Skip to main content

Biology-Based Classification and Staging of Multiple Myeloma

  • Chapter
Book cover Myeloma Therapy

Part of the book series: Contemporary Hematology ((CH))

  • 538 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bataille R, Durie BG, Grenier J. Serum beta2 microglobulin and survival duration in multiple myeloma: a simple reliable marker for staging. Br J Haematol.1983;55:439–447.

    Article  PubMed  CAS  Google Scholar 

  2. Durie BG, Stock-Novack D, Salmon SE, et al. Prognostic value of pretreatment serum beta 2 microglobulin in myeloma: A Southwest Oncology Group Study.Blood.1990;75:823–830.

    PubMed  CAS  Google Scholar 

  3. Facon T, Avet-Loiseau H, Guillerm G, et al. Chromosome 13 abnormalities identified by FISH analysis and serum beta2-microglobulin produce a powerful myeloma staging system for patients receiving high-dose therapy.Blood.2001;97:1566–1571.

    Article  PubMed  CAS  Google Scholar 

  4. Attal M, Harousseau JL, Facon T, et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med.2003;349:2495–2502.

    Article  PubMed  CAS  Google Scholar 

  5. Desikan R, Barlogie B, Sawyer J, et al. Results of high-dose therapy for 1000 patients with multiple myeloma: Durable complete remissions and superior survival in the absence of chromosome 13 abnormalities.Blood.2000;95:4008–4010.

    PubMed  CAS  Google Scholar 

  6. Tricot G, Spencer T, Sawyer J, et al. Predicting long-term (> or = 5 years) event-free survival in multiple myeloma patients following planned tandem autotrans-plants. Br J Haematol.2002;116:211–217.

    Article  PubMed  Google Scholar 

  7. Shaughnessy J, Jr., Tian E, Sawyer J, et al. Prognostic impact of cytogenetic and interphase fluorescence in situ hybridization-defined chromosome 13 deletion in multiple myeloma: Early results of total therapy II. Br J Haematol.2003;120:44–52.

    Article  PubMed  Google Scholar 

  8. Bensinger WI, Buckner CD, Anasetti C, et al. Allogeneic marrow transplantation for multiple myeloma: An analysis of risk factors on outcome.Blood.1996;88:2787–2793.

    PubMed  CAS  Google Scholar 

  9. Gahrton G, Tura S, Ljungman P, et al. Prognostic factors in allogeneic bone marrow transplantation for multiple myeloma. J Clin Oncol.1995;13:1312–1322.

    PubMed  CAS  Google Scholar 

  10. Barlogie B, Smallwood L, Smith T, Alexanian R. High serum levels of lactic dehydrogenase identify a high-grade lymphoma-like myeloma. Ann Intern Med.1989;110:521–525.

    PubMed  CAS  Google Scholar 

  11. Dimopoulos MA, Barlogie B, Smith TL, Alexanian R. High serum lactate dehydro-genase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med.1991;115:931–935.

    PubMed  CAS  Google Scholar 

  12. Bataille R, Durie BG, Grenier J, Sany J. Prognostic factors and staging in multiple myeloma: A reappraisal. J Clin Oncol.1986;4:80–87.

    PubMed  CAS  Google Scholar 

  13. Jacobson JL, Hussein MA, Barlogie B, Durie BG, Crowley JJ. A new staging system for multiple myeloma patients based on the Southwest Oncology Group (SWOG) experience. Br J Haematol.2003;122:441–450.

    Article  PubMed  Google Scholar 

  14. Bataille R, Jourdan M, Zhang XG, Klein B. Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscra-sias. J Clin Invest.1989;84:2008–2011.

    Article  PubMed  CAS  Google Scholar 

  15. Greipp PR, Lust JA, O'Fallon WM, Katzmann JA, Witzig TE, Kyle RA. Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma.Blood.1993;81:3382–3387.

    PubMed  CAS  Google Scholar 

  16. San Miguel JF, Garcia-Sanz R, Gonzalez M, et al. A new staging system for multiple myeloma based on the number of S-phase plasma cells.Blood.1995;85:448–455.

    PubMed  CAS  Google Scholar 

  17. Fonseca R, Conte G, Greipp PR. Laboratory correlates in multiple myeloma: How useful for prognosis? Blood Rev.2001;15:97–102.

    Article  PubMed  CAS  Google Scholar 

  18. Garcia-Sanz R, Gonzalez-Fraile MI, Mateo G, et al. Proliferative activity of plasma cells is the most relevant prognostic factor in elderly multiple myeloma patients. Int J Cancer.2004;112:884–889.

    Article  PubMed  CAS  Google Scholar 

  19. Witzig TE, Gertz MA, Lust JA, Kyle RA, O'Fallon WM, Greipp PR. Peripheral blood monoclonal plasma cells as a predictor of survival in patients with multiple myeloma.Blood.1996;88:1780–1787.

    PubMed  CAS  Google Scholar 

  20. Rawstron AC, Owen RG, Davies FE, et al. Circulating plasma cells in multiple myeloma: Characterization and correlation with disease stage. Br J Haematol.1997;97:46–55.

    Article  PubMed  CAS  Google Scholar 

  21. Witzig TE, Kimlinger TK, Ahmann GJ, Katzmann JA, Greipp PR. Detection of myeloma cells in the peripheral blood by flow cytometry.Cytometry.1996;26:113–120.

    Article  PubMed  CAS  Google Scholar 

  22. Nowakowski GS, Witzig TE, Dingli D, et al. Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma.Blood.2005;106(7):2276–2279.

    Article  PubMed  CAS  Google Scholar 

  23. Greipp PR, Leong T, Bennett JM, et al. Plasmablastic morphology — an independent prognostic factor with clinical and laboratory correlates: Eastern Cooperative Oncology Group (ECOG) myeloma trial E9486 report by the ECOG Myeloma Laboratory Group.Blood.1998;91:2501–2507.

    PubMed  CAS  Google Scholar 

  24. Rajkumar SV, Fonseca R, Lacy MQ, et al. Plasmablastic morphology is an independent predictor of poor survival after autologous stem-cell transplantation for multiple myeloma. J Clin Oncol.1999;17:1551–1557.

    PubMed  CAS  Google Scholar 

  25. Goasguen JE, Zandecki M, Mathiot C, et al. Mature plasma cells as indicator of better prognosis in multiple myeloma. New methodology for the assessment of plasma cell morphology. Leuk Res.1999;23:1133–1140.

    Article  PubMed  CAS  Google Scholar 

  26. Walker R, Barlogie B, Haessler J, et al. Magnetic resonance imaging in multiple myeloma: Diagnostic and clinical implications. J Clin Oncol.2007;25:1121–1128.

    Article  PubMed  Google Scholar 

  27. Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival.Cancer.1975;36:842–854.

    Article  PubMed  CAS  Google Scholar 

  28. Baur A, Stabler A, Nagel D, et al. Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon? Cancer.2002;95:1334–1345.

    Article  PubMed  Google Scholar 

  29. Greipp PR, San Miguel J, Durie BG, et al. International staging system for multiple myeloma. J Clin Oncol.2005;23:3412–3420.

    Article  PubMed  Google Scholar 

  30. Dewald GW, Kyle RA, Hicks GA, Greipp PR. The clinical significance of cytoge-netic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis.Blood.1985;66:380–390.

    PubMed  CAS  Google Scholar 

  31. Sawyer JR, Waldron JA, Jagannath S, Barlogie B. Cytogenetic findings in 200 patients with multiple myeloma. Cancer Genet Cytogenet.1995;82:41–49.

    Article  PubMed  CAS  Google Scholar 

  32. Rajkumar SV, Fonseca R, Dewald GW, et al. Cytogenetic abnormalities correlate with the plasma cell labeling index and extent of bone marrow involvement in myeloma. Cancer Genet Cytogenet.1999;113:73–77.

    Article  PubMed  CAS  Google Scholar 

  33. Rajkumar S, Fonseca R, Lacy M, et al. Abnormal cytogenetics predict poor survival after high-dose therapy and autologous blood cell transplantation in multiple myeloma. Bone Marrow Transplant.1999;24:497–503.

    Article  PubMed  CAS  Google Scholar 

  34. Tricot G, Sawyer JR, Jagannath S, et al. Unique role of cytogenetics in the prognosis of patients with myeloma receiving high-dose therapy and autotransplants. J Clin Oncol.1997;15:2659–2666.

    PubMed  CAS  Google Scholar 

  35. Tricot G, Barlogie B, Jagannath S, et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities.Blood.1995;86:4250–4256.

    PubMed  CAS  Google Scholar 

  36. Seong C, Delasalle K, Hayes K, et al. Prognostic value of cytogenetics in multiple myeloma. Br J Haematol.1998;101:189–194.

    Article  PubMed  CAS  Google Scholar 

  37. Debes-Marun CS, Dewald GW, Bryant S, et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma.Leukemia.2003;17:427–436.

    Article  PubMed  CAS  Google Scholar 

  38. Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C. Hypodiploidy is a major prognostic factor in multiple myeloma.Blood.2001;98:2229–2238.

    Article  PubMed  CAS  Google Scholar 

  39. Fassas AB, Spencer T, Sawyer J, et al. Both hypodiploidy and deletion of chromosome 13 independently confer poor prognosis in multiple myeloma. Br J Haematol.2002;118:1041–1047.

    Article  PubMed  CAS  Google Scholar 

  40. Shaughnessy J, Jacobson J, Sawyer J, et al. Continuous absence of metaphase-defined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with Total Therapy I: Interpretation in the context of global gene expression.Blood.2003;101:3849–3856.

    Article  PubMed  CAS  Google Scholar 

  41. Dewald G, Therneau T, Larson D, et al. Relationship of patient survival and chromosome anomalies detected in metaphase and/or interphase cells at diagnosis of myeloma.Blood.2005;106(10):3553–3558.

    Article  PubMed  CAS  Google Scholar 

  42. Chang H, Sloan S, Li D, et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol.2004;125:64–68.

    Article  PubMed  Google Scholar 

  43. Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma.Blood.2003;101:4569–4575.

    Article  PubMed  CAS  Google Scholar 

  44. Keats JJ, Reiman T, Maxwell CA, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression.Blood.2003;101:1520–1529.

    Article  PubMed  CAS  Google Scholar 

  45. Gertz MA, Lacy MQ, Dispenzieri A, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy.Blood.2005;106(8):2837–2840.

    Article  PubMed  CAS  Google Scholar 

  46. Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: A workshop report. Cancer Res.2004;64:1546–1558.

    Article  PubMed  CAS  Google Scholar 

  47. Chang H, Qi C, Yi QL, Reece D, Stewart AK.p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation.Blood.2005;105:358–360.

    Article  PubMed  CAS  Google Scholar 

  48. Drach J, Ackermann J, Fritz E, et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy.Blood.1998;92:802–809.

    PubMed  CAS  Google Scholar 

  49. Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: The experience of the Intergroupe Francophone du Myelome.Blood.2007;109(8):3489–3495.

    Article  PubMed  CAS  Google Scholar 

  50. Fonseca R, Oken MM, Greipp PR. The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathy of undetermined significance.Blood.2001;98:1271–1272.

    Article  PubMed  CAS  Google Scholar 

  51. Avet-Loiseau H, Facon T, Grosbois B, et al. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation.Blood.2002;99:2185–2191.

    Article  PubMed  CAS  Google Scholar 

  52. Fonseca R, Debes-Marun CS, Picken EB, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma.Blood.2003;102:2562–2567.

    Article  PubMed  CAS  Google Scholar 

  53. Chng WJ, Santana-Davila R, Van Wier SA, et al. Prognostic factors for hyper-diploid-myeloma: Effects of chromosome 13 deletions and IgH translocations.Leukemia.2006;20:807–813.

    Article  PubMed  CAS  Google Scholar 

  54. Zhan F, Sawyer J, Gupta S, et al. Elevated expression of CKS1B at 1q21 is highly correlated with short survival in myeloma.Blood.2004;104:77a.

    Google Scholar 

  55. Zhan F, Colla S, Wu X, et al.CKS1B, over expressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-depend-ent and independent mechanisms.Blood.2007;109(11):4995–5001.

    Article  PubMed  CAS  Google Scholar 

  56. Fonseca R, Van Wier SA, Chng WJ, et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma.Leukemia.2006;20:2034–2040.

    Article  PubMed  CAS  Google Scholar 

  57. Shaughnessy JD Jr., Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1.Blood.2006;109:2276–2284.

    Article  PubMed  Google Scholar 

  58. Zhan F, Barlogie B, Arzoumanian V, et al.Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis.Blood.2007;109:1692–1700.

    Article  PubMed  CAS  Google Scholar 

  59. Chng WJ, Ahmann GJ, Henderson K, et al. Clinical implication of centrosome amplification in plasma cell neoplasm.Blood.2006;107:3669–3675.

    Article  PubMed  CAS  Google Scholar 

  60. Maxwell CA, Keats JJ, Belch AR, Pilarski LM, Reiman T. Receptor for hyaluro-nan-mediated motility correlates with centrosome abnormalities in multiple myeloma and maintains mitotic integrity. Cancer Res.2005;65:850–860.

    PubMed  CAS  Google Scholar 

  61. Carrasco DR, Tonon G, Huang Y, et al.High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell.2006;9:313–325.

    Article  PubMed  CAS  Google Scholar 

  62. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr. Cyclin D dysregulation: An early and unifying pathogenic event in multiple myeloma.Blood.2005;106:296–303.

    Article  PubMed  CAS  Google Scholar 

  63. Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma.Blood.2006;108:2020–2028.

    Article  PubMed  CAS  Google Scholar 

  64. Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med.2003;349:2483–2494.

    Article  PubMed  CAS  Google Scholar 

  65. Chng WJ, Kumar S, Vanwier S, et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res.2007;67:2982–2989.

    Article  PubMed  CAS  Google Scholar 

  66. Stewart AK, Bergsagel PL, Greipp PR, et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy.Leukemia.2007;21:529–534.

    Article  PubMed  CAS  Google Scholar 

  67. Chang H, Trieu Y, Qi X, Xu W, Stewart KA, Reece D. Bortezomib therapy response is independent of cytogenetic abnormalities in relapsed/refractory multiple myeloma. Leuk Res.2007;31(6):779–782.

    Article  PubMed  CAS  Google Scholar 

  68. Mateos MV, Hernandez JM, Hernandez MT, et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: Results of a mul-ticenter phase 1/2 study.Blood.2006;108:2165–2172.

    Article  PubMed  CAS  Google Scholar 

  69. Dispenzieri A, Rajkumar SV, Gertz MA, et al. Treatment of newly diagnosed multiple myeloma based on mayo stratification of myeloma and risk-adapted therapy (mSMART): Consensus statement. Mayo Clin Proc.2007;82:323–341.

    Article  PubMed  CAS  Google Scholar 

  70. Paterson JL, Li Z, Wen X Y, et al. Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol.2004;124:595–603.

    Article  PubMed  CAS  Google Scholar 

  71. Trudel S, Ely S, Farooqi Y, et al. Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma.Blood.2004;103:3521–3528.

    Article  PubMed  CAS  Google Scholar 

  72. Trudel S, Li ZH, Wei E, et al.CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma.Blood.2005;105:2941–2948.

    Article  PubMed  CAS  Google Scholar 

  73. Trudel S, Stewart AK, Rom E, et al. The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells.Blood.2006;107:4039–4046.

    Article  PubMed  CAS  Google Scholar 

  74. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells.Science.1996;274:373–376.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang WW, Fang X, Mazur W, French BA, Georges RN, Roth JA.High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther.1994;1:5–13.

    PubMed  Google Scholar 

  76. Kirn D, Hermiston T, McCormick F.ONYX-015: Clinical data are encouraging. Nat Med.1998;4:1341–1342.

    Article  PubMed  CAS  Google Scholar 

  77. Tolcher AW, Hao D, de Bono J, et al. Phase I, pharmacokinetic, and pharmaco-dynamic study of intravenously administered Ad5CMV-p53, an adenoviral vector containing the wild-type p53 gene, in patients with advanced cancer. J Clin Oncol.2006;24:2052–2058.

    Article  PubMed  CAS  Google Scholar 

  78. Shi Y, Reiman T, Li W, et al. Targeting aurora kinases as therapy in multiple myeloma.Blood.2007;109:3915–3921.

    Article  PubMed  CAS  Google Scholar 

  79. Chng WJ, Kuehl WM, Bergsagel PL, Fonseca R. Translocation t(4;14) retains prognostic significance even in the setting of high-risk molecular signature. Leukemia 2008;22(2):459–461.

    Article  PubMed  CAS  Google Scholar 

  80. Chng WJ, Braggio E, Mulligan G et al. The centrosome index is a powerful prognostic marker in myeloma and identifies a cohort of patients that might benefit from aurora kinase inhibition. Blood 2008;111(3):1603–1609.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chng, W.J., Bergsagel, P.L. (2008). Biology-Based Classification and Staging of Multiple Myeloma. In: Lonial, S. (eds) Myeloma Therapy. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-564-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-564-0_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-82-4

  • Online ISBN: 978-1-59745-564-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics