I. Improvement of high fat-diet-induced insulin resistance in dipeptidyl peptidase IV-deficient Fischer rats. Life Sci 2002, 71(2), 227–238.

    Article  PubMed  CAS  Google Scholar 

  95. Conarello, S. L., Li, Z., Ronan, J., Roy, R. S., Zhu, L., Jiang, G., Liu, F., Woods, J., Zycband, E., Moller, D. E., Thornberry, N. A., Zhang, B. B. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci USA 2003, 100(11), 6825–6830.

    Article  PubMed  CAS  Google Scholar 

  96. Ahren, B., Simonsson, E., Larsson, H., Landin-Olsson, M., Torgeirsson, H., Jansson, P. A., Sandqvist, M., Bavenholm, P., Efendic, S., Eriksson, J. W., Dickinson, S., Holmes, D. Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care 2002, 25(5), 869–875.

    Article  PubMed  CAS  Google Scholar 

  97. Ahren, B., Landin-Olsson, M., Jansson, P. A., Svensson, M., Holmes, D., Schweizer, A. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab 2004, 89(5), 2078–2084.

    Article  PubMed  CAS  Google Scholar 

  98. Ahren, B., Gomis, R., Standl, E., Mills, D., Schweizer, A. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care 2004, 27(12), 2874–2880.

    Article  PubMed  CAS  Google Scholar 

  99. Ahren, B., Pacini, G., Foley, J. E., Schweizer, A. Improved meal-related beta-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year. Diabetes Care 2005, 28(8), 1936–1940.

    Article  PubMed  CAS  Google Scholar 

  100. Brandt, I., Joossens, J., Chen, X., Maes, M. B., Scharpe, S., Meester, I. D., Lambeir, A. M. Inhibition of dipeptidyl-peptidase IV catalyzed peptide truncation by Vildagliptin ((2S)-[(3-hydroxyadamantan-1-yl)amino]acetyl-pyrrolidine-2-carbonitrile). Biochem Pharmacol 2005, 70(1), 134–143.

    Article  PubMed  CAS  Google Scholar 

  101. Mari, A., Sallas, W. M., He, Y. L., Watson, C., Ligueros-Saylan, M., Dunning, B. E., Deacon, C. F., Holst, J. J., Foley, J. E. Vildagliptin. A dipeptidyl peptidase-iv inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes. J Clin Endocrinol Metab 2005, 90(8): 4888-4894.

    Google Scholar 

  102. Deacon, C. F. MK-431 (Merck). Curr Opin Investig Drugs 2005, 6(4), 419–426.

    PubMed  CAS  Google Scholar 

  103. Herman, G. A., Stevens, C., Van, D. K., Bergman, A., Yi, B., De, S. M., Snyder, K., Hilliard, D., Tanen, M., Tanaka, W., Wang, A. Q., Zeng, W., Musson, D., Winchell, G., Davies, M. J., Ramael, S., Gottesdiener, K. M., Wagner, J. A. Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther 2005, 78(6), 675–688.

    Article  PubMed  CAS  Google Scholar 

  104. Heins, J., Glund, K., Hoffmann, T., Metzner, J., Demuth, H.-U. The DP-IV inhibitor P93/01 improves glucose tolerance in humans with HbA1c gerater than 6.0. Diabetes 2004, 53(suppl 2), A128.

    Google Scholar 

  105. Lambeir, A. M., Durinx, C., Scharpe, S., De, M., I Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP-IV. Crit Rev Clin Lab Sci 2003, 40(3), 209–294.

    Article  PubMed  CAS  Google Scholar 

  106. Zhu, L., Tamvakopoulos, C., Xie, D., Dragovic, J., Shen, X., Fenyk-Melody, J. E., Schmidt, K., Bagchi, A., Griffin, P. R., Thornberry, N. A., Sinha, R. R. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1–38). J Biol Chem 2003, 278(25), 22418–22423.

    Article  PubMed  CAS  Google Scholar 

  107. Ahren, B., Hughes, T. E. Inhibition of dipeptidyl peptidase-4 augments insulin secretion in response to exogenously administered glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, pituitary adenylate cyclase-activating polypeptide, and gastrin-releasing peptide in mice. Endocrinology 2005, 146(4), 2055–2059.

    Article  PubMed  CAS  Google Scholar 

  108. von Bonin, A., Huhn, J., Fleischer, B. Dipeptidyl-peptidase IV/CD26 on T cells: analysis of an alternative T-cell activation pathway. Immunol Rev 1998, 161, 43–53.

    Article  Google Scholar 

  109. Lankas, G. R., Leiting, B., Roy, R. S., Eiermann, G. J., Beconi, M. G., Biftu, T., Chan, C. C., Edmondson, S., Feeney, W. P., He, H., Ippolito, D. E., Kim, D., Lyons, K. A., Ok, H. O., Patel, R. A., Petrov, A. N., Pryor, K. A., Qian, X., Reigle, L., Woods, A., Wu, J. K., Zaller, D., Zhang, X., Zhu, L., Weber, A. E., Thornberry, N. A. Dipeptidyl peptidase iv inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 2005, 54(10), 2988–2994.

    Article  PubMed  CAS  Google Scholar 

  110. Weber, A. E., Kim, D., Beconi, M., et.al. MK-0431 is a potent, selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Diabetes 2004, 53(suppl 2), A151.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Holst, J.J., Deacon, C.F. (2008). Coming of Age for the Incretins. In: LeRoith, D., Vinik, A.I. (eds) Controversies in Treating Diabetes. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-572-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-572-5_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-708-2

  • Online ISBN: 978-1-59745-572-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics