Skip to main content

Post-translational Processing of Human Interferon- γ Produced in Escherichia coli and Approaches for its Prevention

  • Conference paper
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsanev R, Ivanov I (2001) Immune Interferon: Properties and Clinical Applications. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  2. Maillard LC, Gautier MA (1912) Formation d'humus et de combustibles mineraux sans intervention de l'oxygene atmospherique, des micro-organismes, des hautes temperatures ou fortes pres-sions. CR Seances Acad Scl I/I 154:66–68.

    CAS  Google Scholar 

  3. Li S, Patapoff TW, Overcashier D, Hsu C, Nguyen TH, Borchardt RT (1996) Solid-state chemical stability of proteins and peptides. J Pharm Sci 85:873–877.

    Article  PubMed  CAS  Google Scholar 

  4. Reynolds TM (1965) Chemistry of nonenzymic browning. II. Adv Food Res 14:167–283.

    PubMed  CAS  Google Scholar 

  5. Eble AS, Thorpe SR, Baynes JW (1983) Nonenzymatic gluco-sylation and glucose-dependent cross-linking of protein. J Biol Chem 258:9406–9412.

    PubMed  CAS  Google Scholar 

  6. Hunt J V, Wolff SP (1991) Oxidative glycation and free radical production: a causal mechanism of diabetic complications. Free Radic Res Commun 12–13:115–123.

    Article  PubMed  Google Scholar 

  7. Islam KN, Takahashi M, Higashiyama S, Myint T, Uozumi N (1995) Fragmentation of ceruloplasmin following non-enzymatic glycation reaction. J Biochem (Tokyo) 118: 1054– 1060.

    CAS  Google Scholar 

  8. Hamada Y, Araki N, Koh N, Nakamura J, Horiuchi S, Hotta N (1996) Rapid formation of advanced glycation end products by intermediate metabolites of glycolytic pathway and polyol pathway. Biochem Biophys Res Commun 228:539–543.

    Article  PubMed  CAS  Google Scholar 

  9. Sharma SD, Pandey BN, Mishra KP, Sivakami S (2002) Amadori product and age formation during nonenzymatic glycosylation of bovine serum albumin in vitro. J Biochem Mol Biol Biophys 6:233–242.

    PubMed  CAS  Google Scholar 

  10. Wells-Knecht KJ, Zyzak DV, Litchfield JE, Thorpe SR, Baynes JW (1995) Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 34:3702–3709.

    Article  PubMed  CAS  Google Scholar 

  11. Mullarkey CJ, Edelstein D, Brownlee M (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 173:932–939.

    Article  PubMed  CAS  Google Scholar 

  12. Sakurai T, Tsuchiya S (1988) Superoxide production from non-enzymatically glycated protein. FEBS Lett 236:406–410

    Article  PubMed  CAS  Google Scholar 

  13. Wendt T, Tanji N, Guo J, Hudson BI, Bierhaus A, Ramasamy R, Arnold B, Nawroth PP, Yan SF, D'Agati V, Schmidt AM (2003) Glucose, glycation, and RAGE: implications for amplification of cellular dysfunction in diabetic nephropathy. J Am Soc Nephrol 14:1383–1395.

    Article  PubMed  CAS  Google Scholar 

  14. Wautier JL, Schmidt AM (2004) Protein glycation: a firm link to endothelial cell dysfunction. Circ Res 95:233–238.

    Article  PubMed  CAS  Google Scholar 

  15. Bierhaus A, Humpert PM, Stern DM, Arnold B, Nawroth PP (2005) Advanced glycation end product receptor-mediated cellular dysfunction. Ann NY Acad Sci 1043:676–680.

    Article  PubMed  CAS  Google Scholar 

  16. Mironova R, Niwa T, Hayashi H, Dimitrova R, Ivanov I (2001) Evidence for non-enzymatic glycosylation in Escherichia coli. Mol Microbiol 39:1061–1068.

    Article  PubMed  CAS  Google Scholar 

  17. Mironova R, Niwa T, Dimitrova R, Boyanova M, Ivanov I (2003) Glycation and post-translational processing of human interferon-gamma expressed in Escherichia coli. J Biol Chem 278:51,068– 51,074.

    Article  CAS  Google Scholar 

  18. Malik NS, Meek KM (1994) The inhibition of sugar-induced structural alterations in collagen by aspirin and other compounds. Biochem Biophys Res Commun 199:683–686.

    Article  PubMed  CAS  Google Scholar 

  19. M Beltramo, La Selva E, Pagnozzi F, Bena E, Molinatti PA, Molinatti GM, Porta M (1996) Thiamine corrects delayed replication and decreases production of lactate and advanced gly-cation end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions. Diabe-tologia 39:1263–1268.

    Article  Google Scholar 

  20. Voziyan PA, Hudson BG (2005) Pyridoxamine as a multifunctional pharmaceutical: targeting pathogenic glycation and oxida-tive damage. Cell Mol Life Sci 62:1671–1681.

    Article  PubMed  CAS  Google Scholar 

  21. Sell DR, Nelson JF, Monnier VM (2001) Effect of chronic aminoguanidine treatment on age-related glycation, glycoxidation, and collagen cross-linking in the Fischer 344 rat. J Gerontol A Biol Sci Med Sci 56:B405–B411.

    PubMed  CAS  Google Scholar 

  22. Menzel EJ, Reihsner R (1991) Alterations of biochemical and biomechanical properties of rat tail tendons caused by non-enzymatic glycation and their inhibition by dibasic amino acids arginine and lysine. Diabetologia 34:12–16.

    Article  PubMed  CAS  Google Scholar 

  23. Radner W, Hoger H, Lubec B, Salzer H, Lubec G (1994) L-arginine reduces kidney collagen accumulation and N-epsilon-(carboxymethyl)lysine in the aging NMRI-mouse. J Gerontol 49:M44–M46.

    PubMed  CAS  Google Scholar 

  24. Ivanov I, Tam J, Wishart P, Jay E (1987) Gene 59:223–230.

    Article  PubMed  CAS  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quan-titation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Article  PubMed  CAS  Google Scholar 

  27. Lauren SL, Arakawa T, Stoney K, Rohde MF (1993) Covalent dimerization of recombinant human interferon-gamma. Arch Biochem Biophys 306:350–353.

    Article  PubMed  CAS  Google Scholar 

  28. Daubener W, Wanagat N, Pilz K, Seghrouchni S, Fischer HG, Hadding U (1994) A new, simple, bioassay for human IFN-gamma. J Immunol Methods 168:39–47.

    Article  PubMed  CAS  Google Scholar 

  29. Boyanova M, Tsanev R, Ivanov I (2002) A modified kynuren-ine bioassay for quantitative determination of human interferon-gamma. Anal Biochem 308:178–181.

    Article  PubMed  CAS  Google Scholar 

  30. Sell DR, Nagaraj RH, Grandhee SK, Odetti P, Lapolla A, Fogarty J, Monnier VM (1991) Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes Metab Rev 7:239–251.

    Article  PubMed  CAS  Google Scholar 

  31. Grossweiner LI (1984) Photochemistry of proteins: a review. Curr Eye Res 3:137–144.

    Article  PubMed  CAS  Google Scholar 

  32. Bumelis VA, Bumeliene Z, Gedminiene G, Smirnovas V, Sereikaite J, Medelyte I (2002) Investigation of thermal stability of recombinant human interferon-gamma. Biologia 2:37–41.

    Google Scholar 

  33. Lunn CA, Davies L, Dalgarno D, Narula SK, Zavodny PJ, Lun-dell D (1992) An active covalently linked dimer of human inter-feron-gamma. Subunit orientation in the native protein. J Biol Chem 267:17,920–17,924.

    CAS  Google Scholar 

  34. Randal M, Kossiakoff AA (1998) Crystallization and preliminary X-ray analysis of a 1:1 complex between a designed monomeric inter-feron-gamma and its soluble receptor. Protein Sci 7:1057–1060.

    Article  PubMed  CAS  Google Scholar 

  35. Landar A, Curry B, Parker MH, DiGiacomo R, Indelicato SR, Nagabhushan TL, Rizzi G, Walter MR (2000) Design, characterization, and structure of a biologically active single-chain mutant of human IFN-gamma. J Mol Biol 299:169–179.

    Article  PubMed  CAS  Google Scholar 

  36. Shastri GV, Thomas M, Victoria AJ, Selvakumar R, Kanagasa-bapathy AS, Thomas K, Lakshmi (1998) Effect of aspirin and sodium salicylate on cataract development in diabetic rats. Indian J Exp Biol 36:651–657.

    PubMed  CAS  Google Scholar 

  37. Cherian M, Abraham EC (1993) In vitro glycation and acetyla-tion (by aspirin) of rat crystallins. Life Sci 52:1699–1707.

    Article  PubMed  CAS  Google Scholar 

  38. Rendell M, Nierenberg J, Brannan C, Valentine JL, Stephen PM, Dodds S, Mercer P, Smith PK, Walder J (1986) Inhibition of gly-cation of albumin and hemoglobin by acetylation in vitro and in vivo. J Lab Clin Med 108:286–293.

    PubMed  CAS  Google Scholar 

  39. Hadley J, Malik N, Meek K (2001) Collagen as a model system to investigate the use of aspirin as an inhibitor of protein glyca-tion and crosslinking. Micron 32:307–315.

    Article  PubMed  CAS  Google Scholar 

  40. Exner M, Hermann M, Hofbauer R, Kapiotis S, Speiser W, Held I, Seelos C, Gmeiner BM (2000) The salicylate metabolite gen-tisic acid, but not the parent drug, inhibits glucose autoxidation-mediated atherogenic modification of low density lipoprotein. FEBS Lett 470:47–50.

    Article  PubMed  CAS  Google Scholar 

  41. Booth AA, Khalifah RG, Todd P, Hudson BG (1997) In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs). Novel inhibition of post-Amadori glycation pathways. J Biol Chem 272:5430–5437.

    Article  PubMed  CAS  Google Scholar 

  42. Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T J u Q Lin J, Bierhaus A, Nawroth P, Hannak D, Neumaier M, Bergfeld R, Giardino I, Brownlee M (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299.

    Article  PubMed  CAS  Google Scholar 

  43. Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ (2003) Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 52:2110–2120.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Bulgarian National Research Fund (Contracts nos. TKB-1603/06 and B-1501/05).

Author information

Authors and Affiliations

Authors

Editor information

Vassil St. Georgiev PhD Karl A. Western MD John J. McGowan PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Boyanova, M., Mironova, R., Niwa, T., Ivanov, I. (2008). Post-translational Processing of Human Interferon- γ Produced in Escherichia coli and Approaches for its Prevention. In: Georgiev, V.S., Western, K.A., McGowan, J.J. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-569-5_41

Download citation

Publish with us

Policies and ethics