Skip to main content

Hepatic NK, NKT, and T Cells

  • Chapter

Abstract

The liver’s unique location between the gastrointestinal tract and peripheral lymphoid organs and its fenestrated endothelium allow contact with many antigenic substances. These consist of dietary proteins transported from the gut via the portal vein, products of intrahepatic metabolism, and bacterial and viral liver pathogens. According to the different origin of these antigens, the liver has the unique ability to induce either tolerance or inflammatory reactions (1,2) (Table 1). Furthermore, the liver can actively modulate ongoing immune reactions: the intrahepatic inflammatory infiltrate can be increased by chemotactic attraction and activation of leukocytes (3) and decreased by induction of apoptosis of activated intra-hepatic lymphocytes (4). These dual and apparently oppos-4 ing functions are important to understand the mechanisms of tolerance to oral and allograft antigens and the pathogenesis of liver diseases caused by parasitic and viral pathogens. This chapter addresses the unique role of intrahepatic natural killer (NK), natural killer T (NKT), and T cells during this process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cantor HM, Dumont AE. Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature 1967; 215:744–745.

    Article  PubMed  CAS  Google Scholar 

  2. Wang C, Sun J, Wang L, Li L, Horvat M, Sheil R. Combined liver and pancreas transplantation induces pancreas allograft tolerance. Transplant Proc 1997; 29:1145–1146.

    Article  PubMed  CAS  Google Scholar 

  3. Bertolino P, Bowen DG, McCaughan GW, FazekasDeSt Groth B. Antigen-specific primary activation of CD8(+) T cells within the liver. J Immunol 2001; 166:5430–5438.

    PubMed  CAS  Google Scholar 

  4. Liu ZX, Govindarajan S, Okamoto S, Dennert G. Fas-mediated apoptosis causes elimination of virus-specific cytotoxic T cells in the virus-infected liver. J Immunol 2001; 166:3035–3041.

    PubMed  CAS  Google Scholar 

  5. Sheth K, Bankey P. The liver as an immune organ. Curr Opin Crit Care 2001; 7:99–104.

    Article  PubMed  CAS  Google Scholar 

  6. Wick MJ, Leithauser F, Reimann J. The hepatic immune system. Crit Rev Immunol 2002; 22:47–103.

    PubMed  CAS  Google Scholar 

  7. Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 1970; 31:125–150.

    Article  PubMed  CAS  Google Scholar 

  8. Emoto M, Miyamoto M, Namba K, et al. Participation of leuko-4 cyte function-associated antigen-1 and NK cells in the homing of thymic CD8+NKT cells to the liver. Eur J Immunol 2000; 30: 3049–3056.

    Article  PubMed  CAS  Google Scholar 

  9. Hata K, Zhang XR, Iwatsuki S, VanThiel DH, Herberman RB, Whiteside TL. Isolation, phenotyping, and functional analysis of lymphocytes from human liver. Clin Immunol Immunopathol 1990; 56:401–419.

    Article  PubMed  CAS  Google Scholar 

  10. Doherty DG, O’Farrelly C. Innate and adaptive lymphoid cells in the human liver. Immunol Rev 2000; 174:5–20.

    Article  PubMed  CAS  Google Scholar 

  11. MacDonald HR. NK1.1+ T cell receptor-alpha/beta+ cells: new clues to their origin, specificity, and function. J Exp Med 1995; 182:633–638.

    Article  PubMed  CAS  Google Scholar 

  12. Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR. CD1 recognition by mouse NK1+ T lymphocytes. Science 1995; 268:863–865.

    Article  PubMed  CAS  Google Scholar 

  13. Emoto M, Kaufmann SH. Liver NKT cells: an account of hetero-4 geneity. Trends Immunol 2003; 24:364–369.

    Article  PubMed  CAS  Google Scholar 

  14. Exley M, Koziel M. To be or not to be NKT: Natural killer T cells in the liver. Hepatology 2004; 40:1033–1040.

    Article  PubMed  Google Scholar 

  15. O’Farrelly C, Crispe IN. Prometheus through the looking glass: reflections on the hepatic immune system. Immunol Today 1999; 20:394–398.

    Article  PubMed  CAS  Google Scholar 

  16. Huang L, Sye K, Crispe IN. Proliferation and apoptosis of B220+CD4-CD8-TCR alpha beta intermediate T cells in the liver of normal adult mice: implication for lpr pathogenesis. Int Immunol 1994; 6:533–540.

    Article  PubMed  CAS  Google Scholar 

  17. Huang L, Soldevila G, Leeker M, Flavell R, Crispe IN. The liver eliminates T cells undergoing antigen-triggered apoptosis in vivo. Immunity 1994; 1:741–749.

    Article  PubMed  CAS  Google Scholar 

  18. Masuda T, Ohteki T, Abo T, et al. Expansion of the population of double negative CD4-8-T alpha beta-cells in the liver is a common feature of autoimmune mice. J Immunol 1991; 147:2907–2912.

    PubMed  CAS  Google Scholar 

  19. Bandeira A, Itohara S, Bonneville M, et al. Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor gamma delta. Proc Natl Acad Sci USA 1991; 88:43–47.

    Article  PubMed  CAS  Google Scholar 

  20. Moretta L, Ciccone E, Mingari MC, Biassoni R, Moretta A. Human natural killer cells: origin, clonality, specificity, receptors. Adv Immunol 1994; 55:341–358.

    PubMed  CAS  Google Scholar 

  21. Salazar-Mather TP, Orange JS, Biron CA. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1alpha (MIP-1alpha)-dependent pathways. J Exp Med 1998; 187:1–14.

    Article  PubMed  CAS  Google Scholar 

  22. Biron CA, Brossay L. NK cells and NKT cells in innate defense against viral infections. Curr Opin Immunol 2001; 13:458–464.

    Article  PubMed  CAS  Google Scholar 

  23. Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res 2003; 90:127–156.

    PubMed  CAS  Google Scholar 

  24. Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 47:187–376.

    Article  PubMed  CAS  Google Scholar 

  25. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA. NK cell and DC interactions. Trends Immunol 2004; 25:47–52.

    Article  PubMed  CAS  Google Scholar 

  26. Itoh Y, Morita A, Nishioji K, et al. Time course profile and celltype-specific production of monokine induced by interferon-gamma in Concanavalin A-induced hepatic injury in mice: comparative study with interferon-inducible protein-10. Scand J Gastroenterol 2001; 36:1344–1351.

    Article  PubMed  CAS  Google Scholar 

  27. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL. NK cell regulation of T cell-mediated responses. Mol Immunol 2005; 42:451–454.

    Article  PubMed  CAS  Google Scholar 

  28. Campbell JJ, Qin S, Unutmaz D, et al. Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 2001; 166: 6477–6482.

    PubMed  CAS  Google Scholar 

  29. He XS, Draghi M, Mahmood K, et al. T cell-dependent production of IFN-gamma by NK cells in response to influenza A virus. J Clin Invest 2004; 114:1812–1819.

    Article  PubMed  CAS  Google Scholar 

  30. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001; 22:633–640.

    Article  PubMed  CAS  Google Scholar 

  31. Jacobs R, Hintzen G, Kemper A, et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 2001; 31:3121–3127.

    Article  PubMed  CAS  Google Scholar 

  32. Fehniger TA, Cooper MA, Nuovo GJ, et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cellderived IL-2: a potential new link between adaptive and innate immunity. Blood 2003; 101:3052–3057.

    Article  PubMed  CAS  Google Scholar 

  33. Hu PF, Hultin LE, Hultin P, et al. Natural killer cell immuno-4 deficiency in HIV disease is manifest by profoundly decreased numbers of CD16+CD56+ cells and expansion of a population of CD16dimCD56-cells with low lytic activity.J Acquir Immune Defic Syndr Hum Retrovirol 1995; 10:331–340.

    PubMed  CAS  Google Scholar 

  34. Mavilio D, Benjamin J, Daucher M, et al. Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates. Proc Natl Acad Sci USA 2003; 100:15,011–15,016.

    Article  PubMed  CAS  Google Scholar 

  35. Ljunggren HG, Karre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 1990; 11: 237–244.

    Article  PubMed  CAS  Google Scholar 

  36. Tomasello E, Blery M, Vely F, Vivier E. Signaling pathways engaged by NK cell receptors: double concerto for activating recep-4 tors, inhibitory receptors and NK cells. Semin Immunol 2000; 12: 139–147.

    Article  PubMed  CAS  Google Scholar 

  37. Biassoni R, Pessino A, Malaspina A, et al. Role of amino acid position 70 in the binding affinity of p50.1 and p58.1 receptors for HLA-Cw4 molecules. Eur J Immunol 1997; 27:3095–3099.

    Article  PubMed  CAS  Google Scholar 

  38. Cantoni C, Bottino C, Vitale M, et al. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J Exp Med 1999; 189:787–796.

    Article  PubMed  CAS  Google Scholar 

  39. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999; 17:189–220.

    Article  PubMed  CAS  Google Scholar 

  40. Orange JS, Wang B, Terhorst C, Biron CA. Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 1995; 182: 1045–1056.

    Article  PubMed  CAS  Google Scholar 

  41. Habu S, Akamatsu K, Tamaoki N, Okumura K. In vivo significance of NK cell on resistance against virus (HSV-1) infections in mice. J Immunol 1984; 133:2743–2747.

    PubMed  CAS  Google Scholar 

  42. Stein-Streilein J, Guffee J. In vivo treatment of mice and hamsters with antibodies to asialo GM1 increases morbidity and mortality to pulmonary influenza infection. J Immunol 1986; 136:1435–1441.

    PubMed  CAS  Google Scholar 

  43. Godeny EK, Gauntt CJ. Involvement of natural killer cells in coxsackievirus B3-induced murine myocarditis. J Immunol 1986; 137: 1695–1702.

    PubMed  CAS  Google Scholar 

  44. McRae BL, Semnani RT, Hayes MP, vanSeventer GA. Type I IFNs inhibit human dendritic cell IL-12 production and Th1 cell deve-4 lopment. J Immunol 1998; 160:4298–4304.

    PubMed  CAS  Google Scholar 

  45. Cousens LP, Orange JS, Su HC, Biron CA. Interferon-alpha/beta inhibition of interleukin 12 and interferon-gamma production in vitro and endogenously during viral infection. Proc Natl Acad Sci USA 1997; 94:634–639.

    Article  PubMed  CAS  Google Scholar 

  46. Nguyen KB, Cousens LP, Doughty LA, Pien GC, Durbin JE, Biron CA. Interferon alpha/beta-mediated inhibition and promotion of interferon gamma: STAT1 resolves a paradox. Nat Immunol 2000; 1:70–76.

    Article  PubMed  CAS  Google Scholar 

  47. Tay CH, Welsh RM. Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J Virol 1997; 71:267–275.

    PubMed  CAS  Google Scholar 

  48. Salazar-Mather TP, Hamilton TA, Biron CA. A chemokine-to-cytokine-to-chemokine cascade critical in antiviral defense. J Clin Invest 2000; 105:985–993.

    PubMed  CAS  Google Scholar 

  49. Salazar-Mather TP, Lewis CA, Biron CA. Type I interferons regulate inflammatory cell trafficking and macrophage inflammatory protein 1alpha delivery to the liver. J Clin Invest 2002; 110:321–330.

    Article  PubMed  CAS  Google Scholar 

  50. Tomasec P, Braud VM, Rickards C, et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 2000; 287:1031.

    Article  PubMed  CAS  Google Scholar 

  51. Cosman D, Mullberg J, Sutherland CL, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 2001; 14:123–133.

    Article  PubMed  CAS  Google Scholar 

  52. Carnaud C, Lee D, Donnars O, et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999; 163:4647–4650.

    PubMed  CAS  Google Scholar 

  53. Porcelli SA, Modlin RL. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 1999; 17:297–329.

    Article  PubMed  CAS  Google Scholar 

  54. Castano AR, Tangri S, Miller JE, et al. Peptide binding and presen-4 tation by mouse CD1. Science 1995; 269:223–226.

    Article  PubMed  CAS  Google Scholar 

  55. Kawano T, Cui J, Koezuka Y, et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997; 278:1626–1629.

    Article  PubMed  CAS  Google Scholar 

  56. Brossay L, Chioda M, Burdin N, et al. CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 1998; 188: 1521–1528.

    Article  PubMed  CAS  Google Scholar 

  57. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 2003; 4:1230–1237.

    Article  PubMed  CAS  Google Scholar 

  58. Exley M, Porcelli S, Furman M, Garcia J, Balk S. CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant V alpha 24 J alpha Q T cell receptor alpha chains. J Exp Med 1998; 188:867–876.

    Article  PubMed  CAS  Google Scholar 

  59. Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 2004; 114:1379–1388.

    Article  PubMed  CAS  Google Scholar 

  60. Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 1997; 15:535–562.

    Article  PubMed  CAS  Google Scholar 

  61. Kumagai K, Takeda K, Hashimoto W, et al. Interleukin-12 as an inducer of cytotoxic effectors in anti-tumor immunity. Int Rev Immunol 1997; 14:229–256.

    PubMed  CAS  Google Scholar 

  62. Cui J, Shin T, Kawano T, et al. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 1997; 278: 1623–1626.

    Article  PubMed  CAS  Google Scholar 

  63. Kawamura T, Takeda K, Mendiratta SK, et al. Critical role of NK1+ T cells in IL-12-induced immune responses in vivo. J Immunol 1998; 160:16–19.

    PubMed  CAS  Google Scholar 

  64. Metelitsa LS, Naidenko OV, Kant A, et al. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 2001; 167:3114–3122.

    PubMed  CAS  Google Scholar 

  65. Kitamura H, Iwakabe K, Yahata T, et al. The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immuno-potentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 1999; 189:1121–1128.

    Article  PubMed  CAS  Google Scholar 

  66. Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 2003; 198: 267–279.

    Article  PubMed  CAS  Google Scholar 

  67. Kenna T, Golden-Mason L, Porcelli SA, et al. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 2003; 171:1775–1779.

    PubMed  CAS  Google Scholar 

  68. Kronenberg M, Gapin L The unconventional lifestyle of NKT cells. Nat Rev Immunol 2002; 2:557–568.

    PubMed  CAS  Google Scholar 

  69. Smyth MJ, Crowe NY, Hayakawa Y, Takeda K, Yagita H, Godfrey DI. NKT cells—conductors of tumor immunity? Curr Opin Immunol 2002; 14:165–171.

    Article  PubMed  CAS  Google Scholar 

  70. Karadimitris A, Gadola S, Altamirano M, et al. Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc Natl Acad Sci USA 2001; 98:3294–3298.

    Article  PubMed  CAS  Google Scholar 

  71. Grubor-Bauk B, Simmons A, Mayrhofer G, Speck PG. Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR J Immunol 2003; 170:1430–1434.

    PubMed  CAS  Google Scholar 

  72. Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 1999; 189:1973–1980.

    Article  PubMed  CAS  Google Scholar 

  73. Kumar H, Belperron A, Barthold SW, Bockenstedt LK. Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J Immunol 2000; 165: 4797–4801.

    PubMed  CAS  Google Scholar 

  74. Eberl G, MacDonald HR. Rapid death and regeneration of NKT cells in anti-CD3epsilon-or IL-12-treated mice: a major role for bone marrow in NKT cell homeostasis. Immunity 1998; 9: 345–353.

    Article  PubMed  CAS  Google Scholar 

  75. Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication In vivo. J Exp Med 2000; 192:921–930.

    Article  PubMed  CAS  Google Scholar 

  76. Exley MA, Bigley NJ, Cheng O, et al. CD1d-reactive T-cell activa-4 tion leads to amelioration of disease caused by diabetogenic encephalomyocarditis virus. J Leukoc Biol 2001; 69:713–718.

    PubMed  CAS  Google Scholar 

  77. Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 2002; 16:583–594.

    Article  PubMed  CAS  Google Scholar 

  78. Osman Y, Kawamura T, Naito T, et al. Activation of hepatic NKT cells and subsequent liver injury following administration of alphagalactosylceramide. Eur J Immunol 2000; 30:1919–1928.

    Article  PubMed  CAS  Google Scholar 

  79. Toyabe S, Seki S, Iiai T, et al. Requirement of IL-4 and liver NK1+ T cells for concanavalin A-induced hepatic injury in mice. J Immunol 1997; 159:1537–1542.

    PubMed  CAS  Google Scholar 

  80. Gonzalo JA, Delaney T, Corcoran J, Goodearl A, Gutierrez-Ramos JC, Coyle AJ. Cutting edge: the related molecules CD28 and inducible costimulator deliver both unique and complementary signals required for optimal T cell activation. J Immunol 2001; 166:1–5.

    PubMed  CAS  Google Scholar 

  81. Bertolino P, McCaughan G, Bowen DG. Role of primary intrahepatic T cell activation in the liver tolerance effect. Immunol Cell Biol 2002; 80:84–92.

    Article  PubMed  Google Scholar 

  82. Bertolino P, Trescol-Biemont MC, Rabourdin-Combe C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 1998; 28:221–236.

    Article  PubMed  CAS  Google Scholar 

  83. Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest 2004; 114:701–712.

    Article  PubMed  CAS  Google Scholar 

  84. Hiramatsu N, Hayashi N, Katayama K, et al. Immunohistochemical detection of Fas antigen in liver tissue of patients with chronic hepatiits C. Hepatology 1994; 19:1354–1359.

    PubMed  CAS  Google Scholar 

  85. Mita E, Hayashi N, Iio S, et al. Role of Fas ligand in apoptosis induced by hepatitis C virus infection. Biochem Biophys Res Commun 1994; 204:468–474.

    Article  PubMed  CAS  Google Scholar 

  86. Lohman BL, Razvi ES, Welsh RM. T-lymphocyte downregulation after acute viral infection is not dependent on CD95 (Fas) receptorligand interactions. J Virol 1996; 70:8199–8203.

    PubMed  CAS  Google Scholar 

  87. Kinkhabwala M, Sehajpal P, Skolnik E, et al. A novel addition to the T cell repertory: cell surface expression of tumor necrosis factor/cachectin by activated normal human T cells. J Exp Med 1990; 171:941–946.

    Article  PubMed  CAS  Google Scholar 

  88. Cuturi MC, Murphy M, Costa-Giomi MP, Weinmann R, Perussia B, Trinchieri G. Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes. J Exp Med 1987; 165:1581–1594.

    Article  PubMed  CAS  Google Scholar 

  89. Sung S-S, Bjordahl JM, Wang CY, Kao HT, Fu SM. Production of tumor necrosis factor/cachectin by human T cell lines and peripheral blood T lymphocytes stimulated by phorbolmyristate acetate and anti-CD3 antibody. J Exp Med 1988; 168:1539–1551.

    Article  PubMed  CAS  Google Scholar 

  90. Steffen M, Ottmann O, Moore M. Simultaneous production of tumor necrosis factor-alpha and lymphotoxin by normal T cells after induction with IL-2 and anti-T3. J Immunol 1988; 140: 2621–2640.

    PubMed  CAS  Google Scholar 

  91. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol 1992; 10:411–452.

    Article  PubMed  CAS  Google Scholar 

  92. Koziel MJ, Dudley D, Afdhal N, et al. HLA class I-restricted cytotoxic T lymphocytes specific for hepatitis C virus. Identification of multiple epitopes and characterization of patterns of cytokine release. J Clin Invest 1995; 96:2311–2321.

    PubMed  CAS  Google Scholar 

  93. Ando K, Hiroishi K, Kaneko T, et al. Perforin, fas/fas ligand, and TNF-alpha pathways as specific and bystander killing mechanisms of hepatitis C virus-specific human CTL. J Immunol 1997; 158: 5283–5291.

    PubMed  CAS  Google Scholar 

  94. Jenne DE, Tschopp J. Granzymes: a family of serine proteases in granules of cytolytic T lymphocytes. Curr Top Microbiol Immunol 1989; 140:33–47.

    PubMed  CAS  Google Scholar 

  95. Tschopp J, Nabholz M. Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunol 1990; 8:279–302.

    PubMed  CAS  Google Scholar 

  96. Darmon AJ, Ley TJ, Nicholson DW, Bleackley RC. Cleavage of CPP32 by granzyme B represents a critical role for granzyme B in the induction of target cell DNA fragmentation. J Biol Chem 1996; 271:21,709–21,712.

    Article  PubMed  CAS  Google Scholar 

  97. Song Q, Burrows S, Smith G, et al. Interleukin-1 beta-converting enzyme-like protease cleaves DNA-dependent protein kinase in cytotoxic T cell killing. J Exp Med 1996; 184:619–626.

    Article  PubMed  CAS  Google Scholar 

  98. Duke RC, Chervenak R, Cohen JJ. Endogenous endonucleaseinduced DNA fragmentation: an early event in cell-mediated cytolysis. Proc Natl Acad Sci USA 1983; 80:6361–6365.

    Article  PubMed  CAS  Google Scholar 

  99. Bertoletti A, D’Elios MM, Boni C, et al. Different cytokine profiles of intrahepatic T cells in chronic hepatitis B and hepatitis C virus infections. Gastroenterology 1997; 112:193–199.

    Article  PubMed  CAS  Google Scholar 

  100. Guidotti LG, Chisari FV. To kill or to cure: options in host defense against viral infection. Curr Opin Immunol 1996; 8:478–483.

    Article  PubMed  CAS  Google Scholar 

  101. Guidotti LG, Ando K, Hobbs MV, et al. Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mecha-4 nism in transgenic mice. Proc Natl Acad Sci USA 1994; 91: 3764–3768.

    Article  PubMed  CAS  Google Scholar 

  102. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of the hepatitis B virus by cyto-4 toxic T lymphocytes. Immunity 1996; 4:35–36.

    Article  Google Scholar 

  103. Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999; 284:825–829.

    Article  PubMed  CAS  Google Scholar 

  104. Spriggs MK, Koller BH, Sato T, et al. Beta 2-microglobulin-, CD8+ T-cell-deficient mice survive inoculation with high doses of vaccinia virus and exhibit altered IgG responses. Proc Natl Acad Sci USA 1992; 89:6070–6074.

    Article  PubMed  CAS  Google Scholar 

  105. Ramsay AJ, Ruby J, Ramshaw IA. A case for cytokines as effector molecules in the resolution of virus infection. Immunol Today 1993; 14:155–157.

    Article  PubMed  CAS  Google Scholar 

  106. Kagi D, Ledermann B, Burki K, et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994; 369:31–37.

    Article  PubMed  CAS  Google Scholar 

  107. Marra F, DeFranco R, Grappone C, et al. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol 1998; 152: 423–430.

    PubMed  CAS  Google Scholar 

  108. Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV. Immune pathogenesis of hepatocellular carcinoma. J Exp Med 1998; 188:341–350.

    Article  PubMed  CAS  Google Scholar 

  109. Larkin J, Clayton M, Sun B, et al. Hepatitis B virus transgenic mouse model of chronic liver disease. Nat Med 1999; 5:907–912.

    Article  PubMed  CAS  Google Scholar 

  110. Ando K, Moriyama T, Guidotti LG, et al. Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. J Exp Med 1993; 178:1541–1554.

    Article  PubMed  CAS  Google Scholar 

  111. Kakimi K, Lane TE, Wieland S, et al. Blocking chemokine responsive to gamma-2/interferon (IFN)-gamma inducible protein and monokine induced by IFN-gamma activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. J Exp Med 2001; 194: 1755–1766.

    Article  PubMed  CAS  Google Scholar 

  112. Shields PL, Morland C, Salmon M, Qin S, Hubscher S, Adams DH. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver com-4 partments within HCV-Infected Liver. J Immunol 1999; 163: 6236–6243.

    PubMed  CAS  Google Scholar 

  113. Kaneko Y, Harada M, Kawano T, et al. Augmentation of Valpha14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med 2000; 191:105–114.

    Article  PubMed  CAS  Google Scholar 

  114. Mehal WZ, Juedes AE, Crispe IN. Selective retention of activated CD8+ T cells by the normal liver. J Immunol 1999; 163: 3202–3210.

    PubMed  CAS  Google Scholar 

  115. Sitia G, Isogawa M, Kakimi K, Wieland SF, Chisari FV, Guidotti LG. Depletion of neutrophils blocks the recruitment of antigen-non-4 specific cells into the liver without affecting the antiviral activity of hepatitis B virus-specific cytotoxic T lymphocytes. Proc Natl Acad Sci USA 2002; 99:13,717–13,722.

    Article  PubMed  CAS  Google Scholar 

  116. Sitia G, Isogawa M, Iannacone M, Campbell IL, Chisari FV, Guidotti LG. MMPs are required for recruitment of antigen-non-4 specific mononuclear cells into the liver by CTLs. J Clin Invest 2004; 113:1158–1167.

    Article  PubMed  CAS  Google Scholar 

  117. Bianchi L. Liver biopsy interpretation in hepatitis. Part II: Histopathology and classification of acute and chronic viral hepatitis/ differential diagnosis. Pathol Res Pract 1983; 178:180–213.

    PubMed  CAS  Google Scholar 

  118. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5:215–229.

    Article  PubMed  CAS  Google Scholar 

  119. Ferrari C, Penna A, Giuberti T, et al. Intrahepatic, nucleocapsid antigen-specific T cells in chronic active hepatitis B. J Immunol 1987; 139:2050–2058.

    PubMed  CAS  Google Scholar 

  120. Barnaba V, Franco A, Alberti AB C, Benvenuto R, Balsano F Recognition of hepatitis B envelope proteins by liver-infiltrating T lymphocytes in chronic HBV infection. J Immunol 1989; 143: 2650–2655.

    PubMed  CAS  Google Scholar 

  121. Moriyama T, Guilhot S, Klopchin K, et al. Immunobiology and pathogenesis of hepatocellular injury in hepatitis B virus transgenic mice. Science 1990; 248:361–364.

    Article  PubMed  CAS  Google Scholar 

  122. Kita H, Mackay IR, Van DeWater J, Gershwin ME. The lymphoid liver: considerations on pathways to autoimmune injury. Gastroenterology 2001; 120:1485–1501.

    Article  PubMed  CAS  Google Scholar 

  123. Galperin C, Gershwin ME. Immunopathology of primary biliary cirrhosis. Baillieres Clin Gastroenterol 1996; 10:461–481.

    Article  PubMed  CAS  Google Scholar 

  124. Lohr HF, Schlaak JF, Lohse AW, et al. Autoreactive CD4+ LKM-specific and anticlonotypic T-cell responses in LKM-1 antibodypositive autoimmune hepatitis. Hepatology 1996; 24:1416–1421.

    Article  PubMed  CAS  Google Scholar 

  125. Liu ZX, Govindarajan S, Okamoto S, Dennert G. Fas-mediated apoptosis causes elimination of virus-specific cytotoxic T cells in the virus-infected liver. J Immunol 2001; 166:3035–3041.

    PubMed  CAS  Google Scholar 

  126. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006; 43 (2 Suppl 1):S54–S62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ahlenstiel, G., Rehermann, B. (2007). Hepatic NK, NKT, and T Cells. In: Gershwin, M.E., Vierling, J.M., Manns, M.P. (eds) Liver Immunology. Humana Press. https://doi.org/10.1007/978-1-59745-518-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-518-3_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-818-8

  • Online ISBN: 978-1-59745-518-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics