Skip to main content

What can Mycobacteriophages Tell Us About Mycobacterium tuberculosis?

  • Conference paper
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloom BR (1994) Tuberculosis: Pathogenesis, Protection and Control. ASM, Washington DC.

    Google Scholar 

  2. Jacobs WR, Jr (2000) Mycobacterium tuberculosis: A once genetically intractable organism. In Molecular Genetics of the Mycobacteria. (Hatfull GF, Jacobs Jr WR, eds), pp. 1–16. ASM, Washington, DC.

    Google Scholar 

  3. Jacobs WR Jr Tuckman M, Bloom BR (1987) Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532–535.

    Article  PubMed  CAS  Google Scholar 

  4. Jacobs WR Jr Snapper SB, Tuckman M, Bloom BR (1989) Mycoacteriophage vector systems. Rev Infect Dis 11:S404–410.

    Article  PubMed  CAS  Google Scholar 

  5. Snapper SB, Lugosi L, Jekkel A, Melton RE, Kieser T, Bloom BR, Jacobs WR Jr (1988) Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci USA 85:6987–6991.

    Article  PubMed  CAS  Google Scholar 

  6. Hatfull GF (2004) Mycobacteriophages and tuberculosis. In Tuberculosis. (Eisenach K, Cole ST, Jacobs WR Jr, McMurray D, eds), pp. 203–218. ASM, Washington, DC.

    Google Scholar 

  7. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114.

    Article  PubMed  CAS  Google Scholar 

  8. Suttle CA (2005) Viruses in the sea. Nature 437:356–361.

    Article  PubMed  CAS  Google Scholar 

  9. Edwards RA, Rohwer F (2005) Viral metagenomics. Nat Rev Microbiol 3:504–510.

    Article  PubMed  CAS  Google Scholar 

  10. Hatfull GF, Pedulla ML, Jacobs-Sera D, Cichon PM, Foley A, Ford ME, Gonda RM, Houtz JM, Hryckowian AJ, Kelchner VA, Namburi S, Pajcini KV, Popovich MG, Schleicher DT, Simanek BZ, Smith AL, Zdanowicz GM, Kumar V, Peebles CL, Jacobs WR Jr Lawrence JG, Hendrix RW (2006) Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet 2:e92.

    Article  PubMed  Google Scholar 

  11. Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S, Kriakov J, Lawrence JG, Jacobs WR, Hendrix RW, Hatfull GF (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182.

    Article  PubMed  CAS  Google Scholar 

  12. Grange JM (1975) The genetics of mycobacteria and mycobacteriophages—a review. Tubercle 56:227–238.

    Article  PubMed  CAS  Google Scholar 

  13. Jones WD (1980) Typing Mycobacterium tuberculosis with mycobacteriophage Bo4. J Gen Virol 49:319–322.

    Article  PubMed  CAS  Google Scholar 

  14. Hatfull GF (2006) Mycobacteriophages. In The Bacteriophages. (Calendar R, ed), pp. 602–620. Oxford University Press, New York.

    Google Scholar 

  15. Susskind MM, Botstein D (1978) Molecular genetics of bacteriophage P22. Microbiol Rev 42:385–413.

    PubMed  CAS  Google Scholar 

  16. Clark AJ, Inwood W, Cloutier T, Dhillon TS (2001) Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. J Mol Biol 311:657–679.

    Article  PubMed  CAS  Google Scholar 

  17. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc Natl Acad Sci USA 96:2192–2197.

    Article  PubMed  CAS  Google Scholar 

  18. Hendrix RW (2003) Bacteriophage genomics. Curr Opin Microbiol 6:506–511.

    Article  PubMed  CAS  Google Scholar 

  19. Jacobs WR Jr, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR (1993) Rapid assessment o f drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819–822.

    Article  PubMed  CAS  Google Scholar 

  20. Sarkis GJ, Jacobs WR Jr, Hatfull GF (1995) L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol 15:1055–1067.

    Article  PubMed  CAS  Google Scholar 

  21. Bardarov S, Kriakov J, Carriere C, Yu S, Vaamonde C, McAdam RA, Bloom BR, Hatfull GF, Jacobs WR Jr(1997) Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 94:10,961–10,966.

    Article  CAS  Google Scholar 

  22. Bardarov S, Bardarov S Jr, Pavelka MS Jr, Sambandamurthy V, Larsen M, Tufariello J, Chan J, Hatfull G, Jacobs WR Jr(2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148:3007–3017.

    PubMed  CAS  Google Scholar 

  23. Carriere C, Riska PF, Zimhony O, Kriakov J, Bardarov S, Burns J, Chan J, Jacobs WR Jr(1997) Conditionally replicating luciferase reporter phages: improved sensitivity for rapid detec- tion and assessment of drug susceptibility of Mycobacterium tuberculosis. J Clin Microbiol 35:3232–3239.

    PubMed  CAS  Google Scholar 

  24. Raj CV, Ramakrishnan T (1970) Transduction in Mycobacterium smegmatis. Nature 228:280–281.

    PubMed  CAS  Google Scholar 

  25. Lee S, Kriakov J, Vilcheze C, Dai Z, Hatfull GF, Jacobs WR Jr (2004) Bxz1, a new generalized transducing phage for mycobacteria. FEMS Microbiol Lett 241:271–276.

    Article  PubMed  CAS  Google Scholar 

  26. Gicquel-Sanzey B, Moniz-Pereira J, Gheorghiu M, Rauzier J (1989) Structure of pAL5000, a plasmid from M. fortuitum and its utilization in transformation of mycobacteria. Acta Leprol 7:208–211.

    PubMed  Google Scholar 

  27. Ranes MG, Rauzier J, Lagranderie M, Gheorghiu M, Gicquel B (1990) Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a “mini” mycobacterium-Escherichia coli shuttle vector. J Bacteriol 172:2793–2797.

    PubMed  CAS  Google Scholar 

  28. Lee MH, Pascopella L, Jacobs WR Jr Hatfull GF (1991) Site-specific integration of mycobacteriophage L5: integration- proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc Natl Acad Sci USA 88:3111–3115.

    Article  PubMed  CAS  Google Scholar 

  29. Smith MC, Thorpe HM (2002) Diversity in the serine recombinases. Mol Microbiol 44:299–307.

    Article  PubMed  CAS  Google Scholar 

  30. Kim A, Ghosh P, Aaron MA, Bibb LA, Jain S, Hatfull GF (2003) Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol 50:46–473.

    Article  Google Scholar 

  31. Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA 97:5995–6000.

    Article  PubMed  CAS  Google Scholar 

  32. Nkrumah LJ, Muhle RA, Moura PA, Ghosh P, Hatfull GF, Jacobs WR Jr Fidock DA (2006) Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nat Methods 3:615–621.

    Article  PubMed  CAS  Google Scholar 

  33. Lewis JA, Hatfull GF (2001) Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res 29:2205–2216.

    Article  PubMed  CAS  Google Scholar 

  34. Lewis JA, Hatfull GF (2000) Identification and characterization of mycobacteriophage L5 excisionase. Mol Microbiol 35:350–360.

    Article  PubMed  CAS  Google Scholar 

  35. Lewis JA, Hatfull GF (2003) Control of Directionality in L5 Integrase—mediated Site-specific Recombination. J Mol Biol 326:805–821.

    Article  PubMed  CAS  Google Scholar 

  36. Springer B, Sander P, Sedlacek L, Ellrott K, Bottger EC (2001) Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors. Int J Med Microbiol 290:669–675.

    PubMed  CAS  Google Scholar 

  37. Peña CE, Lee MH, Pedulla ML, Hatfull GF (1997) Characterization of the mycobacteriophage L5 attachment site, attP. J Mol Biol 266:76–92.

    Article  PubMed  Google Scholar 

  38. Parish T, Lewis J, Stoker NG (2001) Use of the mycobacteriophage L5 excisionase in Mycobacterium tuberculosis to demonstrate gene essentiality. Tuberculosis (Edinb) 81:359–364.

    Article  CAS  Google Scholar 

  39. Ghosh P, Wasil LR, Hatfull GF (2006) Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biol 4:e186.

    Article  PubMed  Google Scholar 

  40. Hatfull GF (1993) Genetic transformation of mycobacteria. Trends Microbiol 1:310–314.

    Article  PubMed  CAS  Google Scholar 

  41. Donnelly-Wu MK, Jacobs WR Jr Hatfull GF (1993) Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol 7:407–417. 76

    Article  PubMed  CAS  Google Scholar 

  42. Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388.

    Article  PubMed  CAS  Google Scholar 

  43. Kalpana GV, Bloom BR, Jacobs WR Jr (1991) Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc Natl Acad Sci USA 88:5433–5437.

    Article  PubMed  CAS  Google Scholar 

  44. van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4:147–152.

    Article  PubMed  Google Scholar 

  45. Ghosh P, Kim AI, Hatfull GF (2003) The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of attP and attB. Mol Cell 12:1101– 1111.

    Article  PubMed  CAS  Google Scholar 

  46. Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873.

    Article  PubMed  CAS  Google Scholar 

  47. Hanauer DI, Jacobs-Sera D, Pedulla ML, Cresawn SG, Hendrix RW, Hatfull GF (2006) Inquiry learning. Teaching scientific inquiry. Science 314:1880–1881.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank all of the many researchers in my laboratory who have contributed to the studies described in this chapter over a period of years, as well to my excellent faculty colleagues at the University of Pittsburgh and elsewhere. I am truly grateful to the National Institutes of Health for the support of our research programs over a period of many years. I would like to extend special thanks to Dr. Georgiev and his colleagues at the NIAID Office of Global Research for inviting me to participate in the NIAID 2006 Research Conference in Opatija, Croatia, in June 2006 and for inviting me to contribute this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Vassil St. Georgiev PhD Karl A. Western MD John J. McGowan PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Hatfull, G.F. (2008). What can Mycobacteriophages Tell Us About Mycobacterium tuberculosis?. In: Georgiev, V.S., Western, K.A., McGowan, J.J. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-569-5_8

Download citation

Publish with us

Policies and ethics