Skip to main content

Abstract

Advances in molecular biotechnology coupled with novel technologies such as combinatorial chemistry and high-throughput screening have led to the discovery of a large number of drugs with macromolecular properties. Macromolecular therapeutics encompasses a variety of approaches including recombinant proteins, genes, antisense, and small interfering RNAs, all of which have larger molecular dimensions than conventional drugs. These macromolecules have emerged as a powerful class of drugs for a wide range of therapeutic indications mainly on the basis of their site-specific activity and reduced side effects. However, these drugs present an enormous challenge for noninvasive delivery as they are poorly absorbed and rapidly metabolized in the body. To surmount these obstacles, either the other aspects of the drug may be exploited or novel delivery systems may be developed. Cost-effectiveness suggests that developing an improved delivery system for an existing drug is a better alternative than modifying the chemical structure of the drug or discovering new drug entities. This chapter focuses on macromolecular drugs and their delivery systems including liposomes, polymers, peptides, and nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nori, A. and Kopecek, J. (2005) Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug Deliv. Rev. 57, 609–636.

    CAS  PubMed  Google Scholar 

  2. Langer, R. (1998) Drug delivery and targeting. Nature 392, 5–10.

    CAS  PubMed  Google Scholar 

  3. Takakura, Y. and Hashida, M. (1996) Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm. Res. 13, 820–831.

    CAS  PubMed  Google Scholar 

  4. Agrawal, S., Temsamani, J., Galbraith, W., and Tang, J. (1995) Pharmacokinetics of antisense oligonucleotides. Clin. Pharmacokinet. 28, 7–16.

    CAS  PubMed  Google Scholar 

  5. Srinivasan, S. K. and Iversen, P. (1995) Review of in vivo pharmacokinetics and toxicology of phosphorothioate oligonucleotides. J. Clin. Lab. Anal. 9, 129–137.

    CAS  PubMed  Google Scholar 

  6. Belting, M., Sandgren, S., and Wittrup, A. (2005) Nuclear delivery of macromolecules: barriers and carriers. Adv. Drug Deliv. Rev. 57, 505–527.

    CAS  PubMed  Google Scholar 

  7. Pouton, C. W. (1998) Nuclear import of polypeptides, polynucleotides and supramolecular complexes. Adv. Drug Deliv. Rev. 34, 51–64.

    CAS  PubMed  Google Scholar 

  8. Soyez, H., Schacht, E., and Vanderkerken, S. (1996) The crucial role of spacer groups in macromolecular prodrug design. Adv. Drug Deliv. Rev. 21, 81–106.

    CAS  Google Scholar 

  9. de Duve, C., de Barsy, T., Poole, B., Trouet, A., Tulkens, P., and van Hoof, F. (1974) Commentary. Lysosomotropic agents. Biochem. Pharmacol. 23, 2495–2531.

    PubMed  Google Scholar 

  10. Cho, M. J. and Juliano, R. (1996) Macromolecular versus small-molecule therapeutics: drug discovery, development and clinical considerations. Trends Biotechnol. 14, 153–158.

    CAS  PubMed  Google Scholar 

  11. Olsnes, S. and Sandvig, K. (1988) How protein toxins enter and kill cells. Cancer Treat. Res. 37, 39–73.

    CAS  PubMed  Google Scholar 

  12. Luo, D. and Saltzman, W. M. (2002) Preface. Somat. Cell Mol. Genet. 27, 1–3.

    CAS  Google Scholar 

  13. Dass, C. R. (2004) Oligonucleotide delivery to tumours using macromolecular carriers. Biotechnol. Appl. Biochem. 40, 113–122.

    CAS  PubMed  Google Scholar 

  14. Gansbacher, B. (2003) Report of a second serious adverse event in a clinical trial of gene therapy for X-linked severe combined immune deficiency (X-SCID). Position of the European Society of Gene Therapy (ESGT). J. Gene Med. 5, 261–262.

    PubMed  Google Scholar 

  15. Merdan, T., Kopecek, J., and Kissel, T. (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54, 715–758.

    CAS  PubMed  Google Scholar 

  16. Duzgunes, N., De Ilarduya, C. T., Simoes, S., Zhdanov, R. I., Konopka, K., and Pedroso de Lima, M. C. (2003) Cationic liposomes for gene delivery: novel cationic lipids and enhancement by proteins and peptides. Curr. Med. Chem. 10, 1213–1220.

    CAS  PubMed  Google Scholar 

  17. Lee, M. and Kim, S. W. (2005) Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res. 22, 1–10.

    CAS  PubMed  Google Scholar 

  18. Pitard, B. (2002) Supramolecular assemblies of DNA delivery systems. Somat. Cell Mol. Genet. 27, 5–15.

    CAS  PubMed  Google Scholar 

  19. Gilmore, I. R., Fox, S. P., Hollins, A. J., Sohail, M., and Akhtar, S. (2004) The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J. Drug Target 12, 315–340.

    CAS  PubMed  Google Scholar 

  20. Martinez, J. and Tuschl, T. (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980.

    CAS  PubMed  Google Scholar 

  21. Lucentini, J. (2004) Silencing cancer—As therapeutic RNAi applications evolve, multidrugresistant cancers come into the crosshairs. Scientist 18, 14–15.

    Google Scholar 

  22. Pallarito, K. (2004) Fueling the fires of RNA interference is big business, but can companies deliver the goods? Scientist 18, 18–19.

    Google Scholar 

  23. Chiu, Y. L. and Rana, T. M. (2002) RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell. 10, 549–561.

    CAS  PubMed  Google Scholar 

  24. Czauderna, F., Fechtner, M., Dames, S., et al. (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716.

    CAS  PubMed  Google Scholar 

  25. Holen, T., Amarzguioui, M., Wiiger, M. T., Babaie, E., and Prydz, H. (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res. 30, 1757–1766.

    CAS  PubMed  Google Scholar 

  26. Parrish, S., Fleenor, J., Xu, S., Mello, C., and Fire, A. (2000) Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol. Cell. 6, 1077–1087.

    CAS  PubMed  Google Scholar 

  27. Muratovska, A. and Eccles, M. R. (2004) Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558, 63–68.

    CAS  PubMed  Google Scholar 

  28. Beale, G., Hollins, A. J., Benboubetra, M., et al. (2003) Gene silencing nucleic acids designed by scanning arrays: anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system. J. Drug Target 11, 449–456.

    CAS  PubMed  Google Scholar 

  29. Lewis, D. L., Hagstrom, J. E., Loomis, A. G., Wolff, J. A., and Herweijer, H. (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 32, 107–108.

    CAS  PubMed  Google Scholar 

  30. McCaffrey, A. P., Meuse, L., Pham, T. T., Conklin, D. S., Hannon, G. J., and Kay, M. A. (2002) RNA interference in adult mice. Nature 418, 38–39.

    CAS  PubMed  Google Scholar 

  31. Makimura, H., Mizuno, T. M., Mastaitis, J. W., Agami, R., and Mobbs, C. V. (2002) Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci. 3, 18.

    PubMed  Google Scholar 

  32. Reich, S. J., Fosnot, J., Kuroki, A., et al. (2003) Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol. Vis. 9, 210–216.

    CAS  PubMed  Google Scholar 

  33. Zhang, X., Shan, P., Jiang, D., et al. (2004) Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J. Biol. Chem. 279, 10,677–10,684.

    CAS  PubMed  Google Scholar 

  34. Akhtar, S. and Agrawal, S. (1997) In vivo studies with antisense oligonucleotides. Trends Pharmacol. Sci. 18, 12–18.

    CAS  PubMed  Google Scholar 

  35. Akhtar, S., Hughes, M. D., Khan, A. et al. (2000) The delivery of antisense therapeutics. Adv. Drug Deliv. Rev. 44, 3–21.

    CAS  PubMed  Google Scholar 

  36. Dokka, S. and Rojanasakul, Y. (2000) Novel non-endocytic delivery of antisense oligonucleotides. Adv. Drug Deliv. Rev. 44, 35–49.

    CAS  PubMed  Google Scholar 

  37. Wickstrom, E. (1986) Oligodeoxynucleotide stability in subcellular extracts and culture media. J. Biochem. Biophys. Methods 13, 97–102.

    CAS  PubMed  Google Scholar 

  38. Akhtar, S., Kole, R., and Juliano, R. L. (1991) Stability of antisense DNA oligodeoxynucleotide analogs in cellular extracts and sera. Life Sci. 49, 1793–1801.

    CAS  PubMed  Google Scholar 

  39. Hudson, A. J., Normand, N., Ackroyd, J., and Akhtar, S. (1999) Cellular delivery of hammerhead ribozymes conjugated to a transferrin receptor antibody. Int. J. Pharm. 182, 49–58.

    CAS  PubMed  Google Scholar 

  40. Leonetti, J. P., Mechti, N., Degols, G., Gagnor, C., and Lebleu, B. (1991) Intracellular distribution of microinjected antisense oligonucleotides. Proc. Natl Acad. Sci. U. S. A. 88, 2702–2706.

    CAS  PubMed  Google Scholar 

  41. Cryan, S. A. (2005) Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J. 7, E20–E41.

    CAS  PubMed  Google Scholar 

  42. Torchilin, V. P. and Lukyanov, A. N. (2003) Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov. TO’Day 8, 259–266.

    CAS  Google Scholar 

  43. Bai, J. P. and Chang, L. L. (1993) Comparison of site-dependent degradation of peptide drugs within the gut of rats and rabbits. J. Pharm. Pharmacol. 45, 1085–1087.

    CAS  PubMed  Google Scholar 

  44. Gombotz, W. R. and Pettit, D. K. (1995) Biodegradable polymers for protein and peptide drug delivery. Bioconjug. Chem. 6, 332–351.

    CAS  PubMed  Google Scholar 

  45. Lyczak, J. B. and Morrison, S. L. (1994) Biological and pharmacokinetic properties of a novel immunoglobulin-CD4 fusion protein. Arch. Virol. 139, 189–196.

    CAS  PubMed  Google Scholar 

  46. Zelphati, O., Wang, Y., Kitada, S., Reed, J. C., Feigner, P. L., and Corbeil, J. (2001) Intracellular delivery of proteins with a new lipid-mediated delivery system. J. Biol. Chem. 276, 35,103–35,110.

    CAS  PubMed  Google Scholar 

  47. Tinsley, J. H., Hawker, J., and Yuan, Y. (1998) Efficient protein transfection of cultured coronary venular endothelial cells. Am. J. Physiol. 275, H1873–H1878.

    CAS  PubMed  Google Scholar 

  48. Liu, X. H., Castelli, J. C., and Youle, R. J. (1999) Receptor-mediated uptake of an extracellular Bcl-x(L) fusion protein inhibits apoptosis. Proc. Natl Acad. Sci. U. S. A. 96, 9563–9567.

    CAS  PubMed  Google Scholar 

  49. Hawiger, J. (1999) Noninvasive intracellular delivery of functional peptides and proteins. Curr. Opin. Chem. Biol. 3, 89–94.

    CAS  PubMed  Google Scholar 

  50. Yoneda, Y., Semba, T., Kaneda, Y., et al. (1992) A long synthetic peptide containing a nuclear localization signal and its flanking sequences of SV40 T-antigen directs the transport of IgM into the nucleus efficiently. Exp. Cell. Res. 201, 313–320.

    CAS  PubMed  Google Scholar 

  51. Dworetzky, S. I., Lanford, R. E., and Feldherr, C. M. (1988) The effects of variations in the number and sequence of targeting signals on nuclear uptake. J. Cell. Biol. 107, 1279–1287.

    CAS  PubMed  Google Scholar 

  52. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., and Prochiantz, A. (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptorindependent. J. Biol. Chem. 271, 18,188–18,193.

    CAS  PubMed  Google Scholar 

  53. Vives, E., Brodin, P., and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16,010–16,017.

    CAS  PubMed  Google Scholar 

  54. Phelan, A., Elliott, G., and O’Hare, P. (1998) Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat. Biotechnol. 16, 440–443.

    CAS  PubMed  Google Scholar 

  55. Orive, G., Hernandez, R. M., Rodriguez Gascon, A., Dominguez-Gil, A., and Pedraz, J. L. (2003) Drug delivery in biotechnology: present and future. Curr. Opin. Biotechnol. 14, 659–664.

    CAS  PubMed  Google Scholar 

  56. Greish, K., Fang, J., Inutsuka, T., Nagamitsu, A., and Maeda, H. (2003) Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin. Pharmacokinet. 42, 1089–1105.

    CAS  PubMed  Google Scholar 

  57. Cao, A., Briane, D., Coudert, R., et al. (2000) Delivery and pathway in MCF7 cells of DNA vectorized by cationic liposomes derived from cholesterol. Antisense Nucleic Acid Drug Dev. 10, 369–380.

    CAS  PubMed  Google Scholar 

  58. Farhood, H., Bottega, R., Epand, R. M., and Huang, L. (1992) Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochim. Biophys. Acta 1111, 239–246.

    CAS  PubMed  Google Scholar 

  59. Mahato, R. I., Takakura, Y., and Hashida, M. (1997) Development of targeted delivery systems for nucleic acid drugs. J. Drug Target 4, 337–357.

    CAS  PubMed  Google Scholar 

  60. Leonetti, J. P., Machy, P., Degols, G., Lebleu, B., and Leserman, L. (1990) Antibody-targeted liposomes containing oligodeoxyribonucleotides complementary to viral RNA selectively inhibit viral replication. Proc. Natl Acad. Sci. U. S. A. 87, 2448–2451.

    CAS  PubMed  Google Scholar 

  61. Renneisen, K., Leserman, L., Matthes, E., Schroder, H. C., and Muller, W. E. (1990) Inhibition of expression of human immunodeficiency virus-1 in vitro by antibodytargeted liposomes containing antisense RNA to the env region. J. Biol. Chem. 265, 16,337–16,342.

    CAS  PubMed  Google Scholar 

  62. Senior, J. H. (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit. Rev. Ther. Drug Carrier Syst. 3, 123–193.

    CAS  PubMed  Google Scholar 

  63. Kamps, J. A., Morselt, H. W., and Scherphof, G. L. (1999) Uptake of liposomes containing phosphatidylserine by liver cells in vivo and by sinusoidal liver cells in primary culture: in vivo-in vitro differences. Biochem. Biophys. Res. Commun. 256, 57–62.

    CAS  PubMed  Google Scholar 

  64. Dass, C. R. and Burton, M. A. (1999) Lipoplexes and tumours. A review. J. Pharm. Pharmacol. 51, 755–770.

    CAS  PubMed  Google Scholar 

  65. Klibanov, A. L., Maruyama, K., Torchilin, V. P., and Huang, L. (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237.

    CAS  PubMed  Google Scholar 

  66. Gao, X. and Huang, L. (1991) A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Commun. 179, 280–285.

    CAS  PubMed  Google Scholar 

  67. Gao, X. and Huang, L. (1995) Cationic liposome-mediated gene transfer. Gene Ther. 2, 710–722.

    CAS  PubMed  Google Scholar 

  68. Dass, C. R. (2002) Biochemical and biophysical characteristics of lipoplexes pertinent to solid tumour gene therapy. Int. J. Pharm. 241, 1–25.

    CAS  PubMed  Google Scholar 

  69. Gabizon, A. A. (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest. 19, 424–436.

    CAS  PubMed  Google Scholar 

  70. Cornelis, S., Vandenbranden, M., Ruysschaert, J. M., and Elouahabi, A. (2002) Role of intracellular cationic liposome-DNA complex dissociation in transfection mediated by cationic lipids. DNA Cell. Biol. 21, 91–97.

    CAS  PubMed  Google Scholar 

  71. Lechardeur, D., Sohn, K. J., Haardt, M., et al. (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther. 6, 482–497.

    CAS  PubMed  Google Scholar 

  72. Bohula, E. A., Salisbury, A. J., Sohail, M, et al. (2003) The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J. Biol. Chem. 278, 15,991–15,997.

    CAS  PubMed  Google Scholar 

  73. Troussard, A. A., Mawji, N. M., Ong, C., Mui, A., St-Arnaud, R., and Dedhar, S. (2003) Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J. Biol. Chem. 278, 22,374–22,378.

    CAS  PubMed  Google Scholar 

  74. Leu, Y. W., Rahmatpanah, F., Shi, H., et al. (2003) Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res. 63, 6110–6115.

    CAS  PubMed  Google Scholar 

  75. Potente, M., Fisslthaler, B., Busse, R., and Fleming, I. (2003) 11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. J. Biol. Chem. 278, 29,619–29,625.

    CAS  PubMed  Google Scholar 

  76. Sorensen, D. R., Leirdal, M., and Sioud, M. (2003) Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J. Mol. Biol. 327, 761–766.

    CAS  PubMed  Google Scholar 

  77. Farhood, H., Gao, X., Son, K., et al. (1994) Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. Ann. N.Y. Acad. Sci. 716, 23–34.

    CAS  PubMed  Google Scholar 

  78. Felgner, P. L., Gadek, T. R., Holm, M., et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. U. S. A. 84, 7413–7417.

    CAS  PubMed  Google Scholar 

  79. Akhtar, S. (1998) Antisense technology: selection and delivery of optimally acting antisense oligonucleotides. J. Drug Target 5, 225–234.

    CAS  PubMed  Google Scholar 

  80. DeLong, R. K., Yoo, H., Alahari, S. K., et al. (1999) Novel cationic amphiphiles as delivery agents for antisense oligonucleotides. Nucleic Acids Res. 27, 3334–3341.

    CAS  PubMed  Google Scholar 

  81. Ringsdorf, H. (1975) Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Symp. 51, 135–153.

    CAS  Google Scholar 

  82. Duncan, R. and Kopecek, J. (1984) Soluble synthetic polymers as potential drug carriers. Adv. Polym. Sci. 57, 51–101.

    CAS  Google Scholar 

  83. Boussif, O., Lezoualc’h, F., Zanta, M. A., et al. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. U. S. A. 92, 7297–7301.

    CAS  PubMed  Google Scholar 

  84. Haensler, J., Szoka, F. C., Jr. (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4, 372–379.

    CAS  PubMed  Google Scholar 

  85. Vasey, P. A., Kaye, S. B., Morrison, R., et al. (1999) Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin. Cancer Res. 5, 83–94.

    CAS  PubMed  Google Scholar 

  86. Kwon, G. S. and Kataoka, K. (1995) Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev. 16, 295–309.

    CAS  Google Scholar 

  87. Maeda, H. (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Deliv. Rev. 46, 169–185.

    CAS  PubMed  Google Scholar 

  88. Mu, Y., Kamada, H., Kaneda, Y., et al. (1999) Bioconjugation of laminin peptide YIGSR with poly(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells. Biochem. Biophys. Res. Commun. 255, 75–79.

    CAS  PubMed  Google Scholar 

  89. Maeda, H., Sawa, T., and Konno, T. (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release 74, 47–61.

    CAS  PubMed  Google Scholar 

  90. Abuchowski, A., Kazo, G. M., Verhoest, C. R., Jr., et al. (1984) Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycolasparaginase conjugates. Cancer Biochem. Biophys. 7, 175–178.

    CAS  PubMed  Google Scholar 

  91. Ettinger, A. R. (1995) Pegaspargase (Oncaspar). J. Pediatr. Oncol. Nurs. 12, 46–48.

    CAS  PubMed  Google Scholar 

  92. Youngster, S., Wang, Y. S., Grace, M., Bausch, J., Bordens, R., and Wyss, D. F. (2002) Structure, biology, and therapeutic implications of pegylated interferon alpha-2b. Curr. Pharm. Des. 8(24), 2139–2157.

    CAS  PubMed  Google Scholar 

  93. Capon, D. J., Chamow, S. M., Mordenti, J., et al. (1989) Designing CD4 immunoadhesins for AIDS therapy. Nature 337, 525–531.

    CAS  PubMed  Google Scholar 

  94. Fujita, T., Nishikawa, M., Tamaki, C., Takakura, Y., Hashida, M., and Sezaki, H. (1992) Targeted delivery of human recombinant Superoxide dismutase by chemical modification with mono-and polysaccharide derivatives. J. Pharmacol. Exp. Ther. 263, 971–978.

    CAS  PubMed  Google Scholar 

  95. Allen, T. M. and Chonn, A. (1987) Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 223, 42–46.

    CAS  PubMed  Google Scholar 

  96. Gregoriadis, G., McCormack, B., Wang, Z., and Lifely, R. (1993) Polysialic acids: potential in drug delivery. FEBS Lett. 315, 271–276.

    CAS  PubMed  Google Scholar 

  97. Abdallah, B., Hassan, A., Benoist, C., Goula, D., Behr, J. P., and Demeneix, B. A. (1996) A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum. Gene Ther. 7, 1947–1954.

    CAS  PubMed  Google Scholar 

  98. Michael Neu, M., Fischer, D., and Kissel, T. (2005) Recent advances in rational gene transfer vector design based on poly(ethyleneimine) and its derivatives. J. Gen. Med. 8, 992–1009.

    Google Scholar 

  99. Ohana, P., Gofrit, O., and Ayesh, S. (2004) Regulatory sequences of the H19 gene in DNA based therapy of bladder cancer. Gene Ther. Mol. Biol. 8, 181–192.

    Google Scholar 

  100. Tsubouchi, A., Sakakura, J., Yagi, R., et al. (2002) Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. J. Cell. Biol. 159, 673–683.

    CAS  PubMed  Google Scholar 

  101. Huang, Y. Z., Zang, M., Xiong, W. C., Luo, Z., and Mei, L. (2003) Erbin suppresses the MAP kinase pathway. J. Biol. Chem. 278, 1108–1114.

    CAS  PubMed  Google Scholar 

  102. Duxbury, M. S., Ito, H., Benoit, E., Zinner, M. J., Ashley, S. W., and Whang, E. E. (2003) RNA interference targeting focal adhesion kinase enhances pancreatic adenocarcinoma gemcitabine chemosensitivity. Biochem. Biophys. Res. Commun. 311, 786–792.

    CAS  PubMed  Google Scholar 

  103. Lewis, K. J., Irwin, W. J., and Akhtar, S. (1998) Development of a sustainedrelease biodegradable polymer delivery system for site-specific delivery of oligonucleotides: characterization of P(LA-GA) copolymer microspheres in vitro. J. Drug Target 5, 291–302.

    CAS  PubMed  Google Scholar 

  104. Putney, S. D., Brown, J., Cucco, C., et al. (1999) Enhanced anti-tumor effects with microencapsulated c-myc antisense oligonucleotide. Antisense Nucleic Acid Drug Dev. 9, 451–458.

    CAS  PubMed  Google Scholar 

  105. Schwarze, S. R., Hruska, K. A., and Dowdy, S. F. (2000) Protein transduction: unrestricted delivery into all cells? Trends Cell. Biol. 10, 290–295.

    CAS  PubMed  Google Scholar 

  106. Derossi, D., Joliot, A. H., Chassaing, G., and Prochiantz, A. (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10,444–10,450.

    CAS  PubMed  Google Scholar 

  107. Frankel, A. D. and Pabo, C. O. (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193.

    CAS  PubMed  Google Scholar 

  108. Lindgren, M., Hallbrink, M., Prochiantz, A., and Langel, U. (2000) Cell-penetrating peptides. Trends Pharmacol. Sci. 21, 99–103.

    CAS  PubMed  Google Scholar 

  109. Prochiantz, A. (2000) Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell. Biol. 12, 400–406.

    CAS  PubMed  Google Scholar 

  110. Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., Bouillot, C., and Prochiantz, A. (1995) Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. J. Cell. Biol. 128, 919–927.

    CAS  PubMed  Google Scholar 

  111. Nagahara, H., Vocero-Akbani, A. M., Snyder, E. L., et al. (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kipl induces cell migration. Nat. Med. 4, 1449–1452.

    CAS  PubMed  Google Scholar 

  112. Gius, D. R., Ezhevsky, S. A., Becker-Hapak, M, Nagahara, H., Wei, M. C., and Dowdy, S. F. (1999) Transduced p16INK4a peptides inhibit hypophosphorylation of the retinoblastoma protein and cell cycle progression prior to activation of Cdk2 complexes in late G1. Cancer Res. 59, 2577–2580.

    CAS  PubMed  Google Scholar 

  113. Vocero-Akbani, A. M., Heyden, N. V., Lissy, N. A., Ratner, L., and Dowdy, S. F. (1999) Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat. Med. 5, 29–33.

    CAS  PubMed  Google Scholar 

  114. Sandgren, S., Wittrup, A., Cheng, F, et al. (2004) The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J. Biol. Chem. 279, 17,951–17,956.

    CAS  PubMed  Google Scholar 

  115. Eguchi, A., Akuta, T., Okuyama, H., et al. (2001) Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem. 276, 26,204–26,210.

    CAS  PubMed  Google Scholar 

  116. Simeoni, F., Morris, M. C., Heitz, F., and Divita, G. (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 31, 2717–2724.

    CAS  PubMed  Google Scholar 

  117. Morris, M. C., Vidal, P., Chaloin, L., Heitz, F., and Divita, G. (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res. 25, 2730–2736.

    CAS  PubMed  Google Scholar 

  118. Schwarze, S. R., Ho, A., Vocero-Akbani, A., and Dowdy, S. F (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572.

    CAS  PubMed  Google Scholar 

  119. Hilt, J. Z. (2004) Nanotechnology and biomimetic methods in therapeutics: molecular scale control with some help from nature. Adv. Drug Deliv. Rev. 56, 1533–1536.

    CAS  PubMed  Google Scholar 

  120. Saltzman, W. M. and Olbricht, W. L. (2002) Building drug delivery into tissue engineering. Nat. Rev. Drug Discov. 1, 177–186.

    CAS  PubMed  Google Scholar 

  121. Gershon, D. (2002) Microarray technology: an array of opportunities. Nature 416, 885–891.

    PubMed  Google Scholar 

  122. Zhang, S. (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178.

    CAS  PubMed  Google Scholar 

  123. Byrne, M. E., Park, K., and Peppas, N. A. (2002) Molecular imprinting within hydrogels. Adv. Drug Deliv. Rev. 54, 149–161.

    CAS  PubMed  Google Scholar 

  124. Peppas, N. A., Bures, P., Leobandung, W., and Ichikawa, H. (2000) Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46.

    CAS  PubMed  Google Scholar 

  125. Uhrich, K. E., Cannizzaro, S. M., Langer, R. S., and Shakesheff, K. M. (1999) Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–3198.

    CAS  PubMed  Google Scholar 

  126. Chien, Y. W. and Lin, S. (2002) Optimisation of treatment by applying programmable rate-controlled drug delivery technology. Clin. Pharmacokinet. 41, 1267–1299.

    CAS  PubMed  Google Scholar 

  127. Morishita, M., Goto, T., Peppas, N. A., et al. (2004) Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enterai absorption. J. Control. Release 97, 115–124.

    CAS  PubMed  Google Scholar 

  128. Donini, C., Robinson, D. N., Colombo, P., Giordano, F, and Peppas, N. A. (2002) Preparation of poly(methacrylic acid-g-poly[ethylene glycol]) nanospheres from methacrylic monomers for pharmaceutical applications. Int. J. Pharm. 245, 83–91.

    CAS  PubMed  Google Scholar 

  129. Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., and Langer, R. (1994) Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603.

    CAS  PubMed  Google Scholar 

  130. Luo, D. and Saltzman, W. M. (2000) Synthetic DNA delivery systems. Nat. Biotechnol. 18, 33–37.

    CAS  PubMed  Google Scholar 

  131. Cohen, H., Levy, R. J., Gao, J., et al. (2000) Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 7, 1896–1905.

    CAS  PubMed  Google Scholar 

  132. Bonadio, J., Smiley, E., Patil, P., and Goldstein, S. (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med. 5, 753–759.

    CAS  PubMed  Google Scholar 

  133. Paunesku, T., Rajh, T., Wiederrecht, G., et al. (2003) Biology of TiO2-oligonucleotide nanocomposites. Nat. Mater. 2, 343–346.

    CAS  PubMed  Google Scholar 

  134. Truong-Le, V. L., August, J. T., and Leong, K. W. (1998) Controlled gene delivery by DNA-gelatin nanospheres. Hum. Gene Ther. 9, 1709–1717.

    CAS  PubMed  Google Scholar 

  135. Leong, K. W., Mao, H. Q., Truong-Le, V. L., Roy, K., Walsh, S. M., and August, J. T. (1998) DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Control. Release 53, 183–193.

    CAS  PubMed  Google Scholar 

  136. Savic, R., Luo, L., Eisenberg, A., and Maysinger, D. (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300, 615–618.

    CAS  PubMed  Google Scholar 

  137. Fattal, E., Vauthier, C., Aynie, I., et al. (1998) Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J. Control. Release 53, 137–143.

    CAS  PubMed  Google Scholar 

  138. Santini, J. T., Jr., Cima, M. J., and Langer, R. (1999) A controlled-release microchip. Nature 397, 335–338.

    CAS  PubMed  Google Scholar 

  139. Grayson, J. (1967) Thermal conductivity of normal and infracted heart muscle. Nature 215, 767–768.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Azad, N., Rojanasakul, Y. (2008). Macromolecular Drug Delivery. In: Wu-Pong, S., Rojanasakul, Y. (eds) Biopharmaceutical Drug Design and Development. Humana Press. https://doi.org/10.1007/978-1-59745-532-9_14

Download citation

Publish with us

Policies and ethics