Skip to main content

Adaptive Immunity in the Liver

  • Chapter
Book cover Liver Immunology
  • 1840 Accesses

Abstract

Whereas innate immunity can provide the initial defense against infections, completely effective immunity to an invading microbial organism typically requires an adaptive immune response specific to the invader. Adaptive immune responses in the liver contribute both to effective defense against invading microbes and to a variety of pathologic states. The term adaptive immunity refers to lymphocyte-mediated immune defense tailored to a specific microbial invader. Adaptive immunity can be classified into humoral immunity and cell-mediated immunity, mediated principally by B and T lymphocytes, respectively. Antigens are structures found on microbes that are recognized as foreign by B or T lymphocytes. Antigens elicit specific responses from the lymphocytes expressing cognate antigen receptors. Such specific responses include both clonal proliferation and lymphocyte differentiation into specialized effector cell types with important functions serving to fight microbes. Such functions include the release of antibody (B cells), the killing of infected cells (cytotoxic T cells), and extracellular release of signaling molecules (i.e., cytokines) that can act in an autocrine, paracrine, or endocrine fashion to elicit responses from other immune and nonimmune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doherty DG, O’Farrelly C. Innate and adaptive lymphoid cells in the human liver. Immunol Rev 2000; 174:5–20.

    Article  PubMed  CAS  Google Scholar 

  2. Huang L. T cells expressing alpha beta antigen receptors in the liver. In: Crispe IN, ed. T Lymphocytes in the Liver: Immunobiology, Pathology, and Host Defense. New York: Wiley-Liss; 1999:15–39.

    Google Scholar 

  3. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature 2001; 410:101–105.

    Article  PubMed  CAS  Google Scholar 

  4. Mehal WZ, Juedes AE, Crispe IN. Selective retention of activated CD8+ T cells by the normal liver. J Immunol 1999; 163: 3202–3210.

    PubMed  CAS  Google Scholar 

  5. Park S, Murray D, John B, Crispe IN. Biology and significance of T-cell apoptosis in the liver. Immunol Cell Biol 2002; 80:74–83.

    Article  PubMed  Google Scholar 

  6. Swain SL Regulation of the generation and maintenance of T-cell memory: a direct, default pathway from effectors to memory cells. Microbes Infect 2003; 5:213–219.

    Article  PubMed  CAS  Google Scholar 

  7. Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol 2002; 2:933–944.

    Article  PubMed  CAS  Google Scholar 

  8. Lan RY, Ansari AA, Lian ZX, Gershwin ME. Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev 2005; 4:351–363.

    Article  PubMed  CAS  Google Scholar 

  9. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004; 21:467–476.

    Article  PubMed  CAS  Google Scholar 

  10. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201:233–240.

    Article  PubMed  CAS  Google Scholar 

  11. Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25naïve T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198:1875–1886.

    Article  PubMed  CAS  Google Scholar 

  12. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24:179–189.

    Article  PubMed  CAS  Google Scholar 

  13. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441:235–238.

    Article  PubMed  CAS  Google Scholar 

  14. Hussain MJ, Mustafa A, Gallati H, Mowat AP, Mieli-Vergani G, Vergani D. Cellular expression of tumour necrosis factor-alpha and interferon-gamma in the liver biopsies of children with chronic liver disease. J Hepatol 1994; 21:816–821.

    Article  PubMed  CAS  Google Scholar 

  15. Lohr HF, Schlaak JF, Gerken G, Fleischer B, Dienes HP, Meyer Zum Buschenfelde KH. Phenotypical analysis and cytokine release of liver-infiltrating and peripheral blood T lymphocytes from patients with chronic hepatitis of different etiology. Liver 1994; 14:161–166.

    PubMed  CAS  Google Scholar 

  16. Lohr HF, Schlaak JF, Lohse AW, et al. Autoreactive CD4+ LKM-specific and anticlonotypic T-cell responses in LKM-1 antibodypositive autoimmune hepatitis. Hepatology 1996; 24:1416–1421.

    Article  PubMed  CAS  Google Scholar 

  17. Gantner F, Leist M, Lohse AW, Germann PG, Tiegs G. Concanavalin A-induced T-cell-mediated hepatic injury in mice: the role of tumor necrosis factor. Hepatology 1995; 21:190–198.

    PubMed  CAS  Google Scholar 

  18. Leist M, Gantner F, Jilg S, Wendel A. Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. J Immunol 1995; 154: 1307–1316.

    PubMed  CAS  Google Scholar 

  19. Bird GL, Sheron N, Goka AK, Alexander GJ, Williams RS. Increased plasma tumor necrosis factor in severe alcoholic hepatitis. Ann Intern Med 1990; 112:917–920.

    PubMed  CAS  Google Scholar 

  20. Larrea E, Garcia N, Qian C, Civeira MP, Prieto J. Tumor necrosis factor alpha gene expression and the response to interferon in chronic hepatitis C. Hepatology 1996; 23:210–217.

    PubMed  CAS  Google Scholar 

  21. Grivennikov SI, Tumanov AV, Liepinsh DJ, et al. Distinct and nonredundant in vivo functions of TNF produced by T cells and macrophages/ neutrophils: protective and deleterious effects. Immunity 2005; 22:93–104.

    PubMed  CAS  Google Scholar 

  22. Bradham CA, Plumpe J, Manns MP, Brenner DA, Trautwein C. Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am J Physiol 1998; 275:G387–G392.

    PubMed  CAS  Google Scholar 

  23. Toyonaga T, Hino O, Sugai S, et al. Chronic active hepatitis in transgenic mice expressing interferon-gamma in the liver. Proc Natl Acad Sci USA 1994; 91:614–618.

    Article  PubMed  CAS  Google Scholar 

  24. Alexander WS, Starr R, Fenner JE, et al. SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 1999; 98: 597–608.

    Article  PubMed  CAS  Google Scholar 

  25. Lin JT, Martin SL, Xia L, Gorham JD. TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J Immunol 2005; 174:5950–5958.

    PubMed  CAS  Google Scholar 

  26. Gorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentia-4 tion. J Exp Med 2002; 195:1499–1505.

    Article  PubMed  CAS  Google Scholar 

  27. Rudner LA, Lin JT, Park IK, et al. Necroinflammatory liver disease in BALB/c background, TGF-beta 1-deficient mice requires CD4+ T cells. J Immunol 2003; 170:4785–4792.

    PubMed  CAS  Google Scholar 

  28. Gorham JD, Lin JT, Sung JL, Rudner LA, French MA. Genetic regulation of autoimmune disease: BALB/c background TGF-beta 1-deficient mice develop necroinflammatory IFN-gamma-dependent hepatitis. J Immunol 2001; 166:6413–6422.

    PubMed  CAS  Google Scholar 

  29. Pearce EJ, Caspar P, Grzych JM, Lewis FA, Sher A. Downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. J Exp Med 1991; 173:159–166.

    Article  PubMed  CAS  Google Scholar 

  30. Wynn TA, Thompson RW, Cheever AW, Mentink-Kane MM. Immunopathogenesis of schistosomiasis. Immunol Rev 2004; 201: 156–167.

    Article  PubMed  CAS  Google Scholar 

  31. Fallon PG, Richardson EJ, McKenzie GJ, McKenzie AN. Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL-13: IL-13 is a profibrotic agent. J Immunol 2000; 164:2585–2591.

    PubMed  CAS  Google Scholar 

  32. Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 1999; 104:777–785.

    Article  PubMed  CAS  Google Scholar 

  33. Toyabe S, Seki S, Iiai T, et al. Requirement of IL-4 and liver NK1+ T cells for concanavalin A-induced hepatic injury in mice. J Immunol 1997; 159:1537–1542.

    PubMed  CAS  Google Scholar 

  34. Kaneko Y, Harada M, Kawano T, et al. Augmentation of Valpha14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med 2000; 191:105–114.

    Article  PubMed  CAS  Google Scholar 

  35. Jaruga B, Hong F, Sun R, Radaeva S, Gao B. Crucial role of IL-4/ STAT6 in T cell-mediated hepatitis: up-regulating eotaxins and IL-5 and recruiting leukocytes. J Immunol 2003; 171:3233–3244.

    PubMed  CAS  Google Scholar 

  36. Louis H, LeMoine A, Flamand V, et al. Critical role of interleukin 5 and eosinophils in concanavalin A-induced hepatitis in mice. Gastroenterology 2002; 122:2001–2010.

    Article  PubMed  CAS  Google Scholar 

  37. Bach JF Regulatory T cells under scrutiny. Nat Rev Immunol 2003; 3:189–198.

    Article  PubMed  CAS  Google Scholar 

  38. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of selftolerance causes various autoimmune diseases. J Immunol 1995; 155:1151–1164.

    PubMed  CAS  Google Scholar 

  39. Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27:68–73.

    Article  PubMed  CAS  Google Scholar 

  40. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4:330–336.

    Article  PubMed  CAS  Google Scholar 

  41. Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 2005; 6:331–337.

    Article  PubMed  CAS  Google Scholar 

  42. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004; 172:5149–5153.

    PubMed  CAS  Google Scholar 

  43. Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli-Vergani G, Vergani D. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol 2004; 41:31–37.

    Article  PubMed  CAS  Google Scholar 

  44. Lan RY, Cheng C, Lian ZX, et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 2006; 43:729–737.

    Article  PubMed  Google Scholar 

  45. Longhi MS, Hussain MJ, Mitry RR, et al. Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 2006; 176:4484–4491.

    PubMed  CAS  Google Scholar 

  46. Longhi MS, Ma Y, Mitry RR, et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun 2005; 25:63–71.

    Article  PubMed  CAS  Google Scholar 

  47. Unitt E, Rushbrook SM, Marshall A, et al. Compromised lympho-4 cytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology 2005; 41:722–730.

    Article  PubMed  CAS  Google Scholar 

  48. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 2005; 65:2457–2464.

    Article  PubMed  CAS  Google Scholar 

  49. Yang XH, Yamagiwa S, Ichida T, et al. Increase of CD4(+)CD25(+) regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol 2006; 45:254–262.

    Article  PubMed  CAS  Google Scholar 

  50. Cabrera R, Tu Z, Xu Y, et al. An immunomodulatory role for CD4(+)CD25(+) regulatory T lymphocytes in hepatitis C virus infection. Hepatology 2004; 40:1062–1071.

    Article  PubMed  CAS  Google Scholar 

  51. Boettler T, Spangenberg HC, Neumann-Haefelin C, et al. T cells with a CD4+CD25+ regulatory phenotype suppress in vitro prolifer-4 ation of virus-specific CD8+ T cells during chronic hepatitis C virus infection. J Virol 2005; 79:7860–7867.

    Article  PubMed  CAS  Google Scholar 

  52. Rushbrook SM, Ward SM, Unitt E, et al. Regulatory T cells suppress in vitro proliferation of virus-specific CD8+ T cells during persistent hepatitis C virus infection. J Virol 2005; 79:7852–7859.

    Article  PubMed  CAS  Google Scholar 

  53. Bolacchi F, Sinistro A, Ciaprini C, et al. Increased hepatitis C virus (HCV)-specific CD4+CD25+ regulatory T lymphocytes and reduced HCV-specific CD4+ T cell response in HCV-infected patients with normal versus abnormal alanine aminotransferase levels. Clin Exp Immunol 2006; 144:188–196.

    Article  PubMed  CAS  Google Scholar 

  54. Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest 2006; 116:1218–1222.

    Article  PubMed  CAS  Google Scholar 

  55. Witowski J, Ksiazek K, Jorres A. Interleukin-17: a mediator of inflammatory responses. Cell Mol Life Sci 2004; 61:567–579.

    Article  PubMed  CAS  Google Scholar 

  56. Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441:231–234.

    Article  PubMed  CAS  Google Scholar 

  57. Kleinschek MA, Muller U, Brodie SJ, et al. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J Immunol 2006; 176:1098–1106.

    PubMed  CAS  Google Scholar 

  58. Wiekowski MT, Leach MW, Evans EW, et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol 2001; 166: 7563–7570.

    PubMed  CAS  Google Scholar 

  59. Caldwell CC, Okaya T, Martignoni A, Husted T, Schuster R, Lentsch AB. Divergent functions of CD4+ T lymphocytes in acute liver inflammation and injury after ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2005; 289:G969–976.

    Article  PubMed  CAS  Google Scholar 

  60. Exley MA, Koziel MJ. To be or not to be NKT: natural killer T cells in the liver. Hepatology 2004; 40:1033–1040.

    Article  PubMed  Google Scholar 

  61. Zhou D, Mattner J, Cantu C, 3rd, et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 2004; 306:1786–1789.

    Article  PubMed  CAS  Google Scholar 

  62. Mattner J, Debord KL, Ismail N, et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005; 434:525–529.

    Article  PubMed  CAS  Google Scholar 

  63. Kinjo Y, Wu D, Kim G, et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 2005; 434:520–525.

    Article  PubMed  CAS  Google Scholar 

  64. Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 2004; 114:1379–1388.

    Article  PubMed  CAS  Google Scholar 

  65. Osman Y, Kawamura T, Naito T, et al. Activation of hepatic NKT cells and subsequent liver injury following administration of alphagalactosylceramide. Eur J Immunol 2000; 30:1919–1928.

    Article  PubMed  CAS  Google Scholar 

  66. Takeda K, Hayakawa Y, VanKaer L, Matsuda H, Yagita H, Okumura K. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci USA 2000; 97:5498–5503.

    Article  PubMed  CAS  Google Scholar 

  67. Kita H, Naidenko OV, Kronenberg M, et al. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 2002; 123: 1031–1043.

    Article  PubMed  CAS  Google Scholar 

  68. Thimme R, Bukh J, Spangenberg HC, et al. Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc Natl Acad Sci USA 2002; 99:15,661–15,668.

    Article  PubMed  CAS  Google Scholar 

  69. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 1996; 4:25–36.

    Article  PubMed  CAS  Google Scholar 

  70. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology 2006; 43 (2 Suppl 1):S54–62.

    Article  PubMed  CAS  Google Scholar 

  71. Hata K, Zhang XR, Iwatsuki S, VanThiel DH, Herberman RB, Whiteside TL. Isolation, phenotyping, and functional analysis of lymphocytes from human liver. Clin Immunol Immunopathol 1990; 56:401–419.

    Article  PubMed  CAS  Google Scholar 

  72. Smith F, Golden-Mason L, Deignan T, et al. Localization of T and B lymphocytes in histologically normal adult human donor liver. Hepatogastroenterology 2003; 50:1311–1315.

    PubMed  Google Scholar 

  73. Racanelli V, Sansonno D, Piccoli C, D’Amore FP, Tucci FA, Dammacco F Molecular characterization of B cell clonal expan-4 sions in the liver of chronically hepatitis C virus-infected patients. J Immunol 2001; 167:21–29.

    PubMed  CAS  Google Scholar 

  74. Krawitt EL. Autoimmune hepatitis. N Engl J Med 2006; 354:54–66.

    Article  PubMed  CAS  Google Scholar 

  75. Strassburg CP, Manns MP Autoantibodies and autoantigens in autoimmune hepatitis. Semin Liver Dis 2002; 22:339–352.

    Article  PubMed  CAS  Google Scholar 

  76. Kubes P, Kanwar S. Histamine induces leukocyte rolling in postcapillary venules. A P-selectin-mediated event. J Immunol 1994; 152:3570–3577.

    PubMed  CAS  Google Scholar 

  77. Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 1993; 74:541–554.

    Article  PubMed  CAS  Google Scholar 

  78. Ley K, Bullard DC, Arbones ML, et al. Sequential contribution of L-and P-selectin to leukocyte rolling in vivo. J Exp Med 1995; 181:669–675.

    Article  PubMed  CAS  Google Scholar 

  79. Steinhoff G, Behrend M, Schrader B, Duijvestijn AM, Wonigeit K Expression patterns of leukocyte adhesion ligand molecules on human liver endothelia. Lack of ELAM-1 and CD62 inducibility on sinusoidal endothelia and distinct distribution of VCAM-1, ICAM-1, ICAM-2, and LFA-3. Am J Pathol 1993; 142:481–488.

    PubMed  CAS  Google Scholar 

  80. Lalor PF, Shields P, Grant A, Adams DH. Recruitment of lymphocytes to the human liver. Immunol Cell Biol 2002; 80:52–64.

    Article  PubMed  CAS  Google Scholar 

  81. Hamann A, Klugewitz K, Austrup F, Jablonski-Westrich D. Activation induces rapid and profound alterations in the trafficking of T cells. Eur J Immunol 2000; 30:3207–3218.

    Article  PubMed  CAS  Google Scholar 

  82. John B, Crispe IN. Passive and active mechanisms trap activated CD8+ T cells in the liver. J Immunol 2004; 172:5222–5229.

    PubMed  CAS  Google Scholar 

  83. Bonder CS, Norman MU, Swain MG, et al. Rules of recruitment for Th1 and Th2 lymphocytes in inflamed liver: a role for alpha-4 integrin and vascular adhesion protein-1. Immunity 2005; 23: 153–163.

    Article  PubMed  CAS  Google Scholar 

  84. Geissmann F, Cameron TO, Sidobre S, et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 2005; 3:e113.

    Article  CAS  Google Scholar 

  85. Huang L, Soldevila G, Leeker M, Flavell R, Crispe IN. The liver eliminates T cells undergoing antigen-triggered apoptosis in vivo. Immunity 1994; 1:741–749.

    Article  PubMed  CAS  Google Scholar 

  86. Crispe IN, Dao T, Klugewitz K, Mehal WZ, Metz DP. The liver as a site of T-cell apoptosis: graveyard, or killing field? Immunol Rev 2000; 174:47–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Gorham, J.D. (2007). Adaptive Immunity in the Liver. In: Gershwin, M.E., Vierling, J.M., Manns, M.P. (eds) Liver Immunology. Humana Press. https://doi.org/10.1007/978-1-59745-518-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-518-3_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-818-8

  • Online ISBN: 978-1-59745-518-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics