Skip to main content

Management of Hypertriglyceridemia

  • Chapter
Therapeutic Lipidology

Part of the book series: Contemporary Cardiology ((CONCARD))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106(25):3143–421.

    Google Scholar 

  2. van Loon LJ, Koopman R, Stegen JH, et al. Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state. J Physiol 2003;553(Pt 2):611–25.

    Article  PubMed  CAS  Google Scholar 

  3. Coggan AR, Raguso CA, Gastaldelli A, et al. Fat metabolism during high-intensity exercise in endurance-trained and untrained men. Metabolism 2000;49(1):122–8.

    Article  PubMed  CAS  Google Scholar 

  4. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004;101(44):15718–23.

    Google Scholar 

  5. Voyiaziakis E, Goldberg IJ, Plump AS, et al. ApoA-I deficiency causes both hypertriglyceridemia and increased atherosclerosis in human apoB transgenic mice. J Lipid Res 1998;39(2):313–21.

    PubMed  CAS  Google Scholar 

  6. Jong MC, Hofker MH, Havekes LM. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 1999;19(3):472–84.

    PubMed  CAS  Google Scholar 

  7. Savonen R, Nordstoga K, Christophersen B, et al. Chylomicron metabolism in an animal model for hyperlipoproteinemia type I. J Lipid Res 1999;40(7):1336–46.

    PubMed  CAS  Google Scholar 

  8. Datta G, Chaddha M, Garber DW, et al. The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL by fibroblasts. Biochemistry 2000;39(1):213–20.

    Article  PubMed  CAS  Google Scholar 

  9. van Barlingen HH, Kock LA, de Man FH, et al. In vitro lipolysis of human VLDL: effect of different VLDL compositions in normolipidemia, familial combined hyperlipidemia and familial hypertriglyceridemia. Atherosclerosis 1996;121(1):75–84.

    Article  PubMed  Google Scholar 

  10. Benlian P, De Gennes JL, Foubert L, et al. Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N Engl J Med 1996;335(12):848–54.

    Article  PubMed  CAS  Google Scholar 

  11. Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 2002;43(12):1997–2006.

    Article  PubMed  CAS  Google Scholar 

  12. Cantor RM, de Bruin T, Kono N, et al. Quantitative trait loci for apolipoprotein B, cholesterol, and triglycerides in familial combined hyperlipidemia pedigrees. Arterioscler Thromb Vasc Biol 2004;24(10):1935–41.

    Article  PubMed  CAS  Google Scholar 

  13. Pajukanta P, Lilja HE, Sinsheimer JS, et al. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat Genet 2004;36(4):371–6.

    Article  PubMed  CAS  Google Scholar 

  14. Huertas-Vazquez A, del Rincon JP, Canizales-Quinteros S, et al. Contribution of chromosome h1q21-q23 to familial combined hyperlipidemia in Mexican families. Ann Hum Genet 2004;68 Pt 5: 419–27.

    Article  CAS  Google Scholar 

  15. de Graaf J, van der Vleuten G, Stalenhoef AF. Diagnostic criteria in relation to the pathogenesis of familial combined hyperlipidemia. Semin Vasc Med 2004;4(3):229–40.

    Article  PubMed  Google Scholar 

  16. Twickler T, Dallinga-Thie GM, Chapman MJ, et al. Remnant lipoproteins and atherosclerosis. Curr Atheroscler Rep 2005;7(2):140–7.

    Article  PubMed  CAS  Google Scholar 

  17. Schaefer EJ, Foster DM, Zech LA, et al. The effects of estrogen administration on plasma lipoprotein metabolism in premenopausal females. J Clin Endocrinol Metab 1983;57(2):262–7.

    PubMed  CAS  Google Scholar 

  18. Sanada M, Tsuda M, Kodama I, et al. Substitution of transdermal estradiol during oral estrogen-progestin therapy in postmenopausal women: effects on hypertriglyceridemia. Menopause 2004;11(3):331–6.

    Article  PubMed  Google Scholar 

  19. Hozumi Y, Kawano M, Saito T, et al. Effect of tamoxifen on serum lipid metabolism. J Clin Endocrinol Metab 1998;83(5):1633–5.

    Article  PubMed  CAS  Google Scholar 

  20. Dullaart RP. Exogenous estrogens, antiestrogens and lipid metabolism. Neth J Med 1999;55(2):47–9.

    Article  PubMed  CAS  Google Scholar 

  21. Hozumi Y, Kawano M, Hakamata Y, et al. Tamoxifen inhibits lipoprotein activity: in vivo and in vitro studies. Horm Res 2000;53(1):36–9.

    Article  PubMed  CAS  Google Scholar 

  22. Brun LD, Gagne C, Rousseau C, et al. Severe lipemia induced by tamoxifen. Cancer 1986;57(11):2123–6.

    Article  PubMed  CAS  Google Scholar 

  23. Delmas PD, Bjarnason NH, Mitlak BH, et al. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 1997;337(23):1641–7.

    Article  PubMed  CAS  Google Scholar 

  24. Walsh BW, Kuller LH, Wild RA, et al. Effects of raloxifene on serum lipids and coagulation factors in healthy postmenopausal women. JAMA 1998;279(18):1445–51.

    Article  PubMed  CAS  Google Scholar 

  25. Ito M, Takamatsu J, Matsuo T, et al. Serum concentrations of remnant-like particles in hypothyroid patients before and after thyroxine replacement. Clin Endocrinol (Oxf) 2003;58(5):621–6.

    Article  CAS  Google Scholar 

  26. Feussner G, Ziegler R. Expression of type III hyperlipoproteinaemia in a subject with secondary hypothyroidism bearing the apolipoprotein E2/2 phenotype. J Intern Med 1991;230(2):183–6.

    PubMed  CAS  Google Scholar 

  27. Sadur CN, Eckel RH. Insulin stimulation of adipose tissue lipoprotein lipase. Use of the euglycemic clamp technique. J Clin Invest 1982;69(5):1119–25.

    PubMed  CAS  Google Scholar 

  28. Ong JM, Kirchgessner TG, Schotz MC, et al. Insulin increases the synthetic rate and messenger RNA level of lipoprotein lipase in isolated rat adipocytes. J Biol Chem 1988;263(26):12933–8.

    PubMed  CAS  Google Scholar 

  29. Simsolo RB, Ong JM, Saffari B, et al. Effect of improved diabetes control on the expression of lipoprotein lipase in human adipose tissue. J Lipid Res 1992;33(1):89–95.

    PubMed  CAS  Google Scholar 

  30. Cohn JS, Patterson BW, Uffelman KD, et al. Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab 2004;89(8):3949–55.

    Article  PubMed  CAS  Google Scholar 

  31. Vergani C, Trovato G, Delu A, et al. Serum total lipids, lipoprotein cholesterol, and apolipoprotein A in acute viral hepatitis and chronic liver disease. J Clin Pathol 1978;31(8):772–8.

    Article  PubMed  CAS  Google Scholar 

  32. Koruk M, Savas MC, Yilmaz O, et al. Serum lipids, lipoproteins and apolipoproteins levels in patients with nonalcoholic steatohepatitis. J Clin Gastroenterol 2003;37(2):177–82.

    Article  PubMed  CAS  Google Scholar 

  33. Deen D. Metabolic syndrome: time for action. Am Fam Physician 2004;69(12):2875–82.

    PubMed  Google Scholar 

  34. Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 2005;36(3):232–40.

    Article  PubMed  CAS  Google Scholar 

  35. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112(12):1796–808.

    Article  PubMed  CAS  Google Scholar 

  36. Shoelson SE, Lee J, Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int J Obes Relat Metab Disord 2003;27 Suppl 3:S49–52.

    Article  CAS  Google Scholar 

  37. Garg A. Acquired and inherited lipodystrophies. N Engl J Med 2004;350(12):1220–34.

    Article  PubMed  CAS  Google Scholar 

  38. Levy E, Thibault LA, Roy CC, et al. Circulating lipids and lipoproteins in glycogen storage disease type I with nocturnal intragastric feeding. J Lipid Res 1988;29(2):215–26.

    PubMed  CAS  Google Scholar 

  39. Muller DP, Gamlen TR. The activity of hepatic lipase and lipoprotein lipase in glycogen storage disease: evidence for a circulating inhibitor of postheparin lipolytic activity. Pediatr Res 1984;18(9):881–5.

    Article  PubMed  CAS  Google Scholar 

  40. Joven J, Villabona C, Vilella E, et al. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N Engl J Med 1990;323(9):579–84.

    Article  PubMed  CAS  Google Scholar 

  41. Lee DM, Knight-Gibson C, Samuelsson O, et al. Lipoprotein particle abnormalities and the impaired lipolysis in renal insufficiency. Kidney Int 2002;61(1):209–18.

    Google Scholar 

  42. Mensink RP, Lebbink WJ, Lobbezoo IE, et al. Diterpene composition of oils from Arabica and Robusta coffee beans and their effects on serum lipids in man. J Intern Med 1995;237(6):543–50.

    Article  PubMed  CAS  Google Scholar 

  43. Tur MD, Garrigue V, Vela C, et al. Apolipoprotein CIII is upregulated by anticalcineurins and rapamycin: implications in transplantation-induced dyslipidemia. Transplant Proc 2000;32(8):2783–4.

    Article  PubMed  CAS  Google Scholar 

  44. Bershad S, Rubinstein A, Paterniti JR, et al. Changes in plasma lipids and lipoproteins during isotretinoin therapy for acne. N Engl J Med 1985;313(16):981–5.

    Article  PubMed  CAS  Google Scholar 

  45. Rodondi N, Darioli R, Ramelet AA, et al. High risk for hyperlipidemia and the metabolic syndrome after an episode of hypertriglyceridemia during 13-cis retinoic acid therapy for acne: a pharmacogenetic study. Ann Intern Med 2002;136(8):582–9.

    PubMed  CAS  Google Scholar 

  46. Koistinen HA, Remitz A, Gylling H, et al. Dyslipidemia and a reversible decrease in insulin sensitivity induced by therapy with 13-cis-retinoic acid. Diabetes Metab Res Rev 2001;17(5):391–5.

    Article  PubMed  CAS  Google Scholar 

  47. Tarr PE, Taffe P, Bleiber G, et al. Modeling the influence of APOC3, APOE, and TNF polymorphisms on the risk of antiretroviral therapy-associated lipid disorders. J Infect Dis 2005;191(9):1419–26.

    Article  PubMed  CAS  Google Scholar 

  48. Bollens D, Guiguet M, Tangre P, et al. Major hypertriglyceridemia in HIV-infected patients on antiretroviral therapy: a role of the personal and family history. Infection 2004;32(4):217–21.

    Article  PubMed  CAS  Google Scholar 

  49. Fauvel J, Bonnet E, Ruidavets JB, et al. An interaction between apo C-III variants and protease inhibitors contributes to high triglyceride/low HDL levels in treated HIV patients. AIDS 2001;15(18):2397–406.

    Article  PubMed  CAS  Google Scholar 

  50. Wong SF, Jakowatz JG, Taheri R. Management of hypertriglyceridemia in patients receiving interferon for malignant melanoma. Ann Pharmacother 2004;38(10):1655–9.

    Article  PubMed  Google Scholar 

  51. Meyer JM, Koro CE. The effects of antipsychotic therapy on serum lipids: a comprehensive review. Schizophr Res 2004;70(1):1–17.

    Article  PubMed  Google Scholar 

  52. Sampath H, Ntambi JM. Polyunsaturated fatty acid regulation of gene expression. Nutr Rev 2004;62(9):333–9.

    Article  PubMed  Google Scholar 

  53. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002;106(21):2747–57.

    Article  PubMed  Google Scholar 

  54. Djousse L, Hunt SC, Arnett DK, et al. Dietary linolenic acid is inversely associated with plasma triacylglycerol: the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr 2003;78(6):1098–102.

    PubMed  CAS  Google Scholar 

  55. Marchioli R, Barzi F, Bomba E, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation 2002;105(16):1897–903.

    Article  PubMed  CAS  Google Scholar 

  56. Capuzzi DM, Guyton JR, Morgan JM, et al. Efficacy and safety of an extended-release niacin (Niaspan): a long-term study. Am J Cardiol 1998;82(12A):74U–81U; discussion 5U–6U.

    Article  PubMed  CAS  Google Scholar 

  57. Andersson Y, Majd Z, Lefebvre AM, et al. Developmental and pharmacological regulation of apolipoprotein C-II gene expression. Comparison with apo C-I and apo C-III gene regulation. Arterioscler Thromb Vasc Biol 1999;19(1):115–21.

    PubMed  CAS  Google Scholar 

  58. Owczarek J, Jasinska M, Orszulak-Michalak D. Drug-induced myopathies. An overview of the possible mechanisms. Pharmacol Rep 2005;57(1):23–34.

    PubMed  CAS  Google Scholar 

  59. Wang JS, Wen X, Backman JT, et al. Effect of albumin and cytosol on enzyme kinetics of tolbutamide hydroxylation and on inhibition of CYP2C9 by gemfibrozil in human liver microsomes. J Pharmacol Exp Ther 2002;302(1):43–9.

    Article  PubMed  CAS  Google Scholar 

  60. Shek A, Ferrill MJ. Statin-fibrate combination therapy. Ann Pharmacother 2001;35(7–8):908–17.

    Article  PubMed  CAS  Google Scholar 

  61. Jurado J, Seip R, Thompson PD. Effectiveness of ezetimibe in clinical practice. Am J Cardiol 2004;93(5):641–3.

    Article  PubMed  CAS  Google Scholar 

  62. Khan MA, St Peter JV, Xue JL. A prospective, randomized comparison of the metabolic effects of pioglitazone or rosiglitazone in patients with type 2 diabetes who were previously treated with troglitazone. Diabetes Care 2002;25(4):708–11.

    Article  PubMed  CAS  Google Scholar 

  63. Sakamoto J, Kimura H, Moriyama S, et al. Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun 2000;278(3):704–11.

    Article  PubMed  CAS  Google Scholar 

  64. Brousseau ME, Diffenderfer MR, Millar JS, et al. Effects of cholesteryl ester transfer protein inhibition on high-density lipoprotein subspecies, apolipoprotein A-I metabolism, and fecal sterol excretion. Arterioscler Thromb Vasc Biol 2005;25(5):1057–64.

    Article  PubMed  CAS  Google Scholar 

  65. Tolentino MC, Ferenczi A, Ronen L, et al. Combination of gemfibrozil and orlistat for treatment of combined hyperlipidemia with predominant hypertriglyceridemia. Endocr Pract 2002;8(3):208–12.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Labossiere, R., Goldberg, I.J. (2007). Management of Hypertriglyceridemia. In: Davidson, M.H., Toth, P.P., Maki, K.C., Gotto, A.M. (eds) Therapeutic Lipidology. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-533-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-533-6_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-551-4

  • Online ISBN: 978-1-59745-533-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics