Skip to main content

A Tapestry of Immunotherapeutic Fusion Proteins: From Signal Conversion to Auto-stimulation

  • Conference paper
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 864 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang H, Hanawa H, Liu H, Yoshida T, Hayashi M, Watanabe R, Abe S, Toba K, Yoshida K, Elnaggar R, Minagawa S, Okura Y, Kato K, Kodama M, Maruyama H, Miyazaki J, Aizawa Y (2006) Hydrodynamic-based delivery of an interleukin-22-Ig fusion gene ameliorates experimental autoimmune myocarditis in rats. J Immunol 177:3635–3643.

    PubMed  CAS  Google Scholar 

  2. Mosquera LA, Card KF, Price-Schiavi SA, Belmont HJ, Liu B, Builes J, Zhu X, Chavaillaz P-A, Lee HW, Jiao J, Francis JL, Amirkhosravi A, Wong RL, Wong HC (2005) In vitro and in vivo characterization of a novel antibody-like single-chain TCR human IgG1 fusion protein. J Immunol 174:4381–4388.

    PubMed  CAS  Google Scholar 

  3. Rachmilewitz J, Riely GJ, Huang JH, Chen A, Tykocinski ML (2001) A rheostatic mechanism for T-cell inhibition based on elevation of activation thresholds. Blood 98:3727–3732.

    Article  PubMed  CAS  Google Scholar 

  4. Zheng XX, Steele AW, Hancock WW, Stevens AC, Nickerson PW, Roy-Chaudhury P, Tian Y, Strom TB (1997) A noncytolytic IL-10/Fc fusion protein prevents diabetes, blocks autoimmunity, and promotes suppressor phenomena in NOD mice. J Immunol 158:4507–4513.

    PubMed  CAS  Google Scholar 

  5. Dang CV, Barrett J, Villa-Garcia M, Resar LMS, Kato GJ, Fearon ER (1991) Intracellular leucine zipper interactions suggest c-myc hetero-oligomerization. Mol Cell Biol 11:954–962.

    PubMed  CAS  Google Scholar 

  6. Muthuswamy SK, Gilman M, Brugge JS (1999) Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol 19:6845–6857.

    PubMed  CAS  Google Scholar 

  7. Harbury PB, Kim PS, Alper T (1994) Crystal structure of an iso-leucine-zipper trimer. Nature 371:80.

    Article  PubMed  CAS  Google Scholar 

  8. Bauer S, Adrian N, Fischer E, Kleber S, Stenner F, Wadle A, Fadle N, Zoellner A, Bernhardt R, Knuth A, Old LJ, Renner C (2006) Structure-activity profiles of Ab-derived TNF fusion proteins. J Immunol 177:2423–2430.

    PubMed  CAS  Google Scholar 

  9. Harbury PB, Zhang T, Kim PS, Alber T (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262:1401–1497.

    Article  PubMed  CAS  Google Scholar 

  10. Kelly AE, Chen B-H, Woodward EC, Conrad DH (1998) Production of a chimeric form of CD23 that is oligomeric and blocks IgE binding the Fc(epsilon)RI. J Immunol 161:6696–6704.

    PubMed  CAS  Google Scholar 

  11. Schultz J, Lin Y, Anderson J, Zuo Y, Stone D, Mallett R, Wilbert S, Axworthy D (2000) A tetravalent single-chain antibody-strep-tavidin fusion protein for pretargeted lymphoma therapy. Cancer Res 60:6663–6669.

    PubMed  CAS  Google Scholar 

  12. Holler N, Tardivel A, Kovacsovics-Bankowski M, Hertig S, Gaide O, Martinon F, Tinel A, Deperthes D, Calderara S, Schulthess T, Engel J, Schneider P, Tschopp J (2003) Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Bio 23:1428–1440.

    Article  CAS  Google Scholar 

  13. Bulfone-Paus S, Ruckert R, Krause H, von Bernuth H, Notter M, Pohl T, Tran TH, Paus R, Kunzendorf U (2000) An inter-leukin-2-IgG-Fas ligand fusion protein suppresses delayed-type hypersensitivity in mice by triggering apoptosis in activated T cells as a novel strategy for immunosuppression. Transplantation 69:1386–1391.

    Article  PubMed  CAS  Google Scholar 

  14. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immuno-toxins in treatment of cancer. Annu Rev Med 58:221–237.

    Article  PubMed  CAS  Google Scholar 

  15. Xu Y-M, Wang L-F, Jia L-T, Qui X-C, Zhao J, Yu C-J, Zhang R, Zhu F, Wang C-J, Jin B-Q, Chen S-Y, Yang A-G (2004) A caspase-6 and anti-human epidermal growth factor receptor-2 (HER2) antibody chimeric molecule suppresses the growth of HER2-overexpressing tumors. J Immunol 173:61–67.

    PubMed  CAS  Google Scholar 

  16. Rohrbach F, Gerstmayer B, Biburger M, Wels W (2000) Construction and characterization of bispecific costimulatory molecules containing a minimized CD86 (B7-2) domain and single-chain antibody fragments for tumor targeting. Clin Cancer Res 6:4314–4322.

    PubMed  CAS  Google Scholar 

  17. Dela Cruz JS, Trinh KR, Morrison SL, Penichet ML (2000) Recombinant anti-human HER2/neu IgG3-(GM-CSF) fusion protein retains antigen specificity and cytokine function and demonstrates antitumor activity. J Immunol 165:5112–5121.

    PubMed  CAS  Google Scholar 

  18. Puri RK, Hoon DS, Leland P, Snoy P, Rand RW, Pastan I, Kreit-man RJ (1996) Preclinical development of a recombinant toxin containing circularly permuted interleukin 4 and truncated Pseu-domonas exotoxin for therapy of malignant astrocytoma. Cancer Res 56:5631–5637.

    PubMed  CAS  Google Scholar 

  19. Huhn M, Sasse S, Tur MK, Matthey B, Schinkothe T, Rybak SM, Barth S, Engert A (2001) Human angiogenin fused to CD30 ligand (Ang-CD30L) exhibits specific cytotoxicity against CD30-positive lymphoma. Cancer Res 61:8737–8742.

    PubMed  CAS  Google Scholar 

  20. Su L, Chen S-S, Yang K-G, Liu C-Z, Zhang Y-L, Liang Z-Q, (2005) High-level expression of human stem cell factor fused with erythropoietin mimetic peptide in Escherichia coli. Prot. Express Purific 47:477–482.

    Article  CAS  Google Scholar 

  21. Liao C-W, Chen C-A, Lee C-N, Su Y-N, Chang M-C, Syu M-H, Hsieh C-Y, Chen W-F (2005) Fusion protein vaccine by domains of bacterial exotoxin linked with a tumor antigen generates potent immunologic responses and antitumor effects. Cancer Res 65:9089–9098.

    Article  PubMed  CAS  Google Scholar 

  22. Lev A, Novak H, Segal D, Reiter Y (2002) Recruitment of CTL activity by tumor-specific antibody-mediated targeting of single-chain class I MHC-peptide complexes. J Immunol 169:2988–2996.

    PubMed  CAS  Google Scholar 

  23. Rohrbach F, Weth R, Kursar M, Sloots A, Mittrucker H-W, Wels WS (2005) Targeted delivery of the ErbB2/HER2 tumor antigen to professional APCs results in effective antitumor immunity. J Immunol 174:5481–5489.

    PubMed  CAS  Google Scholar 

  24. Bluestone JA, St Clair EW, Turka LA (2006) CTLA4Ig: bridging the basic immunology with clinical application. Immunity 24:233–238.

    Article  PubMed  CAS  Google Scholar 

  25. Mack M, Pfirstinger J, Haas J, Nelson PJ, Kufer P, Riethmuller G, Schlondorff D (2005) Preferential targeting of CD4-CCR5 complexes with bifunctional inhibitors: a novel approach to block HIV-1 infection. J Immunol 175:7586–7593.

    PubMed  CAS  Google Scholar 

  26. Vadhan-Raj S, Borxmeyer HE, Andreff M, Bandres JC, Buescher S, Benjamin RS, Papdopoulos NE, Burgess A, Patel S, Plager C, Hittelman WN, Garrison L, Williams DE (1995) In vivo biologic effects of PIXY321, a synthetic hybrid protein of recombinant human granulocyte-macrophage colony-stimulating factor and interleukin-3 in cancer patients with normal erythropoiesis: a phase I study. Blood 86:2098–2105.

    PubMed  CAS  Google Scholar 

  27. Zhu D, Kepley CL, Zhang M, Zhang K, Saxon A (2002) A novel human immunoglobulin Fcγ-Fcε bifunctional fusion protein inhibits FcεR1-mediated degranulation. Nat Med 8:518–521.

    Article  PubMed  CAS  Google Scholar 

  28. Galun E, Zeira E, Pappo O, Peters M, Rose-John S (2000) Liver regeneration induced by designer human IL-6/sIL-6R fusion protein reverses severe hepatocellular injury. FASEB J 14:1979–1987.

    Article  PubMed  CAS  Google Scholar 

  29. Chebath J, Fischer D, Kumar A, Oh JW, Kolett O, Lapidot T, Fischer M, Rose-John S, Nagler A, Slavin S, Revel M (1997) Interleukin-6 receptor-interleukin-6 fusion proteins with enhanced interleukin-6 type pleiotropic activities. Eur Cytokine Netw 8:359–365.

    PubMed  CAS  Google Scholar 

  30. Tykocinski ML, Kaplan DR, Medof ME (1996) Antigen-presenting cell engineering. The molecular toolbox. Amer J Pathol 148:1–16.

    CAS  Google Scholar 

  31. Tykocinski ML (1999) Engineering cellular cancer vaccines: gene and protein transfer options. In Gene Therapy of Cancer (Gerson S, Lattime E, eds.), pp. 301–318. Academic Press.

    Google Scholar 

  32. Medof ME, Nagarajan S, Tykocinski ML (1996) Cell surface engineering with GPI-anchored proteins. FASEB J 10:574–586.

    PubMed  CAS  Google Scholar 

  33. Medof ME, Kinoshita T, Nussenzweig V (1984) Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 160:1558–1578.

    Article  PubMed  CAS  Google Scholar 

  34. Medof ME, Walter EI, Roberts WL, Haas R, Rosenberry TL (1986) Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid. Biochemistry 25:6740–6747.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang F, Schmidt WG, Hou Y, Williams AF, Jacobson K (1992) Spontaneous incorporation of the glycosyl-phosphatidylinositol-linked protein Thy-1 into cell membranes. Proc Natl Acad Sci USA 89:5231–5235.

    Article  PubMed  CAS  Google Scholar 

  36. Weber MC, Groger RK, Tykocinski ML (1994) A glycosylphos-phatidylinositol-anchored cytokine can function as an artificial cellular adhesin. Exp Cell Res 145:1646–1652.

    Google Scholar 

  37. Medof ME, Lublin DM, Holers VM, Ayers DJ, Getty RR, Leykam JF, Atkinson JP, Tykocinski ML (1987) Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci USA 84:2007–2011.

    Article  PubMed  CAS  Google Scholar 

  38. Caras IW, Davitz MA, Rhee L, Weddell G, Martin DW, Nus-senzweig V (1987) Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 325:545–549.

    Article  PubMed  CAS  Google Scholar 

  39. Tykocinski ML, Shu HK, Ayers DJ, Walter EI, Getty RR, Groger RK, Hauer CA, Medof ME (1988) Glycolipid reanchoring of T-lymphocyte surface antigen CD8 using the 3′ end sequence of decay-accelerating factor's mRNA. Proc Natl Acad Sci USA 85:3555–3559.

    Article  PubMed  CAS  Google Scholar 

  40. Caras IW, Weddell GN, Davitz MA, Nussenzweig V, Martin JDW (1987) Signal for attachment of a phopholipid membrane anchor in decay accelerating factor. Science 238:1280'1283.

    Article  PubMed  CAS  Google Scholar 

  41. Chen A, Zheng G, Tykocinski ML (2000) Hierarchical costimu-lator thresholds for distinct immune responses: application of a novel two-step Fc fusion protein transfer method. J Immunol 164:705–711.

    PubMed  CAS  Google Scholar 

  42. van Broekhoven CL, Parish CR, Vassiliou G, Altin JG (2000) Engrafting costimulator molecules onto tumor cell surfaces with chelator lipids: a potentially convenient approach in cancer vaccine development. J Immunol 164:2433–2443.

    PubMed  CAS  Google Scholar 

  43. Singh NP, Yolcu ES, Taylor DD, Gercel-Taylor C, Metzinger DS, Dreisbach SK, Shirwan H (2003) A novel approach to cancer immunotherapy: tumor cells decorated with CD80 generate effective antitumor immunity. Cancer Res 63:4067–4073.

    PubMed  CAS  Google Scholar 

  44. Askenasy N, Yolcu ES, Wang Z, Shirwan H (2003) Display of Fas ligand on cardiac vasculature as a novel means of regulating allograft rejection. Circulation 107:1525–1531.

    Article  PubMed  CAS  Google Scholar 

  45. Moro M, Pelagi M, Fulci G, Paganelli G, Dellabona P, Casorati G, Siccardi AG, Corti A (1997) Tumor cell targeting with anti-body-avidin complexes and biotinylated tumor necrosis factor alpha. Cancer Res 57:1922–1928.

    PubMed  CAS  Google Scholar 

  46. Huang JH, Getty RR, Chisari FV, Fowler P, Greenspan NS, Tyko-cinski ML (1994) Protein transfer of preformed MHC-peptide complexes sensitizes target cells to T cell cytolysis. Immunity 1:607–613.

    Article  PubMed  CAS  Google Scholar 

  47. Huang J-H, Greenspan NS, Tykocinski ML (1994) Alloantigenic recognition of artificial glycosylphosphatidylinositol-anchored HLA-A2.1. Mol Immunol 31:1017–1028.

    Article  PubMed  CAS  Google Scholar 

  48. Geho DH, Fayen JD, Jackman RM, Moody BD, Porcelli SA, Tykocinski ML (2000) Glycosyl-phosphastidylinositol reanchor-ing unmasks distinct antigen-presenting pathways for CD1b and CD1c. J Immunol 65:1272–1277.

    Google Scholar 

  49. Brunschwig EB, Fayen JD, Medof ME, Tykocinski ML (1999) Protein transfer of glycosyl-phosphatidylinositol (GPI)-modi-fied murine B7-1 and B7-2 costimulators. J Immunotherapy 22:390–400.

    Article  CAS  Google Scholar 

  50. Brunschwig EB, Levine E, Trefzer U, Tykocinski ML (1995) Glycosylphosphatidylinositol-modified murine B7-1 and B7-2 retain costimulator function. J Immunol 155:5498–5505.

    PubMed  CAS  Google Scholar 

  51. McHugh RS, Nagarajan S, Wang Y-C, Sell KW, Selvaraj P (1999) Protein transfer of glycosyl-phosphatidylinositol-B7-1 into tumor cell membranes: a novel approach to tumor immuno-therapy. Cancer Res 59:2433–2437.

    PubMed  CAS  Google Scholar 

  52. Zheng G, Chen A, Sterner RE, Zhang PJ, Pan T, Kiyatkin N, Tyko-cinski ML (2001) Induction of antitumor immunity via intratumoral tetra-costimulator protein transfer. Cancer Res 61:8127–8134.

    PubMed  CAS  Google Scholar 

  53. Tykocinski ML, Kaplan DR (1993) CD8-dependent immuno-regulation: prospects for anti-rejection therapies based upon CD8 modification of alloantigen-presenting cells. Kidney Int 43:S120–S123.

    CAS  Google Scholar 

  54. Fink PJ, Shimenkovitz RP, Bevan MJ (1988) Veto cells. Annu Rev Immunol 6:115–137.

    Article  PubMed  CAS  Google Scholar 

  55. Rammensee H-G (1989) Veto function in vitro and in vivo. Intern. Rev Immunol 4:175–191.

    Article  CAS  Google Scholar 

  56. Hambor JE, Kaplan DR, Tykocinski ML (1990) CD8 functions as an inhibitory ligand in mediating the immunoregulatory activity of CD8+ cells. J Immunol 145:1646–1652.

    PubMed  CAS  Google Scholar 

  57. Kaplan DR, Hambor JE, Tykocinski ML (1989) An immuno-regulatory function for the CD8 molecule. Proc Natl Acad Sci USA 86:8512–8515.

    Article  PubMed  CAS  Google Scholar 

  58. Fayen J, Huang JH, Ferrone S, Tykocinski ML (1998) Negative signaling by anti-HLA class I antibodies is dependent upon two triggering events. Int Immunol 10:1347–1358.

    Article  PubMed  CAS  Google Scholar 

  59. Amirayan N, Vernet C, Machy P (1992) Class I-specific antibodies inhibit proliferation in primary but not secondary mouse T cell responses. J Immunol 148:1971–1978.

    PubMed  CAS  Google Scholar 

  60. Qi Y, Berg R, Singleton MA, Debrick JE, Staerz UD (1996) Hybrid antibody mediated veto of cytotoxic T lymphocyte responses. J Exp Med 183:1973–1980.

    Article  PubMed  CAS  Google Scholar 

  61. Wu B, Wu J-M, Miagkov A, Adams RN, Levitsky HI, Drachman DB (2001) Specific immunotherapy by genetically engineered APCs: the “guided missile” strategy. J Immunol 166:4773–4779.

    PubMed  CAS  Google Scholar 

  62. Reich-Zeliger S, Zhao Y, Krauthgamer R, Bachar-Lustig E, Reisner Y (2000) Anti-third party CD8+ CTLs as potent veto cells: coexpression of CD8 and FasL is a prerequisite. Immunity 13:507–515.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang H-G, Su X, Liu D, Liu W, Yang P, Wang Z, Edwards CK, Bluethmann H, Mountz JD, Zhou T (1999) Induction of specific T cell tolerance by Fas ligand-expressing antigen-presenting cells. J Immunol 162:1423–1430.

    PubMed  CAS  Google Scholar 

  64. Sato K, Nakaoka T, Yamashita N, Yagita H, Kawasaki H, Morimoto C, Baba M, Matsuyama T (2005) TRAIL-transduced dendritic cells protect mice from acute graft-versus-host disease and leukemia relapse. J Immunol 174:4025–4033.

    PubMed  CAS  Google Scholar 

  65. Chen A, Zheng G, Tykocinski ML (2003) Quantitative interplay between activating and pro-apoptotic signals dictates T cell responses. Cell Immunol 221:128–137.

    Article  PubMed  CAS  Google Scholar 

  66. Prasad DVR, Nguyen T, Li Z, Yang Y, Duong J, Wang Y, Dong C (2004) Murine B7-H3 is a negative regulator of T cells. J Immunol 173:2500–2506.

    PubMed  CAS  Google Scholar 

  67. Vincenti F, Larsen C, Durrbach A, Wekerle T, Nashan B, Blan-cho G, Lang P, Grinyo J, Halloran PF, Solez K, Hagerty D, Levy E, Zhou W, Natarajan K, Charpentier B (2005) Costimulation blockade with belatacept in renal transplantation. N Engl J Med 353:770–781.

    Article  PubMed  CAS  Google Scholar 

  68. Turka LA, Linsley PS, Lin H, Brady W, Leiden JM, Wei R-Q, Gibson ML, Zheng X-G, Myrdal S, Gordon D, Bailey T, Bolling SF, Thompson CB (1992) T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 89:11,102–11,105.

    CAS  Google Scholar 

  69. Lenschow DJ, Zeng Y, Thistlethwaite JR, Montag A, Brady V, Gibson MI, Linsley PS, Bluestone JA (1992) Long term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 257:789–792.

    Article  PubMed  CAS  Google Scholar 

  70. Wallace PM, Rodgers JN, Leytze GM, Johnson JS, Linsley PS (1995) Induction and reversal of long-lived specific unrespon-siveness to a T-dependent antigen following CTLA4Ig treatment. J Immunol 154:5885–5895.

    PubMed  CAS  Google Scholar 

  71. Huang J-H, Tykocinski ML (2001) CTLA-4-Fas ligand functions as a trans signal converter protein in bridging antigen-presenting cells and T cells. Int Immunol 13:529–539.

    Article  PubMed  CAS  Google Scholar 

  72. Lu L, Qian S, Starzl TE, Lynch DH, Thomson AW (1997) Blocking of the B7-CD28 pathway increases the capacity of FasL+ (CD95L+) dendritic cells to kill alloactivated T cells. Adv Exp Med Biol 417:275–282.

    PubMed  CAS  Google Scholar 

  73. Elhalel MD, Huang JH, Schmidt W, Rachmilewitz J, Tykocinski ML (2003) CTLA-4-FasL induces alloantigen-specific hypore-sponsiveness. J Immunol 170:5842–5850.

    PubMed  CAS  Google Scholar 

  74. Dranitzki-Elhalel M, Huang JH, Rachmilewitz J, Pappo O, Parnas M, Schmidt W, Tykocinski ML (2006) CTLA-4-FasL inhibits allogeneic responses in vivo. Cell Immunol 239:129–135.

    Article  PubMed  CAS  Google Scholar 

  75. Jin Y, Qu A, Wang GM, Hao J, Gao X, Xie S (2004) Simultaneous stimulation of Fas-mediated apoptosis and blockade of costimulation prevent autoimmune diabetes in mice induced by multiple low-dose streptozotocin. Gene Ther 11:982–991.

    Article  PubMed  CAS  Google Scholar 

  76. Feng YG, Jin YZ, Zhang QY, Hao J, Wang GM, Xie SS (2005) CTLA4-Fas ligand gene transfer mediated by adenovirus induces long-time survival of murine cardiac allografts. Transplant Proc 37:2379–2381.

    Article  PubMed  CAS  Google Scholar 

  77. Hoffmann P, Mueller N, Shively JE, Fleischer B, Neumaier M (2001) Fusion proteins of B7.1 and a antigen carcinoembryonic (CEA)-specific antibody fragment opsonize CEA-expressing tumor cells and coactivate T-cell immunity. Int J Cancer 92:725–732.

    Article  PubMed  CAS  Google Scholar 

  78. Schrama D, Straten P, Fischer WH, McLellan AD, Brocker E-B, Reisfeld RA, Becker JC (2001) Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14:111–121.

    Article  PubMed  CAS  Google Scholar 

  79. Sabzevari H, Gillies SD, Mueller BM, Pancook JD, Reisfeld RA (1994) A recombinant antibody-IL2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice. Proc Natl Acad Sci USA 91:9626–9630.

    Article  PubMed  CAS  Google Scholar 

  80. Xu X, Clarke P, Szalai G, Shively JE, Williams LE, Shyr Y, Shi E, Primus FJ (2000) Targeting and therapy of carcinoembryonic antigen-expressing tumors in transgenic mice with an antibody-interleukin 2 fusion protein. Cancer Res 60:4475–4484.

    PubMed  CAS  Google Scholar 

  81. Azuma M, Yssel H, Phillips JH, Spits H, Lanier LL (1993) Functional expression of B7/BB1 on activated T lymphocytes. J Exp Med 177:845–850.

    Article  PubMed  CAS  Google Scholar 

  82. Podojil JR, Kohm AP, Miller SD (2006) CD4+ T cell expressed CD80 regulates central nervous system effector function and survival during experimental autoimmune encephalomyelitis. J Immunol 177:2948–2958.

    PubMed  CAS  Google Scholar 

  83. Dranitzki-Elhalel M, Huang J-H, Sasson M, Rachmilewitz J, Parnas M, Tykocinski ML (2005) CD40·FasL inhibits human T cells: evidence for an auto-inhibitory loop-back mechanism. J Am Soc Nephrol 16:232A.

    Google Scholar 

  84. Dranitzki-Elhalel M, Huang J, Sasson M, Rachmilewitz J, Par-nas M, Tykocinski M (2007) CD40·FasL inhibits human T cells: evidence for an auto-inhibitory loop-back mechanism. Int Immunol 19:355–363.

    Article  PubMed  CAS  Google Scholar 

  85. Blair PJ, Riley JL, Harlan DM, Abe R, Tadaki DK, Hoffmann SC, White L, Francomano T, Perfetto SJ, Kirk AD, June CH (2000) CD40 ligand (CD154) triggers a short-term CD4+ T cell activation response that results in secretion of immunomodula-tory cytokines and apoptosis. J Exp Med 191:651–660.

    Article  PubMed  CAS  Google Scholar 

  86. Samel D, Muller D, Gerspach J, Assohou-Luty C, Sass G, Tiegs G, Pfizenmaier K, Wajant H (2003) Generation of a FasL-based proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-restricted activation. J Biol Chem 278:32,077–32,082.

    Article  CAS  Google Scholar 

  87. Gerspach J, Muller D, Munkel S, Selchow O, Nemeth J, Noack M, Petrul H, Menrad A, Wajant H, Pfizenmaier K (2006) Restoration of membrane TNF-like activity by cell surface targeting and matrix metalloproteinase-mediated processing of a TNF pro-drug. Cell Death Differ 13:273–84.

    Article  PubMed  CAS  Google Scholar 

  88. Assohou-Luty C, Gerspach J, Siegmund D, Muller N, Huard B, Tiegs G, Pfizenmaier K, Wajant H (2006) A CD40-CD95L fusion protein interferes with CD40L-induced prosurvival signaling and allows membrane CD40L-restricted activation of CD95. J Mol Med 84:785–797.

    Article  PubMed  CAS  Google Scholar 

  89. Storz M, Zepter K, Kamarashev J, Drummer R, Burg G, Haffner AC (2001) Coexpression of CD40 and CD40 ligand in cutaneous T-cell lymphoma (mycosis fungoides). Cancer Res 61:452–454.

    PubMed  CAS  Google Scholar 

  90. Pham LV, Tamayo AT, Yoshimura LC, Lo P, Terry N, Reid PS, Ford RJ (2002) A CD40 Signalosome anchored in lipid rafts leads to constitutive activation of NF-kappaB and autonomous cell growth in B cell lymphomas. Immunity 16:37–50.

    Article  PubMed  CAS  Google Scholar 

  91. Dhein J, Walczak H, Baumler C, Debatin K-M, Krammer PH (1995) Autocrine T-cell suicide mediated by APO-1 (Fas/ CD95). Nature 373:438–441.

    Article  PubMed  CAS  Google Scholar 

  92. Zheng G, Chen A, Weber M, Tykocinski M (2003) T cells painted with B7-1 and 4-1BB ligand auto-costimulate themselves. FASEB Exp Biol Abstr 414.3.

    Google Scholar 

  93. Scarpellino L, Oeschger F, Guillaume P, Coudert JD, Levy F, Leclercq G, Held W (2007) Interactions of Ly49 family receptors with MHC class I ligands in trans and cis. J Immunol 178:1277–1284.

    PubMed  CAS  Google Scholar 

  94. Harris JE, Nuttall RK, Elkington PT, Green JA, Horncastle DE, Graeber MB, Edwards DR, Friedland JS (2007) Monocyte-astrocyte networks regulate matrix metalloproteinase gene expression and secretion in central nervous system tuberculosis in vitro and in vivo. J Immunol 178:1199–1207.

    PubMed  CAS  Google Scholar 

  95. Kim R, Emi M, Tanabe K, Arhiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66:5527–5536.

    Article  PubMed  CAS  Google Scholar 

  96. Margalit A, Sheikhet HM, Carmi Y, Berko D, Tzehoval E, Eisenbach L, Gross G (2006) Induction of antitumor immunity by CTL epitopes genetically linked to membrane-anchored beta2-microglobulin. J Immunol 176:217–224.

    PubMed  CAS  Google Scholar 

  97. Lee L, McHugh L, Ribaudo RK, Kozlowski S, Margulies DH, Mage MG (1994) Functional cell surface expression by a recombinant single-chain class I major histocompatibility complex molecule with a cis-active beta 2-microglobulin domain. Eur J Immunol 24:2633–2639.

    Article  PubMed  CAS  Google Scholar 

  98. McCluskey J, Germain RN, Margulies DH (1985) Cell surface expression of an in vitro recombinant class II/class I major his-tocompatibility complex gene product. Cell 40:247–257.

    Article  PubMed  CAS  Google Scholar 

  99. Burrows GG, Chang JW, Bachinger H-P, Bourdette DN, Offner H, Vandenbark AA (1999) Design, engineering and production of functional single-chain T cell receptor ligands. Protein Eng 12:771–778.

    Article  PubMed  CAS  Google Scholar 

  100. Uger RA, Chan SM, Barber BH (1999) Covalent linkage to beta2-microglobulin enhances the MHC stability and antigenicity of suboptimal CTL epitopes. J Immunol 162:6024–6028.

    PubMed  CAS  Google Scholar 

  101. Kowolik CM, Top MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, Smith DD, Forman SJ, Jensen MC, Cooper LJN (2006) CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 66:10,995–11,004.

    Article  CAS  Google Scholar 

  102. Zhang T, Barber A, Sentman CL (2006) Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Cancer Res 66:5927–5933.

    Article  PubMed  CAS  Google Scholar 

  103. Pinthus JH, Waks T, Kaufman-Francis K, Schindler DG, Harmelin A, Kanety H, Ramon J, Eshhar Z (2003) Immuno-gene therapy of established prostate tumors using chime-ric receptor-redirected human lymphocytes. Cancer Res 63:2470–2476.

    PubMed  CAS  Google Scholar 

  104. Kershaw MH, Teng MWL, Smyth MJ, Darcy PK (2005) Supernatural T cells: genetic modification of T cells for cancer therapy. Nat Rev 5:928–940.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vassil St. Georgiev PhD Karl A. Western MD John J. McGowan PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Tykocinski, M.L., Huang, JH., Weber, M.C., Dranitzki-Elhalel, M. (2008). A Tapestry of Immunotherapeutic Fusion Proteins: From Signal Conversion to Auto-stimulation. In: Georgiev, V.S., Western, K.A., McGowan, J.J. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-569-5_39

Download citation

Publish with us

Policies and ethics