Skip to main content

Clinical Mycobacterium tuberculosis Strains Differ in their Intracellular Growth in Human Macrophages

  • Conference paper
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 856 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC (1999) Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country[consensus statement]. WHO Global Surveillance and Monitoring Project. JAMA 282:677–686.

    Article  PubMed  CAS  Google Scholar 

  2. Theus SA, Cave MD, Eisenach KD (2004) Activated THP-1 Cells: an attractive model for the assessment of intracellular growth rates of Mycobacterium tuberculosis isolates. Infect Immun 72:1169–1173.

    Article  PubMed  CAS  Google Scholar 

  3. Theus SA, Cave MD, Eisenach KD (2005) Intracellular mac-rophage growth rates and cytokine profiles of Mycobacterium tuberculosis strains with different transmission dynamics. J Infect Dis 191:453–460.

    Article  PubMed  CAS  Google Scholar 

  4. Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 8:569–577.

    Article  Google Scholar 

  5. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV (1998) Assessment of the interleukin 1 gene cluster and other candidate gene polymorphisms in host susceptibility to tuberculosis. Tuber Lung Dis 79:83–89.

    Article  PubMed  CAS  Google Scholar 

  6. Bellamy R, Beyers N, McAdam KP, Ruwende C, et al (2000) Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA 97:8005–8009.

    Article  PubMed  CAS  Google Scholar 

  7. Altare F, Ensser A, Breiman A, Reichenbach J, et al (2001) Inter-leukin-12 receptor beta1 deficiency in a patient with abdominal tuberculosis. J Infect Dis 184:231–236.

    Article  PubMed  CAS  Google Scholar 

  8. de Jong R, Altare F, Haagen IA, Elferink DG, et al (1998) Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280:1435–1438.

    Article  PubMed  Google Scholar 

  9. Park GY, Im YH, Ahn CH, Park JW, et al (2004) Functional and genetic assessment of IFN-gamma receptor in patients with clinical tuberculosis. Int J Tuberc Lung Dis 8:1221–1227.

    PubMed  CAS  Google Scholar 

  10. Fraser DA, Bulat-Kardum L, Knezevic J, Babarovic P, et al (2003) Interferon-gamma receptor-1 gene polymorphism in tuberculosis patients from Croatia. Scand J Immunol 57:480–484.

    Article  PubMed  CAS  Google Scholar 

  11. Sreevatsan S, Pan X, Stockbauer KE, Connell ND, et al (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA 94:9869–9874.

    Article  PubMed  CAS  Google Scholar 

  12. Valway SE, Sanchez MP, Shinnick TF, Orme I, et al (1998)An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N Engl J Med 338:633–639.

    Article  PubMed  CAS  Google Scholar 

  13. Lopez B, Aguilar D, Orozco H, Burger M, et al (2003) A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 133:30–37.

    Article  PubMed  CAS  Google Scholar 

  14. Manca C, Tsenova L, Bergtold A, Freeman S, et al (2001) Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α /β. Proc Natl Acad Sci USA 98:5752–5757.

    Article  PubMed  CAS  Google Scholar 

  15. Manca C, Tsenova L, Barry CE, Bergtold A, et al (1999) Mycobacterium tuberculosis CDC1551 induces a more vigorous host immune response in vivo and in vitro, but is not more virulent than other clinical isolates. J Immunol 162:6740–6746.

    PubMed  CAS  Google Scholar 

  16. Barnes PF, Yang Z, Preston-Martin S, Pogoda JM, et al (1997) Patterns of tuberculosis transmission in Central Los Angeles. JAMA 278:1159–1163.

    Article  PubMed  CAS  Google Scholar 

  17. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D (2002) Worldwide occurrence of Beijing/W strains of Myco-bacterium tuberculosis: a systematic review. Emerg Infect Dis 8:843–849.

    PubMed  Google Scholar 

  18. Zhang M, Gong J, Yang Z, Samten B, Cave MD, Barnes PF (1999) Enhanced capacity of a widespread strain of Mycobac-terium tuberculosis to grow in human macrophages. J Infect Dis 179:1213–1217.

    Article  PubMed  CAS  Google Scholar 

  19. Wu S, Howard ST, Lakey DL, Kipinis A, et al (2004) The principal sigma factor sigA mediates enhanced growth of Myco-bacterium tuberculosis in vivo. Mol Microbiol 51:1551–1562.

    Article  PubMed  CAS  Google Scholar 

  20. Kisich KO, Higgins M, Diamond G, Heifets L (2002) Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils. Infect Immun 70:4591–4599.

    Article  PubMed  CAS  Google Scholar 

  21. Oliveira MM, Charlab R, Pessolani MC (2001) Mycobacterium bovis BCG but not Mycobacterium leprae induces TNF-α secretion in human monocytic THP-1 cells. Mem Inst Oswaldo Cruz 96:973–978.

    PubMed  CAS  Google Scholar 

  22. Roach SK, Lee SB, Schorey JS (2005) Differential activation of the transcription factor cyclic AMP response element binding protein (CREB) in macrophages following infection with pathogenic and nonpathogenic mycobacteria and role for CREB in tumor necrosis factor alpha production. Infect Immun 73:514–522.

    Article  PubMed  CAS  Google Scholar 

  23. Yadav M, Roach SK, Schorey JS (2004) Increased mitogen-acti-vated protein kinase activity and TNF-α production associated with Mycobacterium smegmatis- but not Mycobacterium avium-infected macrophages requires prolonged stimulation of the calmodulin/calmodulin kinase and cyclic AMP/protein kinase A pathways. J Immunol 172:5588–5597.

    PubMed  CAS  Google Scholar 

  24. Moore KW, de Waal MR, Coffman RL, O'Garra A (2001) Inter-leukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765.

    Article  PubMed  CAS  Google Scholar 

  25. Sharma S, Bose M (2001) Role of cytokines in immune response to pulmonary tuberculosis. Asian Pac J Allergy Immunol 19:213–219.

    PubMed  CAS  Google Scholar 

  26. Stefanidou M, Griffin R, Ponce de Leon A, Sifuentes-Osornio, J, et al (2005) Comparative study of induction of early cytokines by diverse clinical strains of Mycobacterium tuberculosis. Abstract 3074, Keystone Symposium; Tuberculosis: Integrating Host and Pathogen Biology.

    Google Scholar 

  27. Newton SM, Smith RJ, Wilkinson KA, Nicol MP, et al (2006) A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proc Natl Acad Sci USA 103:15,594–15,598.

    Google Scholar 

  28. Theus SA, Cave DM, Eisenach K, Walrath J, Lee H, Mackay W, Whalen C, Silver RF (2006) Differences in the growth of paired Ugandan isolates of Mycobacterium tuberculosis within human mononuclear phagocytes correlate with epidemiological evidence of strain virulence. Infect Immun 74:6865–6876.

    Article  PubMed  CAS  Google Scholar 

  29. Guwatudde D, Nakakeeto M, Jones-Lopez EC, Maganda A, Chi-unda A, Mugerwa RD, Ellner JJ, Bukenya G, Whalen CC (2003) Tuberculosis in household contacts of infectious cases in Kampala, Uganda. Am J Epidemiol 158:887–898.

    Article  PubMed  CAS  Google Scholar 

  30. Theus S, Eisenach K, Fomukong N, Silver RF, Cave MD (2006) Beijing Family Mycobacterium tuberculosis strains differ in their intracellular growth in THP-1 macrophages. Int J Tuberc Lung Dis 10:1087–1093.

    Google Scholar 

  31. Filliol I, Motiwala AS, Cavatore M, Qi M, et al (2006) Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188:759–772.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vassil St. Georgiev PhD Karl A. Western MD John J. McGowan PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Theus, S.A., Cave, M.D., Eisenach, K.D. (2008). Clinical Mycobacterium tuberculosis Strains Differ in their Intracellular Growth in Human Macrophages. In: Georgiev, V.S., Western, K.A., McGowan, J.J. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-569-5_9

Download citation

Publish with us

Policies and ethics