Skip to main content

Stem Cell Technology and Drug Development

  • Chapter
Biopharmaceutical Drug Design and Development

Abstract

Stem cell technology holds the potential to offer new therapeutic options for poorly treated and debilitating diseases either by cell replacement therapies or by identification of drugs using high-throughput stem cell cultures differentiated into specific mature cell types. This promising technology is based on isolation of pluripotent cells that can be expanded in culture and differentiated into a mature phenotype. In addition to the social and political considerations, many methodological issues, such as choice of cell type, culture and differentiation methods, stability of cells in culture, and transplantation techniques, remain. This chapter reviews these issues and presents some novel potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Preston, S. L., Alison, M. R., Forbes, S. J., Direkze, N. C., Pousom, R., and Wright, N. A. (2003) The new stem cell biology: something for everyone. J. Clin. Pathol: Mol. Pathol. 56, 86–96.

    Article  CAS  Google Scholar 

  2. Watt, F. M. and Hogan, B. L. (2000) Out of Eden: stem cells and their niches. Science 287, 1427–1430.

    Article  CAS  PubMed  Google Scholar 

  3. Stacey, G. N., Cobo, F., Nieto, A., Talavera, P., Healy, L., and Concha, A. (2006) The development of ‘feeder’ cells for the preparation of clinical grade hES cell lines: challenges and solutions. J. Biotechnol. 125, 583–588.

    Article  CAS  PubMed  Google Scholar 

  4. Regenerative Medicine 2006. (2006) Department of Health and Human Services. August, http://stemcells.nih.gov/info/scireport/2006report.htm

    Google Scholar 

  5. Pouton, C. W. and Hayes, J. M. (2005) Pharmaceutical applications of embryonic stem cells. Adv. Drug Deliv. Rev. 57, 1918–1934.

    Article  CAS  PubMed  Google Scholar 

  6. Maitra, A., Arking, D. E., Shivapurkar, N., et al. (2005) Genomic alterations in cultured human embryonic stem cells. Nat. Genet. 37, 1099–1103.

    Article  CAS  PubMed  Google Scholar 

  7. NIH Human Embryonic Stem Cell Registry (continually updated), National Institutes of Health, http: //stemcells.nih.gov/research/registry/defaultpage.asp.

    Google Scholar 

  8. Hochedlinger, K. and Jaenisch, R. (2006) Nuclear reprogramming and pluripotency. Nature 441, 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  9. Park, P. C., Selvarajah, S., Bayani, J., Zielenska, M., and Squire, J. A. (2006) Stem cell enrichment approaches. Semin. Cancer Biol. Apr 29 (epub ahead of print).

    Google Scholar 

  10. Fillmore, H. L., Holloway, K. L., and Gillies, G. T. (2005) Cell replacement efforts to repair neuronal injury: a potential paradigm for the treatment of Parkinson’s disease. Neurorehabilitation 20, 233–242.

    PubMed  Google Scholar 

  11. Walton, N. M., Sutter, B. M., Chen, H. X., et al. (2006) Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 133(18), 3671–3681.

    Article  CAS  PubMed  Google Scholar 

  12. Kassem, M. (2006) Stem Cells. Potential therapy for age-related diseases. Ann. N. Y. Acad. Sci. 1067, 436–442.

    Article  CAS  PubMed  Google Scholar 

  13. Harris, R. G., Herzog, E. L., Ruscia, E. M. B., Grove, J. E., Van Arname, J. S., and Krause, D. S. (2004) Lack of a fusion requirement for development of bone marrowderived epithelia. Science 305, 90–94.

    Article  CAS  PubMed  Google Scholar 

  14. Hook, L., O’Brien, C., and Allsopp, T. (2005) ES cell technology: An introduction to genetic manipulation, differentiation, and therapeutic cloning. Adv. Drug Deliv. Rev. 57, 1904–1917.

    Article  CAS  PubMed  Google Scholar 

  15. Keller, G. (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155.

    Article  CAS  PubMed  Google Scholar 

  16. De Angelis, E., Moss, S. H., and Pouton, C. W. (1996) Endothelial cell biology and culture methods for drug transport studies. Adv. Drug Deliv. Rev. 18, 193–218.

    Article  Google Scholar 

  17. Tuma, P. L. and Hubbard, A. L. (2003) Transcytosis: crossing Cellular Barriers. Phys. Rev. 83, 871–932.

    CAS  Google Scholar 

  18. Buesen, R., Visan, A., Genschow, E., Slawik, B., Spielmann, H., and Seiler, A. (2004) Trends in improving the embryonic stem cell test (EST): an overview. ALTEX 21, 15–22.

    PubMed  Google Scholar 

  19. Scholz, G., Genschow, E., Pohl, I., et al. (1999) Prevalidation of the embryonic stem cell test (EST) —a new in vitro embryotoxicity test. Toxicol. In Vitro 13, 675–681.

    Article  CAS  Google Scholar 

  20. Spielmann, H., Pohl, I., Döring, B., Liebsch, M., and Moldenhauer, F. (1997) The embryonic stem cell test (EST), an in vitro embryotoxicity test using two permanent mouse cell lines: 3T3 fibroblasts and embryonic stem cells. In Vitro Toxicol. 10, 119–127.

    CAS  Google Scholar 

  21. Rohwedel, J., Guan, K., Hegert, C. and Wobus, A. M. (2001) Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity studies: present state and future prospects. Toxicol. In Vitro 15, 741–753.

    Article  CAS  PubMed  Google Scholar 

  22. Wobus, A. M. and Boheler, K. (2005) Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiol. Rev. 85, 635–678.

    Article  CAS  PubMed  Google Scholar 

  23. Torrance, C. J., Agrawal, V., Vogelstein, B., and Kinzler, K. W. (2001) Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat. Biotechnol. 19, 940–945.

    Article  CAS  PubMed  Google Scholar 

  24. Defer, G. L., Geny, C., Ricolfi, F., et al. (1996) Long-term outcome of unilaterally transplanted Parkinsonian patients: I. clinical approach. Brain 119, 41–50.

    Article  PubMed  Google Scholar 

  25. Lindvall, O., Kokaia, Z., and Martinez-Serrano, A. (2004) Stem cell therapy for human neurodegenerative disorders—how to make it work. Nat. Med. 10, S42–S50.

    Article  PubMed  Google Scholar 

  26. Menendez, P., Want, L., and Bhatia, M. (2005) Genetic manipulation of human embryonic stem cells: a system to study early human development and potential therapeutic applications. Curr. Gene Ther. 5, 375–385.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Fillmore, H.L., Wu-Pong, S. (2008). Stem Cell Technology and Drug Development. In: Wu-Pong, S., Rojanasakul, Y. (eds) Biopharmaceutical Drug Design and Development. Humana Press. https://doi.org/10.1007/978-1-59745-532-9_9

Download citation

Publish with us

Policies and ethics