Skip to main content

C-Reactive Protein and Other Inflammatory Markers in Cardiovascular Disease

  • Chapter

Part of the book series: Contemporary Cardiology ((CONCARD))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO III, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F; Centers for Disease Control and Prevention; American Heart Association. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003;107:499–511.

    Article  PubMed  Google Scholar 

  2. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, Gudnason V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004;350:1387–1397.

    Article  PubMed  CAS  Google Scholar 

  3. Tillett WS, Francis TJ. Serological reactions in pneumonia with a nonprotein somatic fraction of pneumococcus. Exp Med 1930;52:561–571.

    Article  CAS  Google Scholar 

  4. Meier-Ewert HK, Ridker PM, Rifai N, Price M, Dinges DF, Mullington JM. Absence of diurnal variation of C-reactive protein concentrations in healthy subjects. Clin Chem 2001;47:426–430.

    PubMed  CAS  Google Scholar 

  5. Angleton P, Chandler WL, Schmer G. Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation 1989;79:101–106.

    PubMed  CAS  Google Scholar 

  6. Fröhlich M, Sund M, Thorand B, Hutchinson WL, Pepys MB, Koenig W. Lack of seasonal variation in C-reactive protein. Clin Chem 2002;48:575–577.

    PubMed  Google Scholar 

  7. Frohlich M, Sund M, Russ S, Hoffmeister A, Fischer HG, Hombach V, Koenig W. Seasonal variations of rheological and hemostatic parameters, and acute phase reactants in young, healthy subjects. Arterioscler Thromb Vasc Biol 1997;17:2692–2697.

    PubMed  CAS  Google Scholar 

  8. Kushner I, Broder ML, Karp D. Control of the acute phase response. Serum C-reactive protein kinetics after acute myocardial infarction. J Clin Invest 1978;61:235–242.

    PubMed  CAS  Google Scholar 

  9. Calabro P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 2003;108:1930.

    Article  PubMed  CAS  Google Scholar 

  10. Jabs WJ, Theissing E, Nitschke M, Bechtel JF, Duchrow M, Mohamed S, Jahrbeck B, Sievers HH, Steinhoff J, Bartels C. Local generation of C-reactive protein in diseased coronary artery venous bypass grafts and normal vascular tissue. Circulation 2003;108:1428–1431.

    Article  PubMed  CAS  Google Scholar 

  11. Yasojima K, Schwab C, McGeer EG, McGeer PL. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am J Pathol 2001;158:1039–1051.

    PubMed  CAS  Google Scholar 

  12. Ishikawa T, Hatakeyama K, Imamura T, Date H, Shibata Y, Hikichi Y, Asada Y, Eto T. Involvement of C-reactive protein obtained by directional coronary atherectomy in plaque instability and developing restenosis in patients with stable or unstable angina pectoris. Am J Cardiol 2003;91: 287–292.

    Google Scholar 

  13. Burke AP, Tracy RP, Kolodgie F, Malcom GT, Zieske A, Kutys R, Pestaner J, Smialek J, Virmani R. Elevated C-reactive protein values and atherosclerosis in sudden coronary death: association with different pathologies. Circulation 2002;105:2019–2023.

    Article  PubMed  CAS  Google Scholar 

  14. Maier W, Altwegg LA, Corti R, Gay S, Hersberger M, Maly FE, Sutsch G, Roffi M, Neidhart M, Eberli FR, Tanner FC, Gobbi S, von Eckardstein A, Luscher TF. Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: locally increased interleukin-6 and serum amyloid A but decreased C-reactive protein. Circulation 2005;111:1355–1361.

    Article  PubMed  CAS  Google Scholar 

  15. Dong Q, Wright JR. Expression of C-reactive protein by alveolar macrophages. J Immunol 1996;156:4815–4820.

    PubMed  CAS  Google Scholar 

  16. Yasojima K, Schwab C, McGeer EG, McGeer PL. Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer’s disease. Brain Res 2000;887:80–89.

    Article  PubMed  CAS  Google Scholar 

  17. Jabs WJ, Logering BA, Gerke P, Kreft B, Wolber EM, Klinger MH, Fricke L, Steinhoff J. The kidney as a second site of human C-reactive protein formation in vivo. Eur J Immunol 2003;33: 152–161.

    Article  PubMed  CAS  Google Scholar 

  18. Calabro P, Chang DW, Willerson JT, Yeh ET. Release of C-reactive protein in response to inflammatory cytokines by human adipocytes: linking obesity to vascular inflammation. J Am Coll Cardiol 2005;46:1112–1113.

    Article  PubMed  CAS  Google Scholar 

  19. Zwaka TP, Hombach V, Torzewski J. C-reactive protein-mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation 2001;103:1194–1197.

    PubMed  CAS  Google Scholar 

  20. Volanakis JE. Complement activation by C-reactive protein complexes. Ann N Y Acad Sci 1982;389:235–250.

    Article  PubMed  CAS  Google Scholar 

  21. Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW. The major receptor for C-reactive protein on leukocytes is FCγ receptor II. J Exp Med 1999;190:585–590.

    Article  PubMed  CAS  Google Scholar 

  22. Torzewski J, Torzewski M, Bowyer DE, Frohlich M, Koenig W, Waltenberger J, Fitzsimmons C, Hombach V. C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arterioscler Thromb Vasc Biol 1998;18:1386–1392.

    PubMed  CAS  Google Scholar 

  23. Verma S, Li SH, Badiwala MV, Weisel RD, Fedak PW, Li RK, Dhillon B, Mickle DA. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation 2002;105:1890–1896.

    Article  PubMed  CAS  Google Scholar 

  24. Ballou SP, Lozanski G. Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine 1992;4:361–368.

    Article  PubMed  CAS  Google Scholar 

  25. Jones SA, Novick D, Horiuchi S, Yamamoto N, Szalai AJ, Fuller GM. C-reactive protein: a physiological activator of interleukin 6 receptor shedding. J Exp Med 1999;189:599–604.

    Article  PubMed  CAS  Google Scholar 

  26. Torzewski M, Rist C, Mortensen RF, Zwaka TP, Bienek M, Waltenberger J, Koenig W, Schmitz G, Hombach V, Torzewski J. C-reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol 2000;20:2094–2099.

    PubMed  CAS  Google Scholar 

  27. Pasceri V, Chang J, Willerson JT, Yeh ETH. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation 2001;103:2531–2534.

    PubMed  CAS  Google Scholar 

  28. Han KH, Hong KH, Park JH, Ko J, Kang DH, Choi KJ, Hong MK, Park SW, Park SJ. C-reactive protein promotes monocyte chemoattractant protein-1—mediated chemotaxis through upregulating CC chemokine receptor 2 expression in human monocytes. Circulation 2004;109: 2566–2571.

    Google Scholar 

  29. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000;102:2165–2168.

    PubMed  CAS  Google Scholar 

  30. Nakagomi A, Freedman SB, Geczy CL. Interferon-gamma and lipopolysaccharide potentiate monocyte tissue factor induction by C-reactive protein: relationship with age, sex, and hormone replacement treatment. Circulation 2000;101:1785–1791.

    PubMed  CAS  Google Scholar 

  31. Cermak J, Key NS, Bach RR, Balla J, Jacob HS, Vercellotti GM. CRP induces human peripheral blood monocytes to synthesize tissue factor. Blood 1993;82:513–520.

    PubMed  CAS  Google Scholar 

  32. Paffen E, Vos HL, Bertina RM. C-reactive protein does not directly induce tissue factor in human monocytes. Arterioscler Thromb Vasc Biol 2004;24:975–981.

    Article  PubMed  CAS  Google Scholar 

  33. Blann AD, Lip GY. Effects of CRP on the release of von Willebrand factor, E-selectin, thrombomodulin and intercellular adhesion molecule-1 from HUVEC. Blood Coagul Fibrinolysis 2003;14:335–340.

    Article  PubMed  CAS  Google Scholar 

  34. Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 2003;107:398–404.

    Article  PubMed  CAS  Google Scholar 

  35. Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, Dhillon B, Weisel RD, Li RK, Mickle DA, Stewart DJ. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002;106:913–919.

    Article  PubMed  CAS  Google Scholar 

  36. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 2002;106:1439–1441.

    Article  PubMed  CAS  Google Scholar 

  37. Nagoshi Y, Kuwasako K, Cao YN, Kitamura K, Eto T. Effects of C-reactive protein on atherogenic mediators and adrenomedullin in human coronary artery endothelial and smooth muscle cells. Biochem Biophys Res Commun 2004;314:1057–1063.

    Article  PubMed  CAS  Google Scholar 

  38. van den Berg CW, Taylor KE, Lang D. C-reactive protein-induced in vitro vasorelaxation is an artefact caused by the presence of sodium azide in commercial preparations. Arterioscler Thromb Vasc Biol 2004;24:e168–e171.

    Google Scholar 

  39. Taylor KE, Giddings JC, van den Berg CW. C-reactive protein-induced in vitro endothelial cell activation is an artefact caused by azide and lipopolysaccharide. Arterioscler Thromb Vasc Biol 2005;25:1225–1230.

    Article  PubMed  CAS  Google Scholar 

  40. Nerurkar SS, McDevitt PJ, Scott GF, Johanson KO, Willette RN, Yue TL. Lipopolysaccharide (LPS) contamination plays the real role in C-reactive protein-induced IL-6 secretion from human endothelial cells in vitro. Arterioscler Thromb Vasc Biol 2005;25:e136.

    Google Scholar 

  41. Singh U, Devaraj S, Jialal I. C-reactive protein decreases tissue plasminogen activator activity in human aortic endothelial cells: evidence that C-reactive protein is a procoagulant. Arterioscler Thromb Vasc Biol 2005;25:2216–2221.

    Article  PubMed  CAS  Google Scholar 

  42. Bisoendial RJ, Kastelein JJ, Levels JH, Zwaginga JJ, van den Bogaard B, Reitsma PH, Meijers JC, Hartman D, Levi M, Stroes ES. Activation of inflammation and coagulation after infusion of C-reactive protein in humans. Circ Res 2005;96:714–716.

    Article  PubMed  CAS  Google Scholar 

  43. Bisoendial R, Kastelein J, Stroes E. In response to van den Berg et al: on the direct actions of CRP in humans. Circ Res 2005;97:e71.

    Article  PubMed  CAS  Google Scholar 

  44. Szalai AJ, McCrory MA. Varied biologic functions of C-reactive protein: lessons learned from transgenic mice. Immunol Res 2002;26:279–287.

    Article  PubMed  CAS  Google Scholar 

  45. Danenberg HD, Szalai AJ, Swaminathan RV, Peng L, Chen Z, Seifert P, Fay WP, Simon DI, Edelman ER. Increased thrombosis after arterial injury in human C-reactive protein-transgenic mice. Circulation 2003;108:512–515.

    Article  PubMed  CAS  Google Scholar 

  46. Paul A, Ko KW, Li L, Yechoor V, McCrory MA, Szalai AJ, Chan L. C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Circulation 2004;109: 647–655.

    Article  PubMed  CAS  Google Scholar 

  47. Hirschfield GM, Gallimore JR, Kahan MC, Hutchinson WL, Sabin CA, Benson GM, Dhillon AP, Tennent GA, Pepys MB. Transgenic human C-reactive protein is not proatherogenic in apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 2005;102:8309–8314.

    Article  PubMed  CAS  Google Scholar 

  48. Trion A, de Maat MP, Jukema JW, van der Laarse A, Maas MC, Offerman EH, Havekes LM, Szalai AJ, Princen HM, Emeis JJ. No effect of C-reactive protein on early atherosclerosis development in apolipoprotein E*3-leiden/human C-reactive protein transgenic mice. Arterioscler Thromb Vasc Biol 2005;25:1635–1640.

    Article  PubMed  CAS  Google Scholar 

  49. Reifenberg K, Lehr HA, Baskal D, Wiese E, Schaefer SC, Black S, Samols D, Torzewski M, Lackner KJ, Husmann M, Blettner M, Bhakdi S. Role of C-reactive protein in atherogenesis: can the apolipoprotein E knockout mouse provide the answer? Arterioscler Thromb Vasc Biol 2005;25: 1641–1646.

    Google Scholar 

  50. Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, Gallimore JR, Pepys MB. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 2000;321:199–204.

    Article  PubMed  CAS  Google Scholar 

  51. Boekholdt SM, Hack CE, Sandhu MS, Luben R, Bingham SA, Wareham NJ, Peters RJ, Jukema JW, Day NE, Kastelein JJ, Khaw KT. C-reactive protein levels and coronary artery disease incidence and mortality in apparently healthy men and women: The EPIC-Norfolk prospective population study 1993–2003. Atherosclerosis 2006;187(2):415–422 [2005 Oct 27; Epub ahead of print].

    Article  PubMed  CAS  Google Scholar 

  52. Cushman M, Arnold AM, Psaty BM, Manolio TA, Kuller LH, Burke GL, Polak JF, Tracy RP. C-reactive protein and the 10-year incidence of coronary heart disease in older men and women: the Cardiovascular Health Study. Circulation 2005;112:25–31.

    Article  PubMed  CAS  Google Scholar 

  53. Koenig W, Lowel H, Baumert J, Meisinger C. C-reactive protein modulates risk prediction based on the Framingham Score: implications for future risk assessment: results from a large cohort study in southern Germany. Circulation 2004;109:1349–1353.

    Article  PubMed  Google Scholar 

  54. Ridker PM; JUPITER Study Group. Rosuvastatin in the primary prevention of cardiovascular disease among patients with low levels of low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein: rationale and design of the JUPITER trial. Circulation 2003; 108:2292–2297.

    Article  PubMed  Google Scholar 

  55. Weissenbach J, Chernajovsky Y, Zeevi M, Shulman L, Soreq H, Nir U, Wallach D, Perricaudet M, Tiollais P, Revel M. Two interferon mRNAs in human fibroblasts: in vitro translation and Escherichia coli cloning studies. Proc Natl Acad Sci USA 1980;77:7152–7156.

    Article  PubMed  CAS  Google Scholar 

  56. Aarden LA, De Groot ER, Schaap OL, Lansdorp PM. Production of hybridoma growth factor by human monocytes. Eur J Immunol 1987;17:1411–1416.

    Article  PubMed  Google Scholar 

  57. Jirik FR, Podor TJ, Hirano T, Kishimoto T, Loskutoff DJ, Carson DA, Lotz M. Bacterial lipopolysaccharide and inflammatory mediators augment IL-6 secretion by human endothelial cells. J Immunol 1989;142:144–147.

    PubMed  CAS  Google Scholar 

  58. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997;82:4196–4200.

    Article  PubMed  CAS  Google Scholar 

  59. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J 1990;265:621–636.

    PubMed  CAS  Google Scholar 

  60. Amrani DL. Regulation of fibrinogen biosynthesis: glucocorticoid and interleukin-6 control. Blood Coagul Fibrinolysis 1990;1:443–446.

    Article  PubMed  CAS  Google Scholar 

  61. Seino Y, Ikeda U, Ikeda M, Yamamoto K, Misawa Y, Hasegawa T, Kano S, Shimada K. Interleukin-6 gene transcripts are expressed in human atherosclerotic lesions. Cytokine 1994; 6:87–91.

    Article  PubMed  CAS  Google Scholar 

  62. Rus HG, Vlaicu R, Niculescu F. Interleukin-6 and interleukin-8 protein and gene expression in human arterial atherosclerotic wall. Atherosclerosis 1996;127:263–271.

    Article  PubMed  CAS  Google Scholar 

  63. Schieffer B, Schieffer E, Hilfiker-Kleiner D, Hilfiker A, Kovanen PT, Kaartinen M, Nussberger J, Harringer W, Drexler H. Expression of angiotensin II and interleukin-6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation 2000;101:1372–1378.

    PubMed  CAS  Google Scholar 

  64. Schieffer B, Selle T, Hilfiker A, Hilfiker-Kleiner D, Grote K, Tietge UJ, Trautwein C, Luchtefeld M, Schmittkamp C, Heeneman S, Daemen MJ, Drexler H. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation 2004;110:3493–3500.

    Article  PubMed  CAS  Google Scholar 

  65. Biswas P, Delfanti F, Bernasconi S, Mengozzi M, Cota M, Polentarutti N, Mantovani A, Lazzarin A, Sozzani S, Poli G. Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood 1998;91:258–265.

    PubMed  CAS  Google Scholar 

  66. Pigott R, Dillon LP, Hemingway IH, Gearing AJ. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophys Res Commun 1992;187:584–589.

    Article  PubMed  CAS  Google Scholar 

  67. Huber SA, Sakkinen P, Conze D, Hardin N, Tracy R. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol 1999;19:2364–2367.

    PubMed  CAS  Google Scholar 

  68. Kerr R, Stirling D, Ludlam CA. Interleukin 6 and haemostasis. Br J Haematol 2001;115:3–12.

    Article  PubMed  CAS  Google Scholar 

  69. Biasucci LM, Liuzzo G, Fantuzzi G, Caligiuri G, Rebuzzi AG, Ginnetti F, Dinarello CA, Maseri A. Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in-hospital coronary events. Circulation 1999;99:2079–2084.

    PubMed  CAS  Google Scholar 

  70. Lindmark E, Diderholm E, Wallentin L, Siegbahn A. Relationship between interleukin-6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA 2001;286:2107–2113.

    Article  PubMed  CAS  Google Scholar 

  71. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000;101: 1767–1772.

    Google Scholar 

  72. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000;342:836–843.

    Article  PubMed  CAS  Google Scholar 

  73. Pradhan AD, Manson JE, Rossouw JE, Siscovick DS, Mouton CP, Rifai N, Wallace RB, Jackson RD, Pettinger MB, Ridker PM. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative observational study. JAMA 2002;288:980–987.

    Article  PubMed  CAS  Google Scholar 

  74. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH Jr, Heimovitz H, Cohen HJ, Wallace R. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 1999;106:506–512.

    Article  PubMed  CAS  Google Scholar 

  75. Volpato S, Guralnik JM, Ferrucci L, Balfour J, Chaves P, Fried LP, Harris TB. Cardiovascular disease, interleukin-6, and risk of mortality in older women: the women’s health and aging study. Circulation 2001;103:947–953.

    PubMed  CAS  Google Scholar 

  76. Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol 2003;73:213–224.

    Article  PubMed  CAS  Google Scholar 

  77. Skurk T, Kolb H, Müller-Scholze S, Röhrig K, Hauner H, Herder C. The proatherogenic cytokine interleukin-18 is secreted by human adipocytes. Eur J Endocrinol 2005;152:871–876.

    Article  CAS  Google Scholar 

  78. Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, Hayashi N, Higashino K, Okamura H, Nakanishi K, Kurimoto M, Tanimoto T, Flavell RA, Sato V, Harding MW, Livingston DJ, Su MS. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 1997;275:206–209.

    Article  PubMed  CAS  Google Scholar 

  79. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K, Akita K, Namba M, Tanabe F, Konishi K, Fukuda S, Kurimoto M. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 1995;378:88–91.

    Article  PubMed  CAS  Google Scholar 

  80. Micallef MJ, Ohtsuki T, Kohno K, Tanabe F, Ushio S, Namba M, Tanimoto T, Torigoe K, Fujii M, Ikeda M, Fukuda S, Kurimoto M. Interferon-γ-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-γ production. Eur J Immunol 1996;26:1647–1651.

    Article  PubMed  CAS  Google Scholar 

  81. Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schonbeck U. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med 2002;195:245–257.

    Article  PubMed  CAS  Google Scholar 

  82. Nold M, Goede A, Eberhardt W, Pfeilschifter J, Muehl H. IL-18 initiates release of matrix metalloproteinase-9 from peripheral blood mononuclear cells without affecting tissue inhibitor of matrix metalloproteinases-1: suppression by TNF-α blockage and modulation by IL-10. Naunyn Schmiedebergs Arch Pharmacol 2003;367:68–75.

    Article  PubMed  CAS  Google Scholar 

  83. Ishida Y, Migita K, Izumi Y, Nakao K, Ida H, Kawakami A, Abiru S, Ishibashi H, Eguchi K, Ishii N. The role of IL-18 in the modulation of matrix metalloproteinases and migration of human natural killer (NK) cells. FEBS Lett 2004;569:156–160.

    Article  PubMed  CAS  Google Scholar 

  84. Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, Tedgui A. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 2001;104:1598–1603.

    Article  PubMed  CAS  Google Scholar 

  85. Mallat Z, Corbaz A, Scoazec A, Graber P, Alouani S, Esposito B, Humbert Y, Chvatchko Y, Tedgui A. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 2001;89:E41–E45.

    Google Scholar 

  86. Elhage R, Jawien J, Rudling M, Ljunggren HG, Takeda K, Akira S, Bayard F, Hansson GK. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 2003;59:234–240.

    Article  PubMed  CAS  Google Scholar 

  87. Whitman SC, Ravisankar P, Daugherty A. Interleukin-18 enhances atherosclerosis in Apolipoprotein E-/- mice through release of interferon-γ. Circ Res 2002;90:e34–e38.

    Article  PubMed  CAS  Google Scholar 

  88. Tenger C, Sundborger A, Jawien J, Zhou X. IL-18 accelerates atherosclerosis accompanied by elevation of IFN-γ and CXCL16 expression independently of T cells. Arterioscler Thromb Vasc Biol 2005;25:791–796.

    Article  PubMed  CAS  Google Scholar 

  89. de Nooijer R, von der Thusen JH, Verkleij CJ, Kuiper J, Jukema JW, van der Wall EE, van Berkel JC, Biessen EA. Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E-deficient mice. Arterioscler Thromb Vasc Biol 2004;24:2313–2319.

    Article  PubMed  CAS  Google Scholar 

  90. Mallat Z, Henry P, Fressonnet R, Alouani S, Scoazec A, Beaufils P, Chvatchko Y, Tedgui A. Increased plasma concentrations of interleukin-18 in acute coronary syndromes. Heart 2002;88: 467–469.

    Google Scholar 

  91. Rosso R, Roth A, Herz I, Miller H, Keren G, George J. Serum levels of interleukin-18 in patients with stable and unstable angina pectoris. Int J Cardiol 2005;98:45–48.

    Article  PubMed  Google Scholar 

  92. Kawasaki D, Tsujino T, Morimoto S, Fujioka Y, Naito Y, Okumura T, Masutani M, Shimizu H, Yuba M, Ueda A, Ohyanagi M, Kashiwamura S, Okamura H, Iwasaki T. Usefulness of circulating interleukin-18 concentration in acute myocardial infarction as a risk factor for late restenosis after emergency coronary angioplasty. Am J Cardiol 2003;91:1258–1261.

    Article  PubMed  CAS  Google Scholar 

  93. Yamashita H, Shimada K, Seki E, Mokuno H, Daida H. Concentrations of interleukins, interferon, and C-reactive protein in stable and unstable angina pectoris. Am J Cardiol 2003;91:133–136.

    Article  PubMed  CAS  Google Scholar 

  94. Narins CR, Lin DA, Burton PB, Jin Z-G, Berk BC. Interleukin-18 and interleukin-18 binding protein levels before and after percutaneous coronary intervention in patients with and without recent myocardial infarction. Am J Cardiol 2004;94:1285–1287.

    Article  PubMed  CAS  Google Scholar 

  95. Chalikias GK, Tziakas DN, Kaski JC, Hatzinikolaou EI, Stakos DA, Tentes IK, Kortsaris A, Hatseras DI. Interleukin-18: Interleukin-10 ratio and in-hospital adverse events in patients with acute coronary syndrome. Atherosclerosis 2005;182:135–143.

    PubMed  CAS  Google Scholar 

  96. Blankenberg S, Tiret L, Bickel C, Peetz D, Cambien F, Meyer J, Rupprecht HJ; AtheroGene Investigators. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 2002;106:24–30.

    Article  PubMed  CAS  Google Scholar 

  97. Tiret L, Godefroy T, Lubos E, Nicaud V, Tregouet DA, Barbaux S, Schnabel R, Bickel C, Espinola-Klein C, Poirier O, Perret C, Munzel T, Rupprecht HJ, Lackner K, Cambien F, Blankenberg S; AtheroGene Investigators. Genetic analysis of the interleukin-18 system highlights the role of the interleukin-18 gene in cardiovascular disease. Circulation 2005;112:643–650.

    Article  PubMed  CAS  Google Scholar 

  98. Blankenberg S, Luc G, Ducimetiere P, Arveiler D, Ferrieres J, Amouyel P, Evans A, Cambien F, Tiret L; PRIME Study Group. Interleukin-18 and the risk of coronary heart disease in European men: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation 2003;108:2453–2459.

    Article  PubMed  CAS  Google Scholar 

  99. Koenig W, Khuseyinova N, Baumert J, Thorand B, Loewel H, Chambless L, Meisinger C, Schneider A, Martin S, Kolb H, Herder C. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: Results from the MONICA/KORA Augsburg Case-Cohort Study, 1984–2002. 2006;26:2745–2751.

    Google Scholar 

  100. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975;72:3666–3670.

    Article  PubMed  CAS  Google Scholar 

  101. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997;385:729–733.

    Article  PubMed  CAS  Google Scholar 

  102. Anderson HD, Rahmutula D, Gardner DG. Tumor necrosis factor-alpha inhibits endothelial nitric-oxide synthase gene promoter activity in bovine aortic endothelial cells. J Biol Chem 2004;279: 963–969.

    Article  PubMed  CAS  Google Scholar 

  103. Gertzberg N, Neumann P, Rizzo V, Johnson A. NAD(P)H oxidase mediates the endothelial barrier dysfunction induced by TNF-alpha. Am J Physiol Lung Cell Mol Physiol 2004;286:L37–L48.

    Article  PubMed  CAS  Google Scholar 

  104. Couffinhal T, Duplaa C, Labat L, Lamaziere JM, Moreau C, Printseva O, Bonnet J. Tumor necrosis factor-alpha stimulates ICAM-1 expression in human vascular smooth muscle cells. Arterioscler Thromb 1993;13:407–414.

    PubMed  CAS  Google Scholar 

  105. Schuger L, Varani J, Marks RM, Kunkel SL, Johnson KJ, Ward PA. Cytotoxicity of tumor necrosis factor-alpha for human umbilical vein endothelial cells. Lab Invest 1989;61:62–68.

    PubMed  CAS  Google Scholar 

  106. Goldblum SE, Sun WL. Tumor necrosis factor-alpha augments pulmonary arterial transendothelial albumin flux in vitro. Am J Physiol 1990;258:L57–L67.

    PubMed  CAS  Google Scholar 

  107. Kume N, Murase T, Moriwaki H, Aoyama T, Sawamura T, Masaki T, Kita T. Inducible expression of lectin-like oxidized LDL receptor-1 in vascular endothelial cells. Circ Res 1998;83:322–327.

    PubMed  CAS  Google Scholar 

  108. Porter KE, Turner NA, O’Regan DJ, Ball SG. Tumor necrosis factor alpha induces human atrial myofibroblast proliferation, invasion and MMP-9 secretion: inhibition by simvastatin. Cardiovasc Res 2004;64:507–515.

    Article  PubMed  CAS  Google Scholar 

  109. Migita K, Eguchi K, Kawabe Y, Ichinose Y, Tsukada T, Aoyagi T, Nakamura H, Nagataki S. TNF-alpha-mediated expression of membrane-type matrix metalloproteinase in rheumatoid synovial fibroblasts. Immunology 1996;89:553–557.

    Article  PubMed  CAS  Google Scholar 

  110. Lee WH, Kim SH, Lee Y, Lee BB, Kwon B, Song H, Kwon BS, Park JE. Tumor necrosis factor receptor superfamily 14 is involved in atherogenesis by inducing proinflammatory cytokines and matrix metalloproteinases. it Arterioscler Thromb Vasc Biol 2001;21:2004–2010.

    Article  PubMed  CAS  Google Scholar 

  111. Creemers EE, Cleutjens JP, Smits JF, Daemen MJ. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 2001;89:201–210.

    Article  PubMed  CAS  Google Scholar 

  112. Shingu M, Nagai Y, Isayama T, Naono T, Nobunaga M, Nagai Y. The effects of cytokines on metalloproteinase inhibitors (TIMP) and collagenase production by human chondrocytes and TIMP production by synovial cells and endothelial cells. it Clin Exp Immunol 199;94:145–149.

    Google Scholar 

  113. Boyle JJ, Weissberg PL, Bennett MR. Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler Thromb Vasc Biol 2003;23:1553–1558.

    Article  PubMed  CAS  Google Scholar 

  114. Branen L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2004;24:2137–2142.

    Article  PubMed  CAS  Google Scholar 

  115. Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H, Saito K, Sekikawa K, Seishima M. Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 2005;180:11–17.

    Article  PubMed  CAS  Google Scholar 

  116. Koukkunen H, Penttila K, Kemppainen A, Halinen M, Penttila I, Rantanen T, Pyorala K. C-reactive protein, fibrinogen, interleukin-6 and tumour necrosis factor-alpha in the prognostic classification of unstable angina pectoris. Ann Med 2001;33:37–47.

    PubMed  CAS  Google Scholar 

  117. Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, Braunwald E. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 2000;101:2149–2153.

    PubMed  CAS  Google Scholar 

  118. Cesari M, Penninx BW, Newman AB, Kritchevsky SB, Nicklas BJ, Sutton-Tyrrell K, Rubin SM, Ding J, Simonsick EM, Harris TB, Pahor M. Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation 2003;108:2317–2322.

    Article  PubMed  CAS  Google Scholar 

  119. Henschen A, McDonagh J. Fibrinogen, fibrin and factor XIII. In: Zwaal RFA, Henker HC, eds. Blood Coagulation. Amsterdam: Elsevier, 1986:171–242.

    Google Scholar 

  120. Scrutton MC, Ross-Murphy SB, Bennett GM, Stirling Y, Meade TW. Changes in clot deformability—a possible explanation for the epidemiological association between plasma fibrinogen concentration and myocardial infarction. Blood Coagul Fibrinolysis 1994;5:719–723.

    PubMed  CAS  Google Scholar 

  121. McDonagh J, Lee MH. How does hyperfibrinogenemia lead to thrombosis? Fibrinol Proteol 1997;11(Suppl 1):13–17.

    Article  CAS  Google Scholar 

  122. Koenig W. Fibrin(ogen) in cardiovascular disease: an update. Thromb Haemost 2003;89:601–609.

    PubMed  CAS  Google Scholar 

  123. Retzinger GS, DeAnglis AP, Patuto SJ. Adsorption of fibrinogen to droplets of liquid hydrophobic phases. Functionality of the bound protein and biological implications. Arterioscler Thromb Vasc Biol 1998;18:1948–1957.

    PubMed  CAS  Google Scholar 

  124. Rabbani LE, Loscalzo J. Recent observations on the role of hemostatic determinants in the development of the atherothrombotic plaque. Atherosclerosis 1994;105:1–7.

    Article  PubMed  CAS  Google Scholar 

  125. Schneider DJ, Taatjes DJ, Howard DB, Sobel BE. Increased reactivity of platelets induced by fibrinogen independent of its bindings to the IIb-IIIa surface glycoprotein: a potential contributor to cardiovascular risk. J Am Coll Cardiol 1999;33:261–266.

    Article  PubMed  CAS  Google Scholar 

  126. Fatah K, Hamsten A, Blomback B, Blomback M. Fibrin gel network characteristics and coronary heart disease: relations to plasma fibrinogen concentration, acute phase protein, serum lipoproteins and coronary atherosclerosis. Thromb Haemost 1992;68:130–135.

    PubMed  CAS  Google Scholar 

  127. Koenig W, Ernst E: The possible role of hemorheology in atherothrombogenesis. Atherosclerosis 1992;94:93–107.

    Article  PubMed  CAS  Google Scholar 

  128. Fibrinogen Studies Collaboration. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 2005;294: 1799–1809.

    Google Scholar 

  129. Kruithof EK. Plasminogen activator inhibitors—a review. Enzyme 1988;40:113–121.

    PubMed  CAS  Google Scholar 

  130. Vaughan DE. PAI-1 and atherothrombosis. J Thromb Haemost 2005;3:1879–1883.

    Article  PubMed  CAS  Google Scholar 

  131. Sawdey MS, Loskutoff DJ. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-alpha, and transforming growth factor-beta. J Clin Invest 1991;88:1346–1353.

    PubMed  CAS  Google Scholar 

  132. Emeis JJ, Kooistra T. Interleukin 1 and lipopolysaccharide induce an inhibitor of tissue-type plasminogen activator in vivo and in cultured endothelial cells. J Exp Med 1986;163:1260–1266.

    Article  PubMed  CAS  Google Scholar 

  133. Brogren H, Karlsson L, Andersson M, Wang L, Erlinge D, Jern S. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 2004;104:3943–3948.

    Article  PubMed  CAS  Google Scholar 

  134. Lindahl TL, Ohlsson PI, Wiman B. The mechanism of the reaction between human plasminogen-activator inhibitor 1 and tissue plasminogen activator. Biochem J 1990;265:109–113.

    PubMed  CAS  Google Scholar 

  135. Falkenberg M, Tjarnstrom J, Ortenwall P, Olausson M, Risberg B. Localization of fibrinolytic activators and inhibitors in normal and atherosclerotic vessels. Thromb Haemost 1996;75:933–938.

    PubMed  CAS  Google Scholar 

  136. Eitzman DT, Westrick RJ, Xu Z, Tyson J, Ginsburg D. Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery. Blood 2000;96:4212–4215.

    PubMed  CAS  Google Scholar 

  137. Eren M, Painter CA, Atkinson JB, Declerck PJ, Vaughan DE. Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation 2002;106:491–496.

    Article  PubMed  CAS  Google Scholar 

  138. Luttun A, Lupu F, Storkebaum E, Hoylaerts MF, Moons L, Crawley J, Bono F, Poole AR, Tipping P, Herbert JM, Collen D, Carmeliet P. Lack of plasminogen activator inhibitor-1 promotes growth and abnormal matrix remodeling of advanced atherosclerotic plaques in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2002;22:499–505.

    Article  PubMed  CAS  Google Scholar 

  139. Collet JP, Montalescot G, Vicaut E, Ankri A, Walylo F, Lesty C, Choussat R, Beygui F, Borentain M, Vignolles N, Thomas D. Acute release of plasminogen activator inhibitor-1 in ST-segment elevation myocardial infarction predicts mortality. Circulation 2003;108:391–394.

    Article  PubMed  CAS  Google Scholar 

  140. Hamsten A, Wiman B, de Faire U, Blomback M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985;313: 1557–1563.

    Article  PubMed  CAS  Google Scholar 

  141. Juhan-Vague I, Pyke SD, Alessi MC, Jespersen J, Haverkate F, Thompson SG. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. ECAT Study Group. European Concerted Action on Thrombosis and Disabilities. Circulation 1996;94: 2057–2063.

    PubMed  CAS  Google Scholar 

  142. Thogersen AM, Jansson JH, Boman K, Nilsson TK, Weinehall L, Huhtasaari F, Hallmans G. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998;98:2241–2247.

    PubMed  CAS  Google Scholar 

  143. Folsom AR, Aleksic N, Park E, Salomaa V, Juneja H, Wu KK. Prospective study of fibrinolytic factors and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vasc Biol 2001;21:611–617.

    PubMed  CAS  Google Scholar 

  144. Cushman M, Lemaitre RN, Kuller LH, Psaty BM, Macy EM, Sharrett AR, Tracy RP. Fibrinolytic activation markers predict myocardial infarction in the elderly. The Cardiovascular Health Study. Arterioscler Thromb Vasc Biol 1999;19:493–498.

    PubMed  CAS  Google Scholar 

  145. Lowe GD, Danesh J, Lewington S, Walker M, Lennon L, Thomson A, Rumley A, Whincup PH. Tissue plasminogen activator antigen and coronary heart disease. Prospective study and meta-analysis. Eur Heart J 2004;25:252–259.

    Article  PubMed  CAS  Google Scholar 

  146. Smith A, Patterson C, Yarnell J, Rumley A, Ben-Shlomo Y, Lowe G. Which hemostatic markers add to the predictive value of conventional risk factors for coronary heart disease and ischemic stroke? The Caerphilly Study. Circulation 2005;112:3080–3087.

    Article  PubMed  Google Scholar 

  147. Fancher TL, White RH, Kravitz RL. Combined use of rapid D-Dimer testing and estimation of clinical probability in the diagnosis of deep vein thrombosis: systematic review. BMJ 2004; 329:821–828.

    Article  PubMed  Google Scholar 

  148. Stein PD, Hull RD, Patel KC, Olson RE, Ghali WA, Brant R, Biel RK, Bharadia V, Kalra NK. D-Dimer for the exclusion of acute venous thrombosis and pulmonary embolism: a systematic review. Ann Intern Med 2004;140:589–602.

    PubMed  Google Scholar 

  149. Wakai A, Gleeson A, Winter D. Role of fibrin D-Dimer testing in emergency medicine. Emerg Med J 2003;20:319–325.

    Article  PubMed  CAS  Google Scholar 

  150. Lowe GD. Fibrin D-Dimer and cardiovascular risk. Semin Vasc Med 2005;5:387–398.

    Article  PubMed  Google Scholar 

  151. Ridker PM, Hennekens CH, Cerskus A, Stampfer MJ. Plasma concentration of cross-linked fibrin degradation product (D-dimer) and the risk of future myocardial infarction among apparently healthy men. Circulation 1994;90:2236–2240.

    PubMed  CAS  Google Scholar 

  152. Lowe GD, Rumley A, Sweetnam PM, Yarnell JW, Rumley J. Fibrin D-dimer, markers of coagulation activation and the risk of major ischaemic heart disease in the caerphilly study. Thromb Haemost 2001;86:822–827.

    PubMed  CAS  Google Scholar 

  153. Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, Rumley A, Lowe GD. Fibrin fontsize79selectfont D-dimer and coronary heart disease: prospective study and meta-analysis. Circulation 2001;103: 2323–2327.

    PubMed  CAS  Google Scholar 

  154. Lowe GD, Rumley A, McMahon AD, Ford I, O’Reilly DS, Packard CJ; West of Scotland Coronary Prevention Study Group. Interleukin-6, fibrin D-dimer, and coagulation factors VII and XIIa in prediction of coronary heart disease. Arterioscler Thromb Vasc Biol 2004;24:1529–1534.

    Article  PubMed  CAS  Google Scholar 

  155. Pradhan AD, LaCroix AZ, Langer RD, Trevisan M, Lewis CE, Hsia JA, Oberman A, Kotchen JM, Ridker PM. Tissue plasminogen activator antigen and D-dimer as markers for atherothrombotic risk among healthy postmenopausal women. Circulation 2004;110:292–300.

    Article  PubMed  CAS  Google Scholar 

  156. Ruggeri ZM. Von Willebrand factor. Curr Opin Hematol 2003;10:142–149.

    Article  PubMed  CAS  Google Scholar 

  157. Wagner DD. Cell biology of von Willebrand factor. Annu Rev Cell Biol 1990;6:217–246.

    Article  PubMed  CAS  Google Scholar 

  158. Mayadas TN, Wagner DD. von Willebrand factor biosynthesis and processing. Ann N Y Acad Sci 1991;614:153–166.

    Article  PubMed  CAS  Google Scholar 

  159. van Mourik JA, Romani de Wit T, Voorberg J. Biogenesis and exocytosis of Weibel-Palade bodies. Histochem Cell Biol 2002;117:113–122.

    Article  PubMed  CAS  Google Scholar 

  160. Mannucci PM. Treatment of von Willebrand’s disease. N Engl J Med 2004;351:683–694.

    Article  PubMed  CAS  Google Scholar 

  161. Mannucci PM. von Willebrand factor: a marker of endothelial damage? Arterioscler Thromb Vasc Biol 1998;18:1359–1362.

    PubMed  CAS  Google Scholar 

  162. Thompson SG, Kienast J, Pyke SD, Haverkate F, van de Loo JC. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med 1995;332:635–641.

    Article  PubMed  CAS  Google Scholar 

  163. Wiman B, Andersson T, Hallqvist J, Reuterwall C, Ahlbom A, deFaire U. Plasma levels of tissue plasminogen activator/plasminogen activator inhibitor-1 complex and von Willebrand factor are significant risk markers for recurrent myocardial infarction in the Stockholm Heart Epidemiology Program (SHEEP) study. Arterioscler Thromb Vasc Biol 2000;20:2019–2023.

    PubMed  CAS  Google Scholar 

  164. Meade TW, Cooper JA, Stirling Y, Howarth DJ, Ruddock V, Miller GJ. Factor VIII, ABO blood group and the incidence of ischaemic heart disease. Br J Haematol 1994;88:601–607.

    PubMed  CAS  Google Scholar 

  165. Whincup PH, Danesh J, Walker M, Lennon L, Thomson A, Appleby P, Rumley A, Lowe GD. von Willebrand factor and coronary heart disease: prospective study and meta-analysis. Eur Heart J 200;23:1764–1770.

    Article  Google Scholar 

  166. Morange PE, Simon C, Alessi MC, Luc G, Arveiler D, Ferrieres J, Amouyel P, Evans A, Ducimetiere P, Juhan-Vague I; PRIME Study Group. Endothelial cell markers and the risk of coronary heart disease: the Prospective Epidemiological Study of Myocardial Infarction (PRIME) study. Circulation 2004;109:1343–1348.

    Article  PubMed  CAS  Google Scholar 

  167. Friedman GD, Klatsky AL, Siegelaub AB. The leukocyte count as a predictor of myocardial infarction. N Engl J Med 1974;290:1275–1278.

    Article  PubMed  CAS  Google Scholar 

  168. Madjid M, Awan I, Willerson JT, Casscells SW. Leukocyte count and coronary heart disease: implications for risk assessment. J Am Coll Cardiol 2004;44:1945–1956.

    Article  PubMed  Google Scholar 

  169. Coller BS. Leukocytosis and ischemic vascular disease morbidity and mortality: is it time to intervene? Arterioscler Thromb Vasc Biol 2005;25:658–670.

    Article  PubMed  CAS  Google Scholar 

  170. Naruko T, Ueda M, Haze K, van der Wal AC, van der Loos CM, Itoh A, Komatsu R, Ikura Y, Ogami M, Shimada Y, Ehara S, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker AE. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 2002;106:2894–2900.

    Article  PubMed  Google Scholar 

  171. Hoover RL, Karnovsky MJ, Austen KF, Corey EJ, Lewis RA. Leukotriene B4 action on endothelium mediates augmented neutrophil/endothelial adhesion. Proc Natl Acad Sci USA 1984;81: 2191–2193.

    Article  PubMed  CAS  Google Scholar 

  172. Sabatine MS, Morrow DA, Cannon CP, Murphy SA, Demopoulos LA, DiBattiste PM, McCabe CH, Braunwald E, Gibson CM. Relationship between baseline white blood cell count and degree of coronary artery disease and mortality in patients with acute coronary syndromes: a TACTICS-TIMI 18 (Treat Angina with Aggrastat and determine Cost of Therapy with an Invasive or Conservative Strategy–Thrombolysis in Myocardial Infarction 18 trial) substudy. J Am Coll Cardiol 2002;40: 1761–1768.

    Article  PubMed  Google Scholar 

  173. Wong CK, French JK, Gao W, White HD. Relationship between initial white blood cell counts, stage of acute myocardial infarction evolution at presentation, and incidence of Thrombolysis in Myocardial Infarction-3 flow after streptokinase. Am Heart J 2003;145:95–102.

    Article  PubMed  Google Scholar 

  174. Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 1998;279:1477–1482.

    Article  PubMed  CAS  Google Scholar 

  175. Margolis KL, Manson JE, Greenland P, Rodabough RJ, Bray PF, Safford M, Grimm RH Jr, Howard BV, Assaf AR, Prentice R; Women’s Health Initiative Research Group. Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: the Women’s Health Initiative Observational Study. Arch Intern Med 2005;165:500–508.

    Article  PubMed  Google Scholar 

  176. Haim M, Boyko V, Goldbourt U, Battler A, Behar S. Predictive value of elevated white blood cell count in patients with preexisting coronary heart disease: the Bezafibrate Infarction Prevention Study. Arch Intern Med 2004;164:433–439.

    Article  PubMed  Google Scholar 

  177. Stewart RA, White HD, Kirby AC, Heritier SR, Simes RJ, Nestel PJ, West MJ, Colquhoun DM, Tonkin AM; Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) Study Investigators. White blood cell count predicts reduction in coronary heart disease mortality with pravastatin. Circulation 2005;111:1756–1762.

    Article  PubMed  CAS  Google Scholar 

  178. Grau AJ, Boddy AW, Dukovic DA, Buggle F, Lichy C, Brandt T, Hacke W; CAPRIE Investigators. Leukocyte count as an independent predictor of recurrent ischemic events. Stroke 2004;35: 1147–1152.

    Article  PubMed  Google Scholar 

  179. Horne BD, Anderson JL, John JM, Weaver A, Bair TL, Jensen KR, Renlund DG, Muhlestein JB; Intermountain Heart Collaborative Study Group. Which white blood cell subtypes predict increased cardiovascular risk? J Am Coll Cardiol 2005;45:1638–1643.

    Article  PubMed  Google Scholar 

  180. Wheeler JG, Mussolino ME, Gillum RF, Danesh J. Associations between differential leukocyte count and incident coronary heart disease: 1764 incident cases from seven prospective studies of 30,374 individuals. Eur Heart J 2004;25:1287–1292.

    Article  PubMed  Google Scholar 

  181. Nambi V. The use of myeloperoxidase as a risk marker for atherosclerosis. Curr Atheroscler Rep 2005;7:127–131.

    Article  PubMed  CAS  Google Scholar 

  182. Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol 2005;77:598–625.

    Article  PubMed  CAS  Google Scholar 

  183. Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 1994;94:437–444.

    PubMed  CAS  Google Scholar 

  184. Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 1997;99:1–7.

    Google Scholar 

  185. Malle E, Waeg G, Schreiber R, Grone EF, Sattler W, Grone HJ. Immunohistochemical evidence for the myeloperoxidase/H2O2/halide system in human atherosclerotic lesions: colocalization of myeloperoxidase and hypochlorite-modified proteins. Eur J Biochem 2000;267:4495–4503.

    Article  PubMed  CAS  Google Scholar 

  186. Eiserich JP, Baldus S, Brennan ML, Ma W, Zhang C, Tousson A, Castro L, Lusis AJ, Nauseef WM, White CR, Freeman BA. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 2002;296:2391–2394.

    Article  PubMed  CAS  Google Scholar 

  187. Abu-Soud HM, Hazen SL. Nitric oxide is a physiological substrate for mammalian peroxidases. J Biol Chem 2000;275:37524–37532.

    Article  PubMed  CAS  Google Scholar 

  188. Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M, Schmitt D, Fu X, Thomson L, Fox PL, Ischiropoulos H, Smith JD, Kinter M, Hazen SL. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 2004;114:529–541.

    Article  PubMed  CAS  Google Scholar 

  189. Bergt C, Pennathur S, Fu X, Byun J, O’Brien K, McDonald TO, Singh P, Anantharamaiah GM, Chait A, Brunzell J, Geary RL, Oram JF, Heinecke JW. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci USA 2004;101:13032–13037.

    Article  PubMed  CAS  Google Scholar 

  190. Kutter D, Devaquet P, Vanderstocken G, Paulus JM, Marchal V, Gothot A. Consequences of total and subtotal myeloperoxidase deficiency: risk or benefit? Acta Haematol 2000;104:10–15.

    Article  PubMed  CAS  Google Scholar 

  191. Brennan ML, Anderson MM, Shih DM, Qu XD, Wang X, Mehta AC, Lim LL, Shi W, Hazen SL, Jacob JS, Crowley JR, Heinecke JW, Lusis AJ. Increased atherosclerosis in myeloperoxidase-deficient mice. J Clin Invest 2001;107:419–430.

    PubMed  CAS  Google Scholar 

  192. McMillen TS, Heinecke JW, LeBoeuf RC. Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation 2005;111:2798–2804.

    Article  PubMed  CAS  Google Scholar 

  193. Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 2001;276:41279–41287.

    Article  PubMed  CAS  Google Scholar 

  194. Shabani F, McNeil J, Tippett L. The oxidative inactivation of tissue inhibitor of metalloproteinase-1 (TIMP-1) by hypochlorous acid (HOCl) is suppressed by anti-rheumatic drugs. Free Radic Res 1998;28:115–123.

    Article  PubMed  CAS  Google Scholar 

  195. Baldus S, Heeschen C, Meinertz T, Zeiher AM, Eiserich JP, Munzel T, Simoons ML, Hamm CW; CAPTURE Investigators. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 2003;108:1440–1445.

    Article  PubMed  CAS  Google Scholar 

  196. Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, Goormastic M, Pepoy ML, McErlean ES, Topol EJ, Nissen SE, Hazen SL. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 2003;349:1595–1604.

    Article  PubMed  CAS  Google Scholar 

  197. Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, Topol EJ, Sprecher DL, Hazen SL. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 2001;286:2136–2142.

    Article  PubMed  CAS  Google Scholar 

  198. Vita JA, Brennan ML, Gokce N, Mann SA, Goormastic M, Shishehbor MH, Penn MS, Keaney JF Jr, Hazen SL. Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation 2004;110:1134–1139.

    Article  PubMed  CAS  Google Scholar 

  199. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997;272:20963–20966.

    Article  PubMed  CAS  Google Scholar 

  200. Jessup W, Kritharides L, Stocker R. Lipid oxidation in atherogenesis: an overview. Biochem Soc Trans 2004;32:134–138.

    Article  PubMed  CAS  Google Scholar 

  201. Huang Y, Mironova M, Lopes-Virella MF. Oxidized LDL stimulates matrix metalloproteinase-1 expression in human vascular endothelial cells. Arterioscler Thromb Vasc Biol 1999;19:2640–2647.

    PubMed  CAS  Google Scholar 

  202. Xu XP, Meisel SR, Ong JM, Kaul S, Cercek B, Rajavashisth TB, Sharifi B, Shah PK. Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages. Circulation 1999;99:993–998.

    PubMed  CAS  Google Scholar 

  203. Li D, Liu L, Chen H, Sawamura T, Ranganathan S, Mehta JL. LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells. Circulation 2003;107:612–617.

    Article  PubMed  CAS  Google Scholar 

  204. Li D, Liu L, Chen H, Sawamura T, Mehta JL. LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 2003;23:816–821.

    Article  PubMed  CAS  Google Scholar 

  205. Holvoet P, Vanhaecke J, Janssens S, Van de Werf F, Collen D. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 1998;98:1487–1494.

    PubMed  CAS  Google Scholar 

  206. Toshima S, Hasegawa A, Kurabayashi M, Itabe H, Takano T, Sugano J, Shimamura K, Kimura J, Michishita I, Suzuki T, Nagai R. Circulating oxidized low density lipoprotein levels. A biochemical risk marker for coronary heart disease. Arterioscler Thromb Vasc Biol 2000;20:2243–2247.

    PubMed  CAS  Google Scholar 

  207. Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otsuka M, Komatsu R, Matsuo T, Itabe H, Takano T, Tsukamoto Y, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker AE. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 2001;103:1955–1960.

    PubMed  CAS  Google Scholar 

  208. Holvoet P, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, Collen D, Muls E, Van de Werf F. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2001;21:844–848.

    Article  PubMed  CAS  Google Scholar 

  209. Holvoet P, Stassen JM, Van Cleemput J, Collen D, Vanhaecke J. Oxidized low density lipoproteins in patients with transplant-associated coronary artery disease. Arterioscler Thromb Vasc Biol 1998;18:100–107.

    PubMed  CAS  Google Scholar 

  210. Liu ML, Ylitalo K, Salonen R, Salonen JT, Taskinen MR. Circulating oxidized low-density lipoprotein and its association with carotid intima-media thickness in asymptomatic members of familial combined hyperlipidemia families. Arterioscler Thromb Vasc Biol 2004;24:1492–1497.

    Article  PubMed  CAS  Google Scholar 

  211. Hulthe J, Fagerberg B. Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR Study). Arterioscler Thromb Vasc Biol 2002;22: 1162–1167.

    Article  PubMed  CAS  Google Scholar 

  212. Salonen JT, Yla-Herttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, Nyyssonen K, Palinski W, Witztum JL. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992;339:883–887.

    Article  PubMed  CAS  Google Scholar 

  213. Nordin Fredrikson G, Hedblad B, Berglund G, Nilsson J. Plasma oxidized LDL: a predictor for acute myocardial infarction? J Intern Med 2003;253:425–429.

    Article  PubMed  CAS  Google Scholar 

  214. Meisinger C, Baumert J, Khuseyinova N, Loewel H, Koenig W. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation 2005;112:651–657.

    Article  PubMed  CAS  Google Scholar 

  215. Caslake MJ, Packard CJ. Lipoprotein-associated phospholipase A2 as a biomarker for coronary disease and stroke. Nat Clin Pract Cardiovasc Med 2005;2:529–535.

    Article  PubMed  CAS  Google Scholar 

  216. Asano K, Okamoto S, Fukunaga K, Shiomi T, Mori T, Iwata M, Ikeda Y, Yamaguchi K. Cellular source(s) of platelet-activating-factor acetylhydrolase activity in plasma. Biochem Biophys Res Commun 1999;261:511–514.

    Article  PubMed  CAS  Google Scholar 

  217. Tarbet EB, Stafforini DM, Elstad MR, Zimmerman GA, McIntyre TM, Prescott SM. Liver cells secrete the plasma form of platelet-activating factor acetylhydrolase. J Biol Chem 1991;266: 16667–16673.

    PubMed  CAS  Google Scholar 

  218. Hakkinen T, Luoma JS, Hiltunen MO, Macphee CH, Milliner KJ, Patel L, Rice SQ, Tew DG, Karkola K, Yla-Herttuala S. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol 1999;19:2909–2917.

    PubMed  CAS  Google Scholar 

  219. Kolodgie F, Burke A, Taye A, Liu W, Sudhir K, Virmani R. Lipoprotein-associated phospholipase A2 is highly expressed in macrophages of coronary lesions prone to rupture. Circulation 2004;110 (Suppl III):III-246.Abstract.

    Google Scholar 

  220. Caslake MJ, Packard CJ, Suckling KE, Holmes SD, Chamberlain P, Macphee CH. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease. Atherosclerosis 2000;150:413–419.

    Article  PubMed  CAS  Google Scholar 

  221. Tsimihodimos V, Karabina SA, Tambaki AP, Bairaktari E, Miltiadous G, Goudevenos JA, Cariolou MA, Chapman MJ, Tselepis AD, Elisaf M. Altered distribution of platelet-activating factor-acetylhydrolase activity between LDL and HDL as a function of the severity of hypercholesterolemia. J Lipid Res 2002;43:256–263.

    PubMed  CAS  Google Scholar 

  222. Tjoelker LW, Wilder C, Eberhardt C, Stafforini DM, Dietsch G, Schimpf B, Hooper S, Le Trong H, Cousens LS, Zimmerman GA, Yamadat O, Mclntyre TM, Prescott SM, Gray PW. Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. Nature 1995;374: 549–553.

    Google Scholar 

  223. Tjoelker LW, Stafforini DM. Platelet-activating factor acetylhydrolases in health and disease. Biochim Biophys Acta 2000;1488:102–123.

    PubMed  CAS  Google Scholar 

  224. Quarck R, De Geest B, Stengel D, Mertens A, Lox M, Theilmeier G, Michiels C, Raes M, Bult H, Collen D, Van Veldhoven P, Ninio E, Holvoet P. Adenovirus-mediated gene transfer of human platelet-activating factor-acetylhydrolase prevents injury-induced neointima formation and reduces spontaneous atherosclerosis in apolipoprotein E-deficient mice. Circulation 2001;103: 2495–2500.

    Google Scholar 

  225. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol 2005;25: 923–931.

    Google Scholar 

  226. Macphee CH, Moores KE, Boyd HF, Dhanak D, Ife RJ, Leach CA, Leake DS, Milliner KJ, Patterson RA, Suckling KE, Tew DG, Hickey DM. Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem J 1999;338:479–487.

    Article  PubMed  CAS  Google Scholar 

  227. Kume N, Cybulsky MI, Gimbrone MA Jr. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 1992;90:1138–1144.

    PubMed  CAS  Google Scholar 

  228. Quinn MT, Parthasarathy S, Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci USA 1988;85:2805–2809.

    Article  PubMed  CAS  Google Scholar 

  229. Macphee C, Benson GM, Shi Y, Zalewski A. Lipoprotein-associated phospholipase A2: a novel marker of cardiovascular risk and potential therapeutic target. Expert Opin Investig Drugs 2005;14:671–679.

    Article  PubMed  CAS  Google Scholar 

  230. Packard CJ, O’Reilly DS, Caslake MJ, McMahon AD, Ford I, Cooney J, Macphee CH, Suckling KE, Krishna M, Wilkinson FE, Rumley A, Lowe GD. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med 2000;343:1148–1155.

    Article  PubMed  CAS  Google Scholar 

  231. Koenig W, Khuseyinova N, Lowel H, Trischler G, Meisinger C. Lipoprotein-associated phospholipase A2 adds to risk prediction of incident coronary events by C-reactive protein in apparently healthy middle-aged men from the general population: results from the 14-year follow-up of a large cohort from southern Germany. Circulation 2004;110:1903–1908.

    Article  PubMed  CAS  Google Scholar 

  232. Oei HH, van der Meer IM, Hofman A, Koudstaal PJ, Stijnen T, Breteler MMB, Witteman JCM. Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke: the Rotterdam Study. Circulation 2005;111:570–575.

    Article  PubMed  CAS  Google Scholar 

  233. Blake GJ, Dada N, Fox JC, Manson JE, Ridker PM. A prospective evaluation of lipoprotein-associated phospholipase A2 levels and the risk of future cardiovascular events in women. J Am Coll Cardiol 2001;38:1302–1306.

    Article  PubMed  CAS  Google Scholar 

  234. Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Heiss G, Sharrett AR. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation 2004;109:837–842.

    Article  PubMed  CAS  Google Scholar 

  235. Brilakis ES, McConnell JP, Lennon RJ, Elesber AA, Meyer JG, Berger PB. Association of lipoprotein-associated phospholipase A2 levels with coronary artery disease risk factors, angiographic coronary artery disease, and major adverse events at follow-up. Eur Heart J 2005;26: 137–144.

    Article  PubMed  CAS  Google Scholar 

  236. Koenig W, Twardella D, Brenner H, Rothenbacher D. Lipoprotein-associated phospholipase A2 predicts future cardiovascular events in patients with coronary heart disease independently of traditional risk factors, markers of inflammation, renal function, and hemodynamic stress. Arterioscler Thromb Vasc Biol 2006;26: 1586–1593.

    Google Scholar 

  237. Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Chambless LE, Myerson M, Wu KK, Sharrett AR, Boerwinkle E. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Arch Intern Med 2005;165:2479–2484.

    Article  PubMed  CAS  Google Scholar 

  238. Shimada K, Miyazaki T, Daida H. Adiponectin and atherosclerotic disease. Clin Chim Acta 2004;344:1–12.

    Article  PubMed  CAS  Google Scholar 

  239. Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 2005;288: H2031–H2041.

    Google Scholar 

  240. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999;100:2473–2476.

    PubMed  CAS  Google Scholar 

  241. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001;103:1057–1063.

    PubMed  CAS  Google Scholar 

  242. Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Kumada M, Okamoto Y, Nagaretani H, Nishizawa H, Kishida K, Komuro R, Ouchi N, Kihara S, Nagai R, Funahashi T, Matsuzawa Y. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem 2002;277:37487–37491.

    Article  PubMed  CAS  Google Scholar 

  243. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 2002;277:25863–25866.

    Article  PubMed  CAS  Google Scholar 

  244. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002;8:731–737.

    Article  PubMed  CAS  Google Scholar 

  245. Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, Ohashi K, Sakai N, Shimomura I, Kobayashi H, Terasaka N, Inaba T, Funahashi T, Matsuzawa Y. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 2002;106:2767–2770.

    Article  PubMed  CAS  Google Scholar 

  246. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, Arita Y, Okamoto Y, Shimomura I, Hiraoka H, Nakamura T, Funahashi T, Matsuzawa Y; Osaka CAD Study Group. Coronary artery disease. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 2003;23:85–89.

    Article  PubMed  CAS  Google Scholar 

  247. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000;20:1595–1599.

    PubMed  CAS  Google Scholar 

  248. Rothenbacher D, Brenner H, März W, Koenig W. Adiponectin, risk of coronary heart disease and correlations with cardiovascular risk markers. Eur Heart J 2005;26:1640–1646.

    Article  PubMed  CAS  Google Scholar 

  249. Nakamura Y, Shimada K, Fukuda D, Shimada Y, Ehara S, Hirose M, Kataoka T, Kamimori K, Shimodozono S, Kobayashi Y, Yoshiyama M, Takeuchi K, Yoshikawa J. Implications of plasma concentrations of adiponectin in patients with coronary artery disease. Heart 2004;90:528–533.

    Article  PubMed  CAS  Google Scholar 

  250. Kojima S, Funahashi T, Sakamoto T, Miyamoto S, Soejima H, Hokamaki J, Kajiwara I, Sugiyama S, Yoshimura M, Fujimoto K, Miyao Y, Suefuji H, Kitagawa A, Ouchi N, Kihara S, Matsuzawa Y, Ogawa H. The variation of plasma concentrations of a novel, adipocyte derived protein, adiponectin, in patients with acute myocardial infarction. Heart 2003;89:667.

    Article  PubMed  CAS  Google Scholar 

  251. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004;291:1730–1737.

    Article  PubMed  CAS  Google Scholar 

  252. Lawlor DA, Davey Smith G, Ebrahim S, Thompson C, Sattar N. Plasma adiponectin levels are associated with insulin resistance, but do not predict future risk of coronary heart disease in women. J Clin Endocrinol Metab 2005;90:5677–5683.

    Article  PubMed  CAS  Google Scholar 

  253. Koenig W, Khuseyinova N, Baumert J, Meisinger C, Löwel H. Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-years follow-up of a large cohort from southern Germany. J Am Coll Cardiol 2006;48:1369–1377.

    Article  PubMed  CAS  Google Scholar 

  254. von Eynatten M, Schneider JG, Humpert PM, Rudofsky G, Schmidt N, Barosch P, Hamann A, Morcos M, Kreuzer J, Bierhaus A, Nawroth PP, Dugi KA. Decreased plasma lipoprotein lipase in hypoadiponectinemia: an association independent of systemic inflammation and insulin resistance. Diabetes Care 2004;27:2925–2929.

    Article  Google Scholar 

  255. Manolio T. Novel risk markers and clinical practice. N Engl J Med 2003;349:1587–1589.

    Article  PubMed  CAS  Google Scholar 

  256. Persson Nilsson J, Hedblad B, Nelson JJ, Bergland G. Lipoprotein-associated phospholipase A2 predicts cardiovascular events. Circulation 2005;112(Abstract Suppl):II-802.

    Google Scholar 

  257. Shohet RV, Anwar A, Johnston JM, Cohen JC. Plasma platelet-activating factor acetylhydrolase activity is not associated with premature coronary atherosclerosis. Am J Cardiol 1999;83(1):109–111, A8–A9.

    Article  PubMed  CAS  Google Scholar 

  258. Blankenberg S, Stengel D, Rupprecht HJ, Bickel C, Meyer J, Cambien F, Tiret L, Ninio E. Plasma PAF-acetylhydrolase in patients with coronary artery disease: results of a cross-sectional analysis. it J Lipid Res 2003;44(7):7–1381.

    Google Scholar 

  259. Winkler K, Abletshauser C, Friedrich I, Hoffmann MM, Wieland H, Marz W. Fluvastatin slow-release lowers platelet-activating factor acetyl hydrolase activity: a placebo-controlled trial in patients with type 2 diabetes. J Clin Endocrinol Metab 2004;89(3):1153–1159

    Article  PubMed  CAS  Google Scholar 

  260. Khuseyinova N, Imhof A, Rothenbacher D, Trischler G, Kuelb S, Scharnagl H, Maerz W, Brenner H, Koenig W. Association between Lp-PLA2 and coronary artery disease: focus on its relationship with lipoproteins and markers of inflammation and hemostasis. Atherosclerosis 2005;182(1): 181–188.

    PubMed  CAS  Google Scholar 

  261. Winkler K, Winkelmann BR, Scharnagl H, Hoffmann MM, Grawitz AB, Nauck M, Bohm BO, Marz W. Platelet-activating factor acetylhydrolase activity indicates angiographic coronary artery disease independently of systemic inflammation and other risk factors: the Ludwigshafen Risk and Cardiovascular Health Study. Circulation 2005;111(8):980–987.

    Article  PubMed  CAS  Google Scholar 

  262. Iribarren C, Gross MD, Darbinian JA, Jacobs DR Jr, Sidney S, Loria CM. Association of lipoprotein-associated phospholipase A2 mass and activity with calcified coronary plaque in young adults: the CARDIA study. Arterioscler Thromb Vasc Biol 2005;25(1):216–221.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Khuseyinova, N., Koenig, W. (2007). C-Reactive Protein and Other Inflammatory Markers in Cardiovascular Disease. In: Davidson, M.H., Toth, P.P., Maki, K.C., Gotto, A.M. (eds) Therapeutic Lipidology. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-533-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-533-6_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-551-4

  • Online ISBN: 978-1-59745-533-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics