Skip to main content

Immunological Tolerance in Allo- and Xenografts

  • Chapter
Liver Immunology

Abstract

Advances in surgical techniques and ancillary care, in parallel with advances in clinical immunosuppression, are the reasons for the enormous success that has been achieved to date in solid organ transplantation. Such success has also provided a considerable boost in the advancement of our knowledge of immunological tolerance in allogeneic and (relatively more recently) xenogeneic transplantation. Thus, success in human organ transplantation has provided the incentive and foundation for unraveling some of the mysteries of organ transplant acceptance vs failure and has been the foundation for the science of transplantation immunology, which includes to a large extent studies of the fundamental mechanisms of immunological tolerance and the understanding of the concepts involved in self- vs nonself-discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siemionow M, Unal S. Strategies for tolerance induction in nonhuman primates. Ann Plast Surg 2005; 55:545–553.

    Article  PubMed  CAS  Google Scholar 

  2. U.S. Department of Health and Human Services. 2005 Annual Report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1995–2004. Rockville, MD: Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation, 2005.

    Google Scholar 

  3. Bain B, Lowenstein L. Genetic studies on the mixed leukocyte reaction. Science 1964; 145:1315–1316.

    Article  PubMed  CAS  Google Scholar 

  4. Bain B, Vas MR, Lowenstein L. The development of large mononuclear cells in mixed lymphocyte cultures. Blood 1964; 23:108–116.

    PubMed  CAS  Google Scholar 

  5. Goulmy E, Gratama JW, Blokland E, Zwan FE, Van Rood JJ. A minor transplantation antigen detected by MHC-restricted cytotoxic T lymphocytes during graft versus host disease. Nature 1983; 302:156–161.

    Article  Google Scholar 

  6. Kitchen WH, Shuichiro U, Chase CM, Colvin RB, Russell PS, Madsen JC. The changing role of natural killer cells in solid organ rejection and tolerance. Transplantation 2006; 81:811–817.

    Article  Google Scholar 

  7. Spent J, Kishimoto H. The thymus and central tolerance. Philos Trans R Soc Lond Biol Sci 2001; 356:609–616.

    Article  Google Scholar 

  8. Anderson M, Venanzi ES, Klein L, Chen Z, Projection of an immunological self shadow within the thymus by the AIRE protein. Science 2002; 298:1395–1401.

    Article  PubMed  CAS  Google Scholar 

  9. Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CG. Aire regulates negative selection of organ specific T cells. Nat Immunol 2003; 4:350–354.

    Article  PubMed  CAS  Google Scholar 

  10. Bretscher PA. The two signal model for B cell induction. Transplant Rev 1975; 23:37–48.

    PubMed  CAS  Google Scholar 

  11. Cohn M, Blomberg B. The self-nonself discrimination: a one-or two-signal mechanism? Scand J Immunol 1975; 4:1–24.

    Article  PubMed  CAS  Google Scholar 

  12. Gill RG, Coulombe M, Lafferty KJ. Pancreatic islet allograft immunity and tolerance: the two-signal hypothesis revisited. Immunol Rev 1996; 149:75–96.

    Article  PubMed  CAS  Google Scholar 

  13. Pamer E, Cresswell P. Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 1998; 16:323–358.

    Article  PubMed  CAS  Google Scholar 

  14. Cresswell P. Assembly, transport, and function of MHC class II molecules. Annu Rev Immunol 1994; 12:259–293.

    Article  PubMed  CAS  Google Scholar 

  15. Lewis RS. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 2001; 19:497–521.

    Article  PubMed  CAS  Google Scholar 

  16. Bromley SK, Burack WR, Johnson KG, et al. The immunological synapse. Annu Rev Immunol 2001; 19:375–396.

    Article  PubMed  CAS  Google Scholar 

  17. Sundstrom JB, Ansari AA. Comparative study of the role of professional versus semiprofessional or nonprofessional antigen presenting cells in the rejection of vascularized organ allografts. Transplant Immunol 1995; 3:273–289.

    Article  CAS  Google Scholar 

  18. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001; 106:255–258.

    Article  PubMed  CAS  Google Scholar 

  19. Steinman RM, Pack M, Inaba K. Dendritic cell development and maturation. Adv Exp Med Biol 1997; 417:1–6.

    PubMed  CAS  Google Scholar 

  20. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9:271–296.

    Article  PubMed  CAS  Google Scholar 

  21. Wood KJ. New concepts in tolerance. Clin Transplant 1996; 10:93–99.

    PubMed  CAS  Google Scholar 

  22. Nossal GJ. Tolerance and ways to break it. Ann NY Acad Sci 1993; 690:34–41.

    Article  PubMed  CAS  Google Scholar 

  23. Humphrey JH. Regulation of in vivo immune responses: few principles and much ignorance. CIBA Found Symp 1986; 119:6–24.

    PubMed  CAS  Google Scholar 

  24. Boise LH, Noel PJ, Thompson CB. CD28 and apoptosis. Curr Opin Immunol 1995; 7:620–625.

    Article  PubMed  CAS  Google Scholar 

  25. Boise LH, Minn AJ, Noel PJ, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 1995; 3:87–98.

    Article  PubMed  CAS  Google Scholar 

  26. Lechler R, Chai JG, Marelli-Berg F, Lombardi G. T-cell anergy and peripheral T-cell tolerance. Philos Trans R Soc Lond B Biol Sci 2001; 356:625–637.

    Article  PubMed  CAS  Google Scholar 

  27. Alderson MR, Tough TW, Davis-Smith T, et al. Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 1995; 181:71–77.

    Article  PubMed  CAS  Google Scholar 

  28. Sharma K, Wang RX, Zhang LY, et al. Death the Fas way: regulation and pathophysiology of CD95 and its ligand. Pharmacol Ther 2000; 88:333–347.

    Article  PubMed  CAS  Google Scholar 

  29. O’Connell J. Immune privilege or inflammation? The paradoxical effects of Fas ligand. Arch Immunol Ther Exp (Warsz) 2000; 48:73–79.

    CAS  Google Scholar 

  30. Niederkorn JY. The immune privilege of corneal allografts. Transplantation 1999; 67:1503–1508.

    Article  PubMed  CAS  Google Scholar 

  31. Guller S. Role of Fas ligand in conferring immune privilege to non-lymphoid cells. Ann NY Acad Sci 1997; 828:268–272.

    Article  PubMed  CAS  Google Scholar 

  32. Hargreaves RG, Borthwick NJ, Montani MS, et al. Dissociation of T cell anergy from apoptosis by blockade of Fas/Apo-1 (CD95) signaling. J Immunol 1997; 158:3099–3107.

    PubMed  CAS  Google Scholar 

  33. Hargreaves RG, Borthwick NJ, Montani MS, et al. Induction of apoptosis following antigen presentation by T cells: anergy and apoptosis are two separate phenomena. Transplant Proc 1997; 29:1102–1104.

    Article  PubMed  CAS  Google Scholar 

  34. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17:138–146.

    Article  PubMed  CAS  Google Scholar 

  35. Street NE, Mosmann TR. Functional diversity of T lymphocytes due to secretion of different cytokine patterns. FASEB J 1991; 5:171–177.

    PubMed  CAS  Google Scholar 

  36. Heufler C, Koch F, Stanzl U, et al. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol 1996; 26:659–668.

    Article  PubMed  CAS  Google Scholar 

  37. Fairchild PJ, Waldmann H. Dendritic cells and prospects for transplantation tolerance. Curr Opin Immunol 2000; 12:528–535.

    Article  PubMed  CAS  Google Scholar 

  38. Cobbold S, Waldmann H. Infectious tolerance. Curr Opin Immunol 1998; 10:518–524.

    Article  PubMed  CAS  Google Scholar 

  39. O’Garra A, Steinman L, Gijbels K. CD4+ T-cell subsets in auto-immunity. Curr Opin Immunol 1997; 9:872–883.

    Article  PubMed  CAS  Google Scholar 

  40. Moore KW, de Waal MR, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19:683–765.

    Article  PubMed  CAS  Google Scholar 

  41. Krause I, Blank M, Shoenfeld Y. Immunomodulation of experimental autoimmune diseases via oral tolerance. Crit Rev Immunol 2000; 20:1–16.

    PubMed  CAS  Google Scholar 

  42. MacDonald TT. T cell immunity to oral allergens. Curr Opin Immunol 1998; 10:620–627.

    Article  PubMed  CAS  Google Scholar 

  43. Constant SL, Bottomly K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 1997; 15:297–322.

    Article  PubMed  CAS  Google Scholar 

  44. Boutin Y, Leitenberg D, Tao X, Bottomly K. Distinct biochemical signals characterize agonist-and altered peptide ligand-induced differentiation of naïve CD4+ T cells into Th1 and Th2 subsets. J Immunol 1997; 159:5802–5809.

    PubMed  CAS  Google Scholar 

  45. Beverly B, Kang SM, Lenardo MJ, Schwartz RH. Reversal of in vitro T cell clonal anergy by IL-2 stimulation. Int Immunol 1992; 4:661–671.

    Article  PubMed  CAS  Google Scholar 

  46. Jenkins MK, Mueller D, Schwartz RH, et al. Induction and maintenance of anergy in mature T cells. Adv Exp Med Biol 1991; 292:167–176.

    PubMed  CAS  Google Scholar 

  47. Sloan-Lancaster J, Evavold BD, Allen PM. Th2 cell clonal anergy as a consequence of partial activation. J Exp Med 1994; 180:1195–1205.

    Article  PubMed  CAS  Google Scholar 

  48. Lord GM, Lechler RI, George AJ. A kinetic differentiation model for the action of altered TCR ligands. Immunol Today 1999; 20:33–39.

    Article  PubMed  CAS  Google Scholar 

  49. Jenkins MK, Pardoll DM, Mizuguchi J, Chused TM, Schwartz RH. Molecular events in the induction of a nonresponsive state in interleukin 2-producing helper T-lymphocyte clones. Proc Natl Acad Sci USA 1987; 84:5409–5413.

    Article  PubMed  CAS  Google Scholar 

  50. Prud’homme GJ, Vanier LE, Bocarro DC, Ste-Croix H. Effects of cyclosporin A, rapamycin, and FK520 on peripheral T-cell deletion and anergy. Cell Immunol 1995; 164:47–56.

    Article  CAS  Google Scholar 

  51. Powell JD, Lerner CG, Schwartz RH. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol 1999; 162:2775–2784.

    PubMed  CAS  Google Scholar 

  52. Jonuleit H, Schmitt E, Steinbrink K, Enk AH. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol 2001; 22:394–400.

    Article  PubMed  CAS  Google Scholar 

  53. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, non-proliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192:1213–1222.

    Article  PubMed  CAS  Google Scholar 

  54. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL-10-treated dendritic cells. J Immunol 1997; 159:4772–4780.

    PubMed  CAS  Google Scholar 

  55. Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 2001; 193:F5–F9.

    Article  PubMed  CAS  Google Scholar 

  56. Lombardi G, Sidhu S, Batchelor R, Lechler R. Anergic T cells as suppressor cells in vitro. Science 1994; 264:1587–1589.

    Article  PubMed  CAS  Google Scholar 

  57. Liu W, Putnam AL, Xu-yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressor function of human CD4+ T cells. J Exp Med 2006; 203:1701–1711.

    Article  PubMed  CAS  Google Scholar 

  58. Cobbold S, Waldmann H. Infectious tolerance. Curr Opin Immunol 1998; 10:518–524.

    Article  PubMed  CAS  Google Scholar 

  59. Waldmann H, Cobbold S. How do monoclonal antibodies induce tolerance? A role for infectious tolerance? Annu Rev Immunol 1998; 16:619–644.

    Article  PubMed  CAS  Google Scholar 

  60. Lechler R, Chai JG, Marelli-Berg F, Lombardi G. The contributions of T-cell anergy to peripheral T-cell tolerance. Immunology 2001; 103:262–269.

    Article  PubMed  CAS  Google Scholar 

  61. Lechler R, Chai JG, Marelli-Berg F, Lombardi G. T-cell anergy and peripheral T-cell tolerance. Philos Trans R Soc Lond B Biol Sci 2001; 356:625–637.

    Article  PubMed  CAS  Google Scholar 

  62. Allavena P, Piemonti L, Longoni D, et al. IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol 1998; 28:359–369.

    Article  PubMed  CAS  Google Scholar 

  63. De Smedt T, Van Mechelen M, De Becker G, Urbain J, Leo O, Moser M. Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 1997; 27:1229–1235.

    Article  PubMed  Google Scholar 

  64. Sherman LA, Chattopadhyay S. The molecular basis of allorecognition. Annu Rev Immunol 1993; 11:385–402.

    Article  PubMed  CAS  Google Scholar 

  65. Barber DL, Wherry EJ, Masoput D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439:682–687.

    Article  PubMed  CAS  Google Scholar 

  66. Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381:434–438.

    Article  PubMed  CAS  Google Scholar 

  67. Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001; 19:225–252.

    Article  PubMed  CAS  Google Scholar 

  68. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994; 1:405–413.

    Article  PubMed  CAS  Google Scholar 

  69. Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996; 183:2533–2540.

    Article  PubMed  CAS  Google Scholar 

  70. Fraser JH, Rincon M, McCoy KD, Le Gros G. CTLA4 ligation attenuates AP-1, NFAT and NF-kappaB activity in activated T cells. Eur J Immunol 1999; 29:838–844.

    Article  PubMed  CAS  Google Scholar 

  71. Yamada A, Kishimoto K, Dong VM, et al. CD28-independent costimulation of T cells in alloimmune responses. J Immunol 2001; 167:140–146.

    PubMed  CAS  Google Scholar 

  72. Dong C, Juedes AE, Temann UA, et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 2001; 409:97–101.

    Article  PubMed  CAS  Google Scholar 

  73. Mandelbrot DA, Oosterwegel MA, Shimizu K, et al. B7-dependent T-cell costimulation in mice lacking CD28 and CTLA4. J Clin Invest 2001; 107:881–887.

    Article  PubMed  CAS  Google Scholar 

  74. Perico N, Imberti O, Bontempelli M, Remuzzi G. Toward novel antirejection strategies: in vivo immunosuppressive properties of CTLA4Ig. Kidney Int 1995; 47:241–246.

    Article  PubMed  CAS  Google Scholar 

  75. Bolling SF, Lin H, Wei RQ, Linsley P, Turka LA. The effect of combination cyclosporine and CTLA4-Ig therapy on cardiac allograft survival. J Surg Res 1994; 57:60–64.

    Article  PubMed  CAS  Google Scholar 

  76. Blazar BR, Taylor PA, Linsley PS, Vallera DA. In vivo blockade of CD28/CTLA4: B7/BB1 interaction with CTLA4-Ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice. Blood 1994; 83:3815–3825.

    PubMed  CAS  Google Scholar 

  77. Adams AB, Pearson TC, Larsen CP. Conventional immunosuppression and co-stimulation blockade. Philos Trans R Soc Lond B Biol Sci 2001; 356:703–705.

    Article  PubMed  CAS  Google Scholar 

  78. Khoury S, Sayegh MH, Turka LA. Blocking co-stimulatory signals to induce transplantation tolerance and prevent autoimmune disease. Int Rev Immunol 1999; 18:185–199.

    PubMed  CAS  Google Scholar 

  79. Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998; 16:111–135.

    Article  PubMed  CAS  Google Scholar 

  80. Marone G, Spadaro G, De Marino V, Aliperta M, Triggiani M. Immunopharmacology of human mast cells and basophils. Int J Clin Lab Res 1998; 28:12–22.

    Article  PubMed  CAS  Google Scholar 

  81. Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391:591–594.

    Article  PubMed  CAS  Google Scholar 

  82. Kirk AD, Blair PJ, Tadaki DK, Xu H, Harlan DM. The role of CD154 in organ transplant rejection and acceptance. Philos Trans R Soc Lond B Biol Sci 2001; 356:691–702.

    Article  PubMed  CAS  Google Scholar 

  83. Larsen CP, Pearson TC. The CD40 pathway in allograft rejection, acceptance, and tolerance. Curr Opin Immunol 1997; 9:641–647.

    Article  PubMed  CAS  Google Scholar 

  84. Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA 1997; 94:8789–8794.

    Article  PubMed  CAS  Google Scholar 

  85. Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381:434–438.

    Article  PubMed  CAS  Google Scholar 

  86. Blair PJ, Riley JL, Harlan DM, et al. CD40 ligand (CD154) triggers a short-term CD4(+) T cell activation response that results in secretion of immunomodulatory cytokines and apoptosis. J Exp Med 2000; 191:651–660.

    Article  PubMed  CAS  Google Scholar 

  87. Smiley ST, Csizmadia V, Gao W, Turka LA, Hancock WW. Differential effects of cyclosporine A, methylprednisolone, mycophenolate, and rapamycin on CD154 induction and requirement for NFkappaB: implications for tolerance induction. Transplantation 2000; 70:415–419.

    Article  PubMed  CAS  Google Scholar 

  88. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005; 23:515–548.

    Article  PubMed  CAS  Google Scholar 

  89. Okazaki T, Honjo T. The PD-1-PD-L pathways in immunological tolerance. Trends Immunol 2006; 27:195–201.

    Article  PubMed  CAS  Google Scholar 

  90. Starzl TE, Murase N, Demetris A, Trucco M, Fung J. The mystique of hepatic tolerogenicity. Semin Liver Dis 2000; 20:497–510.

    Article  PubMed  CAS  Google Scholar 

  91. Starzl TE, Murase N, Thomson A, Demetris AJ. Liver transplants contribute to their own success. Nat Med 1996; 2:163–165.

    Article  PubMed  CAS  Google Scholar 

  92. Lechler R, Ng WF, Steinman RM. Dendritic cells in transplantation— friend or foe? Immunity 2001; 14:357–368.

    Article  PubMed  CAS  Google Scholar 

  93. Thomson AW, Lu L. Are dendritic cells the key to liver transplant tolerance? Immunol Today 1999; 20:27–32.

    Article  PubMed  CAS  Google Scholar 

  94. Riedl E, Strobl H, Majdic O, Knapp W. TGF-beta 1 promotes in vitro generation of dendritic cells by protecting progenitor cells from apoptosis. J Immunol 1997; 158:1591–1597.

    PubMed  CAS  Google Scholar 

  95. Knolle P, Lohr H, Treichel U, et al. Parenchymal and nonparenchymal liver cells and their interaction in the local immune response. Z Gastroenterol 1995; 33:613–620.

    PubMed  CAS  Google Scholar 

  96. Dini L. Recognizing death: liver phagocytosis of apoptotic cells. Eur J Histochem 2000; 44:217–227.

    PubMed  CAS  Google Scholar 

  97. Steinman RM, Inaba K. Myeloid dendritic cells. J Leukoc Biol 1999; 66:205–208.

    PubMed  CAS  Google Scholar 

  98. Galili U, Wang L, LaTemple DC, Radic MZ. The natural anti-Gal antibody. Subcell Biochem 1999; 32:79–106.

    PubMed  CAS  Google Scholar 

  99. Galili U. Interaction of the natural anti-Gal antibody with alpha-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today 1993; 14:480–482.

    Article  PubMed  CAS  Google Scholar 

  100. Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem 1988; 263:17,755–17,762.

    PubMed  CAS  Google Scholar 

  101. Gock H, Salvaris E, Murray-Segal L, et al. Hyperacute rejection of vascularized heart transplants in BALB/c Gal knockout mice. Xenotransplantation 2000; 7:237–246.

    Article  PubMed  CAS  Google Scholar 

  102. Pearse MJ, Witort E, Mottram P, et al. Anti-Gal antibody-mediated allograft rejection in alpha1,3-galactosyltransferase gene knockout mice: a model of delayed xenograft rejection. Transplantation 1998; 66:748–754.

    Article  PubMed  CAS  Google Scholar 

  103. Chen RH, Naficy S, Logan JS, Diamond LE, Adams DH. Hearts from transgenic pigs constructed with CD59/DAF genomic clones demonstrate improved survival in primates. Xenotransplantation 1999; 6:194–200.

    Article  PubMed  CAS  Google Scholar 

  104. Kroshus TJ, Bolman RM III, Dalmasso AP, et al. Expression of human CD59 in transgenic pig organs enhances organ survival in an ex vivo xenogeneic perfusion model. Transplantation 1996; 61:1513–1521.

    Article  PubMed  CAS  Google Scholar 

  105. Hirota T, Hirose H, Iwata H, et al. Direct recognition of rat MHC antigens on rat antigen-presenting cells by mouse CD4+ and CD8+ T cells and establishment of T cell clones exhibiting a direct recognition pathway. Transplantation 1997; 63:705–710.

    Article  PubMed  CAS  Google Scholar 

  106. Ohdan H, Yang YG, Swenson KG, Kitamura H, Sykes M. T cell and B cell tolerance to GALalpha1,3GAL-expressing heart xenografts is achieved in alpha1,3-galactosyltransferase-deficient mice by non-myeloablative induction of mixed chimerism. Transplantation 2001; 71:1532–1542.

    Article  PubMed  CAS  Google Scholar 

  107. Yang YG, deGoma E, Ohdan H, et al. Tolerization of anti-Galalpha1-3Gal natural antibody-forming B cells by induction of mixed chimerism. J Exp Med 1998; 187:1335–1342.

    Article  PubMed  CAS  Google Scholar 

  108. Buhler L, Awwad M, Basker M, et al. High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response. Transplantation 2000; 69:2296–2304.

    Article  PubMed  CAS  Google Scholar 

  109. Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science 1945; 102:400–401.

    Article  PubMed  Google Scholar 

  110. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature 1953; 172:603–606.

    Article  PubMed  CAS  Google Scholar 

  111. Grrene M. To restore faith and trust: justice and biological access to cellular therapies. Hasting Cent Rep 2006; 36:52–63.

    Article  Google Scholar 

  112. Ramirez P, Chavez R, Majado M, et al. Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation 2000; 70:989–998.

    Article  PubMed  CAS  Google Scholar 

  113. Gupta S, Malhi H, Gagandeep S, Novikoff P. Liver repopulation with hepatocyte transplantation: new avenues for gene and cell therapy. J Gene Med 1999; 1:386–392.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ansari, A.A., Pattanapanyasat, K. (2007). Immunological Tolerance in Allo- and Xenografts. In: Gershwin, M.E., Vierling, J.M., Manns, M.P. (eds) Liver Immunology. Humana Press. https://doi.org/10.1007/978-1-59745-518-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-518-3_34

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-818-8

  • Online ISBN: 978-1-59745-518-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics