Skip to main content

Clinical Use of Immunosuppressive Drugs to Control the Immune Response

  • Chapter
Liver Immunology
  • 1823 Accesses

Abstract

It is increasingly clear that, regardless of etiology, inflammatory and immunological mechanisms are involved in the pathogenesis of virtually all hepatobiliary diseases and hepatic fibrogenesis. Studies of immunopathogenetic mechanisms have identified multiple therapeutic targets in both the innate and adaptive immune responses that portend the future ability to prevent hepatic allograft rejection and control progression of chronic viral hepatitis, alcoholic and nonalcoholic fatty liver disease, drug-induced hepatotoxicity, graft-versus-host disease (GVHD), and autoimmune and immune-mediated inflammatory diseases (IMIDs) of the liver. The current availability of multiple immunosuppressive and anti-inflammatory drugs with distinct, complementary sites of action provides the opportunity and impetus to study their therapeutic potentials in both transplant and nontransplant settings. Concurrent immunosuppression of several specific sites involved in immunopathogenesis may ultimately enhance efficacy, while minimizing the dosedependent toxicities of individual drugs. Thus, the goals of this chapter are to review the mechanism(s) of action of established and new immunosuppressive and anti-inflammatory agents and to discuss their current and future therapeutic potentials in the prevention of hepatic allograft rejection and nontransplant hepatobiliary diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rezaei N. Therapeutic targeting of pattern-recognition receptors. Int Immunopharmacol 2006; 6:863–869.

    Article  PubMed  CAS  Google Scholar 

  2. Ulevitch RJ. Therapeutics targeting the innate immune system. Nat Rev Immunol 2004; 4:512–520.

    Article  PubMed  CAS  Google Scholar 

  3. Coelho AL, Hogaboam CM, Kunkel SL. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev 2005; 16:553–560.

    Article  PubMed  CAS  Google Scholar 

  4. Barreiro O, Vicente-Manzanares M, Urzainqui A, Yanez-Mo M, Sanchez-Madrid F. Interactive protrusive structures during leukocyte adhesion and transendothelial migration. Front Biosci 2004; 9:1849–1863.

    Article  PubMed  CAS  Google Scholar 

  5. Tsung A, Hoffman RA, Izuishi K, et al. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J Immunol 2005; 175:7661–7668.

    PubMed  CAS  Google Scholar 

  6. Sung JJ, Lik-Yuen H. HBV-ISS (Dynavax). Curr Opin Mol Ther 2006; 8:150–155.

    PubMed  CAS  Google Scholar 

  7. Isogawa M, Robek MD, Furuichi Y, Chisari FV. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol 2005; 79:7269–7272.

    Article  PubMed  CAS  Google Scholar 

  8. Chang WW, Su IJ, Lai MD, Chang WT, Huang W, Lei HY. Toll-like receptor 4 plays an anti-HBV role in a murine model of acute hepatitis B virus expression. World J Gastroenterol 2005; 11:6631–6637.

    PubMed  CAS  Google Scholar 

  9. Li K, Chen Z, Kato N, Gale M Jr, Lemon SM. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J Biol Chem 2005; 280:16,739–16,747.

    Article  PubMed  CAS  Google Scholar 

  10. Mbow ML, Eaton-Bassiri A, Glass WG, Del Vecchio AM, Sarisky RT. Small molecule and biologic modulators of the immune response to hepatitis C virus. Mini Rev Med Chem 2006; 6:527–531.

    Article  PubMed  CAS  Google Scholar 

  11. Dolganiuc A, Oak S, Kodys K, et al. Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology 2004; 127:1513–1524.

    Article  PubMed  CAS  Google Scholar 

  12. Seth RB, Sun L, Chen ZJ. Antiviral innate immunity pathways. Cell Res 2006; 16:141–147.

    Article  PubMed  CAS  Google Scholar 

  13. Lee J, Wu CC, Lee KJ, et al. Activation of anti-hepatitis C virus responses via Toll-like receptor 7. Proc Natl Acad Sci USA 2006; 103:1828–1833.

    Article  PubMed  CAS  Google Scholar 

  14. Horsmans Y, Berg T, Desager JP, et al. Isatoribine, an agonist of TLR7, reduces plasma virus concentration in chronic hepatitis C infection. Hepatology 2005; 42:724–731.

    Article  PubMed  CAS  Google Scholar 

  15. Wang H, Li Y. Protective effect of bicyclol on acute hepatic failure induced by lipopolysaccharide and D-galactosamine in mice. Eur J Pharmacol 2006; 534:194–201.

    Article  PubMed  CAS  Google Scholar 

  16. Yohe HC, O’Hara KA, Hunt JA, et al. Involvement of Toll-like receptor 4 in acetaminophen hepatotoxicity. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1269–G1279.

    Article  PubMed  CAS  Google Scholar 

  17. Wang AP, Migita K, Ito M, et al. Hepatic expression of toll-like receptor4 in primary biliary cirrhosis. J Autoimmun 2005; 25:85–91.

    Article  PubMed  CAS  Google Scholar 

  18. Takii Y, Nakamura M, Ito M, et al. Enhanced expression of type I interferon and toll-like receptor-3 in primary biliary cirrhosis. Lab Invest 2005; 85:908–920.

    Article  PubMed  CAS  Google Scholar 

  19. Uesugi T, Froh M, Arteel GE, Bradford BU, Thurman RG. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology 2001; 34:101–108.

    Article  PubMed  CAS  Google Scholar 

  20. Szabo G, Velayudham A, Romics L Jr, Mandrekar P. Modulation of non-alcoholic steatohepatitis by pattern recognition receptors in mice: the role of toll-like receptors 2 and 4. Alcohol Clin Exp Res 2005; 29:140S–145S.

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt C. Immune system’s Toll-like receptors have good opportunity for cancer treatment. J Natl Cancer Inst 2006; 98:574–575.

    PubMed  Google Scholar 

  22. Cianci R, Cammarota G, Raducci F, Pandolfi F. The impact of biological agents interfering with receptor/ligand binding in the immune system. Eur Rev Med Pharmacol Sci 2005; 9:305–314.

    PubMed  CAS  Google Scholar 

  23. Friedman SL. Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 2004; 1:98–105.

    Article  PubMed  Google Scholar 

  24. Wiseman H, Duffy R. New advances in the understanding of the role of steroids and steroid receptors in disease. Biochem Soc Trans 2001; 29:205–209.

    Article  PubMed  CAS  Google Scholar 

  25. Czaja AJ, Bianchi FB, Carpenter HA, et al. Treatment challenges and investigational opportunities in autoimmune hepatitis. Hepatology 2005; 41:207–215.

    Article  PubMed  Google Scholar 

  26. Mitchison HC, Palmer JM, Bassendine MF, Watson AJ, Record CO, James OF. A controlled trial of prednisolone treatment in primary biliary cirrhosis. Three-year results. J Hepatol 1992; 15:336–344.

    Article  PubMed  CAS  Google Scholar 

  27. Uehara T, Hamano H, Kawa S, Sano K, Honda T, Ota H. Distinct clinicopathological entity ‘autoimmune pancreatitis-associated sclerosing cholangitis’. Pathol Int 2005; 55:405–411.

    Article  PubMed  Google Scholar 

  28. Phillips M, Curtis H, Portmann B, Donaldson N, Bomford A, O’Grady J. Antioxidants versus corticosteroids in the treatment of severe alcoholic hepatitis—a randomised clinical trial. J Hepatol 2006; 44:784–790.

    Article  PubMed  CAS  Google Scholar 

  29. Neuhaus P, Langrehr JM, Williams R, Calne RY, Pichlmayr R, McMaster P. Tacrolimus-based immunosuppression after liver transplantation: a randomised study comparing dual versus triple low-dose oral regimens. Transpl Int 1997; 10:253–261.

    Article  PubMed  CAS  Google Scholar 

  30. Mazzella G, Fusaroli P, Pezzoli A, et al. Methylprednisolone administration in primary biliary cirrhosis increases cholic acid turnover, synthesis, and deoxycholate concentration in bile. Dig Dis Sci 1999; 44:2478–2483.

    Article  PubMed  CAS  Google Scholar 

  31. O’Connell EJ. Review of the unique properties of budesonide. Clin Ther 2003; 25 Suppl C:C42–C60.

    Article  PubMed  CAS  Google Scholar 

  32. Hempfling W, Grunhage F, Dilger K, Reichel C, Beuers U, Sauerbruch T. Pharmacokinetics and pharmacodynamic action of budesonide in earlyand late-stage primary biliary cirrhosis. Hepatology 2003; 38:196–202.

    Article  PubMed  CAS  Google Scholar 

  33. Wiegand J, Schuler A, Kanzler S, et al. Budesonide in previously untreated autoimmune hepatitis. Liver Int 2005; 25:927–934.

    Article  PubMed  CAS  Google Scholar 

  34. Vierling JM. Future treatment options in PBC. Semin Liver Dis 2005; 25:347–363.

    Article  PubMed  Google Scholar 

  35. Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid ‘mechanisms of action and clinical use in hepatobiliary disorders’. J Hepatol 2001; 35:134–146.

    Article  PubMed  CAS  Google Scholar 

  36. Corpechot C, Carrat F, Bahr A, Chretien Y, Poupon RE, Poupon R. The effect of ursodeoxycholic acid therapy on the natural course of primary biliary cirrhosis. Gastroenterology 2005; 128:297–303.

    Article  PubMed  CAS  Google Scholar 

  37. Duclos-Vallee JC, Di MV, Cazier A, et al.Remission with ursodeoxycholic acid of type 1 autoimmune hepatitis resistant to azathioprine and steroids. Gastroenterol Clin Biol 2005; 29: 1173–1176.

    PubMed  Google Scholar 

  38. Olsson R, Boberg KM, de Muckadell OS, et al. High-dose ursodeoxycholic acid in primary sclerosing cholangitis: a 5-year multicenter, randomized, controlled study. Gastroenterology 2005; 129:1464–1472.

    Article  PubMed  CAS  Google Scholar 

  39. Lindor KD, Kowdley KV, Heathcote EJ, et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology 2004; 39:770–778.

    Article  PubMed  CAS  Google Scholar 

  40. Arat M, Idilman R, Soydan EA, et al. Ursodeoxycholic acid treatment in isolated chronic graft-vs.-host disease of the liver. Clin Transplant 2005; 19:798–803.

    Article  PubMed  Google Scholar 

  41. Siegel JL, Jorgensen R, Angulo P, Lindor KD. Treatment with ursodeoxycholic acid is associated with weight gain in patients with primary biliary cirrhosis. J Clin Gastroenterol 2003; 37:183–185.

    Article  PubMed  CAS  Google Scholar 

  42. Jorgensen KA, Koefoed-Nielsen PB, Karamperis N. Calcineurin phosphatase activity and immunosuppression. A review on the role of calcineurin phosphatase activity and the immunosuppressive effect of cyclosporin A and tacrolimus. Scand J Immunol 2003; 57:93–98.

    Article  PubMed  CAS  Google Scholar 

  43. Jiang S, Herrera O, Lechler RI. New spectrum of allorecognition pathways: implications for graft rejection and transplantation tolerance. Curr Opin Immunol 2004; 16:550–557.

    Article  PubMed  CAS  Google Scholar 

  44. Beukers R, deRave S, van den Berg JW, Schalm SW. Oral pharmacokinetics of cyclosporin in patients with primary biliary cirrhosis and patients with skin diseases. Aliment Pharmacol Ther 1992; 6:459–468.

    Article  PubMed  CAS  Google Scholar 

  45. Busuttil RW, Lake JR. Role of tacrolimus in the evolution of liver transplantation. Transplantation 2004; 77:S44–S51.

    Article  PubMed  CAS  Google Scholar 

  46. Lunz JG III, Contrucci S, Ruppert K, et al. Replicative senescence of biliary epithelial cells precedes bile duct loss in chronic liver allograft rejection: increased expression of p21(WAF1/Cip1) as a disease marker and the influence of immunosuppressive drugs. Am J Pathol 2001; 158:1379–1390.

    PubMed  CAS  Google Scholar 

  47. Vierling JM, Flores PA. Evolving new therapies of autoimmune hepatitis. Clin Liver Dis 2002; 6:537–562.

    Article  Google Scholar 

  48. Czaja AJ. Autoimmune liver disease. Curr Opin Gastroenterol 2006; 22:234–240.

    Article  PubMed  Google Scholar 

  49. Lombard M, Portmann B, Neuberger J, et al. Cyclosporin A treatment in primary biliary cirrhosis: results of a long-term placebo controlled trial. Gastroenterology 1993; 104:519–526.

    PubMed  CAS  Google Scholar 

  50. Guanabens N, Pares A, Navasa M, J et al. Cyclosporin A increases the biochemical markers of bone remodeling in primary biliary cirrhosis. J Hepatol 1994; 21:24–28.

    Article  PubMed  CAS  Google Scholar 

  51. Parsons HG, Thirsk JE, Frohlich J, Dias V, Minuk GY. Effect of cyclosporin A on serum lipids in primary biliary cirrhosis patients. Clin Invest Med 1989; 12:386–391.

    PubMed  CAS  Google Scholar 

  52. McMichael J, Lieberman R, McCauley J, Irish W, Marino I, Doyle H. Computer-guided randomized concentration-controlled trials of tacrolimus in autoimmunity: multiple sclerosis and primary biliary cirrhosis. Ther Drug Monit 1996; 18:435–437.

    Article  PubMed  CAS  Google Scholar 

  53. Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit 1995; 17:584–591.

    Article  PubMed  CAS  Google Scholar 

  54. Chatur N, Ramji A, Bain VG, et al. Transplant immunosuppressive agents in non-transplant chronic autoimmune hepatitis: the Canadian association for the study of liver (CASL) experience with mycophenolate mofetil and tacrolimus. Liver Int 2005; 25:723–727.

    Article  PubMed  CAS  Google Scholar 

  55. Vierling JM, Braun M, Wang H-M. Immunopathogenesis of vanishing bile duct syndromes. In: Alpini G, LeSage GD, LaRusso NF, eds. Pathophysiology of the Biliary Epithelia. Georgetown, TX: Landes Bioscience/Eurekah.com 2003:349–375.

    Google Scholar 

  56. Simon HU, Spath PJ. IVIG—mechanisms of action. Allergy 2003; 58:543–552.

    Article  PubMed  CAS  Google Scholar 

  57. Hansen RJ, Balthasar JP. IVIG effects on autoantibody elimination. Allergy 2004; 59:1124.

    Article  PubMed  Google Scholar 

  58. Molina V, Blank M, Shoenfeld Y. Intravenous immunoglobulin and fibrosis. Clin Rev Allergy Immunol 2005; 29:321–326.

    Article  PubMed  CAS  Google Scholar 

  59. Sherer Y, Levy Y, Langevitz P, Rauova L, Fabrizzi F, Shoenfeld Y. Adverse effects of intravenous immunoglobulin therapy in 56 patients with autoimmune diseases. Pharmacology 2001; 62:133–137.

    Article  PubMed  CAS  Google Scholar 

  60. Skov L, Kragballe K, Zachariae C, et al. HuMax-CD4: a fully human monoclonal anti-CD4 antibody for the treatment of psoriasis vulgaris. Arch Dermatol 2003; 139:1433–1439.

    Article  PubMed  CAS  Google Scholar 

  61. Winsor-Hines D, Merrill C, O’Mahony M, et al. Induction of immunological tolerance/hyporesponsiveness in baboons with a nondepleting CD4 antibody. J Immunol 2004; 173:4715–4723.

    PubMed  CAS  Google Scholar 

  62. Nicolls MR, Gill RG. LFA-1 (CD11a) as a therapeutic target. Am J Transplant 2006; 6:27–36.

    Article  PubMed  CAS  Google Scholar 

  63. Papp KA, Bressinck R, Fretzin S, et al. Safety of efalizumab in adults with chronic moderate to severe plaque psoriasis: a phase IIIb, randomized, controlled trial. Int J Dermatol 2006; 45:605–614.

    Article  PubMed  CAS  Google Scholar 

  64. Cheng A, Mann C. Oral erosive lichen planus treated with efalizumab. Arch Dermatol 2006; 142:680–682.

    Article  PubMed  Google Scholar 

  65. Huber A, Gaffal E, Bieber T, Tuting T, Wenzel J. Treatment of recalcitrant dermatomyositis with efalizumab. Acta Derm Venereol 2006; 86:254–255.

    Article  PubMed  Google Scholar 

  66. Clayton TH, Ogden S, Goodfield MD. Treatment of refractory subacute cutaneous lupus erythematosus with efalizumab. J Am Acad Dermatol 2006; 54:892–895.

    Article  PubMed  Google Scholar 

  67. Scheinfeld N. Efalizumab: a review of events reported during clinical trials and side effects. Expert Opin Drug Saf 2006; 5:197–209.

    Article  PubMed  CAS  Google Scholar 

  68. Mileski WJ, Burkhart D, Hunt JL, et al. Clinical effects of inhibiting leukocyte adhesion with monoclonal antibody to intercellular adhesion molecule-1 (enlimomab) in the treatment of partial-thickness burn injury. J Trauma 2003; 54:950–958.

    PubMed  Google Scholar 

  69. Becker KJ. Anti-leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6.5) in acute stroke. Curr Med Res Opin. 2002; 18(Suppl 2):s18–s22.

    Article  PubMed  Google Scholar 

  70. Najafian N, Sayegh MH. CTLA4-Ig: a novel immunosuppressive agent. Expert Opin Investig Drugs 2000; 9:2147–2157.

    Article  PubMed  CAS  Google Scholar 

  71. Orabona C, Belladonna ML, Vacca C, et al. Cutting edge: silencing suppressor of cytokine signaling 3 expression in dendritic cells turns CD28-Ig from immune adjuvant to suppressant. J Immunol 2005; 174:6582–6586.

    PubMed  CAS  Google Scholar 

  72. Kremer JM, Genant HK, Moreland LW, et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann Intern Med 2006; 144:865–876.

    PubMed  CAS  Google Scholar 

  73. Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant 2005; 5:443–453.

    Article  PubMed  CAS  Google Scholar 

  74. Larsen CP, Knechtle SJ, Adams A, Pearson T, Kirk AD. A new look at blockade of T-cell costimulation: a therapeutic strategy for longterm maintenance immunosuppression. Am J Transplant 2006; 6:876–883.

    Article  PubMed  CAS  Google Scholar 

  75. Li W, Zheng XX, Kuhr CS, Perkins JD. CTLA4 engagement is required for induction of murine liver transplant spontaneous tolerance. Am J Transplant 2005; 5:978–986.

    Article  PubMed  CAS  Google Scholar 

  76. Nakayama Y, Shimizu Y, Hirano K, et al. CTLA-4Ig suppresses liver injury by inhibiting acquired immune responses in a mouse model of fulminant hepatitis. Hepatology 2005; 42:915–924.

    Article  PubMed  CAS  Google Scholar 

  77. Jiang GP, Hu ZH, Zheng SS, Jia CK, Zhang AB, Wang WL. Adenovirus mediated CTLA4Ig gene inhibits infiltration of immune cells and cell apoptosis in rats after liver transplantation. World J Gastroenterol 2005; 11:1065–1069.

    PubMed  CAS  Google Scholar 

  78. Abadia-Molina AC, Ji H, Faubion WA, et al. CD48 controls T-cell and antigen-presenting cell functions in experimental colitis. Gastroenterology 2006; 130:424–434.

    Article  PubMed  CAS  Google Scholar 

  79. Hodak E, David M. Alefacept: a review of the literature and practical guidelines for management. Dermatol Ther 2004; 17:383–392.

    Article  PubMed  Google Scholar 

  80. Papp KA. The long-term efficacy and safety of new biological therapies for psoriasis. Arch Dermatol Res 2006; 298:7–15.

    Article  PubMed  CAS  Google Scholar 

  81. Fivenson DP, Mathes B. Treatment of generalized lichen planus with alefacept. Arch Dermatol 2006; 142:151–152.

    Article  PubMed  Google Scholar 

  82. Shapira MY, Resnick IB, Bitan M, et al. Rapid response to alefacept given to patients with steroid resistant or steroid dependent acute graft-versus-host disease: a preliminary report. Bone Marrow Transplant 2005; 36:1097–1101.

    Article  PubMed  CAS  Google Scholar 

  83. Scheinfeld N. Alefacept: a safety profile. Expert Opin Drug Saf. 2005; 4:975–985.

    Article  PubMed  CAS  Google Scholar 

  84. Xu H, Tadaki DK, Elster EA, et al. Humanized anti-CD154 antibody therapy for the treatment of allograft rejection in nonhuman primates. Transplantation 2002; 74:940–943.

    Article  PubMed  CAS  Google Scholar 

  85. Ferrant JL, Benjamin CD, Cutler AH, et al. The contribution of Fc effector mechanisms in the efficacy of anti-CD 154 immunotherapy depends on the nature of the immune challenge. Int Immunol 2004; 16:1583–1594.

    Article  PubMed  CAS  Google Scholar 

  86. Starck L, Scholz C, Dorken B, Daniel PT. Costimulation by CD137/4-1BB inhibits T cell apoptosis and induces Bcl-x(L) and c-FLIP(short) via phosphatidylinositol 3-kinase and AKT/protein kinase B. Eur J Immunol 2005; 35:1257–1266.

    Article  PubMed  CAS  Google Scholar 

  87. Nam KO, Kang H, Shin SM, et al. Cross-linking of 4-1BB activates TCR-signaling pathways in CD8+ T lymphocytes. J Immunol 2005; 174:1898–1905.

    PubMed  CAS  Google Scholar 

  88. Shao H, Fu Y, Liao T, et al. Anti-CD137 mAb treatment inhibits experimental autoimmune uveitis by limiting expansion and increasing apoptotic death of uveitogenic T cells. Invest Ophthalmol Vis Sci 2005; 46:596–603.

    Article  PubMed  Google Scholar 

  89. Morris GP, Chen L, Kong YC. CD137 signaling interferes with activation and function of CD4+CD25+ regulatory T cells in induced tolerance to experimental autoimmune thyroiditis. Cell Immunol 2003; 226:20–29.

    Article  PubMed  CAS  Google Scholar 

  90. Cohen E. mTOR inhibitors. Clin Adv Hematol Oncol 2006; 4:38–39.

    PubMed  Google Scholar 

  91. Nashan B. Review of the proliferation inhibitor everolimus. Expert Opin Investig Drugs 2002; 11:1845–1857.

    Article  PubMed  CAS  Google Scholar 

  92. Kahan BD. Sirolimus-based immunosuppression: present state of the art. J Nephrol 2004; 17(Suppl 8):S32–S39.

    PubMed  CAS  Google Scholar 

  93. Webster AC, Lee VW, Chapman JR, Craig JC. Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst Rev 2006; CD004290.

    Google Scholar 

  94. Fung J, Kelly D, Kadry Z, Patel-Tom K, Eghtesad B. Immunosuppression in liver transplantation: beyond calcineurin inhibitors. Liver Transplant 2005; 11:267–280.

    Article  Google Scholar 

  95. Kerkar N, Dugan C, Rumbo C, et al. Rapamycin successfully treats post-transplant autoimmune hepatitis. Am J Transplant 2005; 5:1085–1089.

    Article  PubMed  Google Scholar 

  96. Foley JE, Jung U, Miera A, et al. Ex vivo rapamycin generates donor Th2 cells that potently inhibit graft-versus-host disease and graftversus-tumor effects via an IL-4-dependent mechanism. J Immunol 2005; 175:5732–5743.

    PubMed  CAS  Google Scholar 

  97. Law BK. Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol 2005; 56:47–60.

    Article  PubMed  Google Scholar 

  98. Biecker E, DeGottardi A, Neef M, et al. Long-term treatment of bile duct-ligated rats with rapamycin (sirolimus) significantly attenuates liver fibrosis: analysis of the underlying mechanisms. J Pharmacol Exp Ther 2005; 313:952–961.

    Article  PubMed  CAS  Google Scholar 

  99. O’Mahony CA, Vierling JM. Etiopathogenesis of primary sclerosing cholangitis. Semin Liver Dis 2006; 26:3–21.

    Article  PubMed  CAS  Google Scholar 

  100. Niemeyer G, Koch M, Light S, Kuse ER, Nashan B. Long-term safety, tolerability and efficacy of daclizumab (Zenapax) in a two-dose regimen in liver transplant recipients. Am J Transplant 2002; 2:454–460.

    Article  PubMed  CAS  Google Scholar 

  101. Kapic E, Becic F, Kusturica J. Basiliximab, mechanism of action and pharmacological properties. Med Arh 2004; 58:373–376.

    PubMed  Google Scholar 

  102. Baudouin V, Crusiaux A, Haddad E, et al. Anaphylactic shock caused by immunoglobulin E sensitization after retreatment with the chimeric anti-interleukin-2 receptor monoclonal antibody basiliximab. Transplantation 2003; 76:459–463.

    Article  PubMed  CAS  Google Scholar 

  103. Boillot O, Mayer DA, Boudjema K, et al. Corticosteroid-free immunosuppression with tacrolimus following induction with daclizumab: a large randomized clinical study. Liver Transpl 2005; 11:61–67.

    Article  PubMed  Google Scholar 

  104. Marino IR, Doria C, Scott VL, et al. Efficacy and safety of basiliximab with a tacrolimus-based regimen in liver transplant recipients. Transplantation 2004; 78:886–891.

    Article  PubMed  CAS  Google Scholar 

  105. Creed TJ, Probert CS, Norman MN, et al. Basiliximab for the treatment of steroid-resistant ulcerative colitis: further experience in moderate and severe disease. Aliment Pharmacol Ther 2006; 23:1435–1442.

    Article  PubMed  CAS  Google Scholar 

  106. Ji SQ, Chen HR, Yan HM, et al. Anti-CD25 monoclonal antibody (basiliximab) for prevention of graft-versus-host disease after haploidentical bone marrow transplantation for hematological malignancies. Bone Marrow Transplant 2005; 36:349–354.

    Article  PubMed  CAS  Google Scholar 

  107. El Asir L, Wilson CH, Talbot D. Interleukin 2 receptor blockers may directly inhibit lymphocyte mediated ischaemia reperfusion injury. Transplant Int 2005; 18:1116.

    Article  Google Scholar 

  108. Van Assche G, Sandborn WJ, Feagan BG, et al. Daclizumab, a humanized monoclonal antibody to the interleukin-2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double-blind, placebo-controlled, doseranging trial. Gut 2006; 55:1568–1574.

    Article  PubMed  CAS  Google Scholar 

  109. Rodriguez V, Anderson PM, Trotz BA, Arndt CA, Allen JA, Khan SP. Use of infliximab-daclizumab combination for the treatment of acute and chronic graft-versus-host disease of the liver and gut. Pediatr Blood Cancer 2005.

    Google Scholar 

  110. Nussenblatt RB, Peterson JS, Foster CS, et al. Initial evaluation of subcutaneous daclizumab treatments for noninfectious uveitis: a multicenter noncomparative interventional case series. Ophthalmology 2005; 112:764–770.

    Article  PubMed  Google Scholar 

  111. Fogarty PF, Seggewiss R, McCloskey DJ, Boss CA, Dunbar CE, Rick ME. Anti-interleukin-2 receptor antibody (daclizumab) treatment of corticosteroid-refractory autoimmune thrombocytopenic purpura. Haematologica 2006; 91:277–278.

    PubMed  CAS  Google Scholar 

  112. Bielekova B, Richert N, Howard T, et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. Proc Natl Acad Sci USA 2004; 101:8705–8708.

    Article  PubMed  CAS  Google Scholar 

  113. de Boer NK, van Nieuwkerk CM, Aparicio Pages MN, de Boer SY, Derijks LJ, Mulder CJ. Promising treatment of autoimmune hepatitis with 6-thioguanine after adverse events on azathioprine. Eur J Gastroenterol Hepatol 2005; 17:457–461.

    Article  PubMed  Google Scholar 

  114. Gisbert JP, Luna M, Mate J, Gonzalez-Guijarro L, Cara C, Pajares JM. Choice of azathioprine or 6-mercaptopurine dose based on thiopurine methyltransferase (TPMT) activsity to avoid myelosuppression. A prospective study. Hepatogastroenterology 2006; 53:399–404.

    PubMed  CAS  Google Scholar 

  115. Heathcote EJ. Evidence-based therapy of primary biliary cirrhosis. Eur J Gastroenterol Hepatol 1999; 11:607–615.

    Article  PubMed  CAS  Google Scholar 

  116. MacFaul GR, Chapman RW. Sclerosing cholangitis. Curr Opin Gastroenterol 2006; 22:288–293.

    Article  PubMed  Google Scholar 

  117. Kaplan MM, Schmid C, Provenzale D, Sharma A, Dickstein G, McKusick A. A prospective trial of colchicine and methotrexate in the treatment of primary biliary cirrhosis. Gastroenterology 1999; 117:1173–1180.

    Article  PubMed  CAS  Google Scholar 

  118. Moder KG. Mycophenolate mofetil: new applications for this immunosuppressant. Ann Allergy Asthma Immunol 2003; 90:15–19.

    Article  PubMed  CAS  Google Scholar 

  119. Moreno Planas JM, Cuervas-Mons M, V, Rubio GE, et al. Mycophenolate mofetil can be used as monotherapy late after liver transplantation. Am J Transplant 2004; 4:1650–1655.

    Article  PubMed  CAS  Google Scholar 

  120. Klupp J, Pfitzmann R, Langrehr JM, Neuhaus P. Indications of mycophenolate mofetil in liver transplantation. Transplantation 2005; 80:S142–S146.

    Article  PubMed  CAS  Google Scholar 

  121. Gibelli NE, Tannuri U, Mello ES, et al. Successful treatment of de novo autoimmune hepatitis and cirrhosis after pediatric liver transplantation. Pediatr Transplant 2006; 10:371–376.

    Article  PubMed  Google Scholar 

  122. Talwalkar JA, Angulo P, Keach JC, Petz JL, Jorgensen RA, Lindor KD. Mycophenolate mofetil for the treatment of primary biliary cirrhosis in patients with an incomplete response to ursodeoxycholic acid. J Clin Gastroenterol 2005; 39:168–171.

    Article  PubMed  CAS  Google Scholar 

  123. Talwalkar JA, Angulo P, Keach JC, Petz JL, Jorgensen RA, Lindor KD. Mycophenolate mofetil for the treatment of primary sclerosing cholangitis. Am J Gastroenterol 2005; 100:308–312.

    Article  PubMed  CAS  Google Scholar 

  124. Chong AS, Zeng H, Knight DA, et al. Concurrent antiviral and immunosuppressive activities of leflunomide in vivo. Am J Transplant 2006; 6:69–75.

    Article  PubMed  CAS  Google Scholar 

  125. Grisar J, Aringer M, Koller MD, et al. Leflunomide inhibits transendothelial migration of peripheral blood mononuclear cells. Ann Rheum Dis 2004; 63:1632–1637.

    Article  PubMed  CAS  Google Scholar 

  126. Kaltwasser JP, Behrens F. Leflunomide: long-term clinical experience and new uses. Expert Opin Pharmacother 2005; 6:787–801.

    Article  PubMed  CAS  Google Scholar 

  127. Fischereder M, Kretzler M. New immunosuppressive strategies in renal transplant recipients. J Nephrol 2004; 17:9–18.

    Article  PubMed  CAS  Google Scholar 

  128. Kiely PD. The broadening use of leflunomide in clinical practice. Hosp Med 2004; 65:735–739.

    PubMed  Google Scholar 

  129. Kremer JM, Cannon GW. Benefit/risk of leflunomide in rheumatoid arthritis. Clin Exp Rheumatol 2004; 22:S95–100.

    PubMed  CAS  Google Scholar 

  130. Korn T, Magnus T, Toyka K, Jung S. Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomide—mechanisms independent of pyrimidine depletion. J Leukoc Biol 2004; 76:950–960.

    Article  PubMed  CAS  Google Scholar 

  131. Yao HW, Li J, Chen JQ, Xu SY. A 771726, the active metabolite of leflunomide, inhibits TNF-alpha and IL-1 from Kupffer cells. Inflammation 2004; 28:97–103.

    Article  PubMed  CAS  Google Scholar 

  132. Cannon GW, Holden WL, Juhaeri J, Dai W, Scarazzini L, Stang P. Adverse events with disease modifying antirheumatic drugs (DMARD): a cohort study of leflunomide compared with other DMARD. J Rheumatol 2004; 31:1906–1911.

    PubMed  CAS  Google Scholar 

  133. Macdonald J, Zhong T, Lazarescu A, Gan BS, Harth M. Vasculitis associated with the use of leflunomide. J Rheumatol 2004; 31: 2076–2078.

    PubMed  Google Scholar 

  134. Laborde F, Loeuille D, Chary-Valckenaere I. Life-threatening hypertriglyceridemia during leflunomide therapy in a patient with rheumatoid arthritis. Arthritis Rheum 2004; 50:3398.

    Article  PubMed  CAS  Google Scholar 

  135. Ito S, Sumida T. Interstitial lung disease associated with leflunomide. Intern Med 2004; 43:1103–1104.

    Article  PubMed  Google Scholar 

  136. Sevilla-Mantilla C, Ortega L, Agundez JA, Fernandez-Gutierrez B, Ladero JM, Diaz-Rubio M. Leflunomide-induced acute hepatitis. Dig Liver Dis 2004; 36:82–84.

    Article  PubMed  CAS  Google Scholar 

  137. Schrepfer S, Deuse T, Schafer H, Reichenspurner H. FK778, a novel immunosuppressive agent, reduces early adhesion molecule upregulation and prolongs cardiac allograft survival. Transpl Int 2005; 18:215–220.

    Article  PubMed  CAS  Google Scholar 

  138. Zeyda M, Kirsch BM, Geyeregger R, et al. Inhibition of human dendritic cell maturation and function by the novel immunosuppressant FK778. Transplantation 2005; 80:1105–1111.

    Article  PubMed  CAS  Google Scholar 

  139. Deuse T, Schrepfer S, Schafer H, et al. FK778 attenuates lymphocyte-endothelium interaction after cardiac transplantation: in vivo and in vitro studies. Transplantation 2004; 78:71–77.

    Article  PubMed  CAS  Google Scholar 

  140. Deuse T, Schrepfer S, Koch-Nolte F, et al. Sirolimus and FK778: a comparison of two anti-proliferative immunosuppressants for prevention of experimental obliterative airway disease. Transpl Int 2006; 19:310–318.

    Article  PubMed  CAS  Google Scholar 

  141. Vanrenterghem Y, vanHooff JP, Klinger M, et al. The effects of FK778 in combination with tacrolimus and steroids: a phase n multicenter study in renal transplant patients. Transplantation 2004; 78:9–14.

    Article  PubMed  CAS  Google Scholar 

  142. Horton PJ, Tchervenkov J, Barkun JS, et al. Antithymocyte globulin induction therapy in hepatitis C-positive liver transplant recipients. J Gastrointest Surg 2005; 9:896–902.

    Article  PubMed  Google Scholar 

  143. Midtvedt K, Fauchald P, Lien B, et al. Individualized T cell monitored administration of ATG versus OKT3 in steroid-resistant kidney graft rejection. Clin Transplant 2003; 17:69–74.

    Article  PubMed  Google Scholar 

  144. O’Grady JG. Steroid-free liver transplantation using rabbit antithymocyte globulin and early tacrolimus monotherapy. Liver Transpl 2004; 10:327–328.

    Article  PubMed  Google Scholar 

  145. Bacigalupo A. Antithymocyte globulin for prevention of graftversus-host disease. Curr Opin Hematol 2005; 12:457–462.

    Article  PubMed  CAS  Google Scholar 

  146. Henry ML, Pelletier RP, Elkhammas EA, Bumgardner GL, Davies EA, Ferguson RM. A randomized prospective trial of OKT3 induction in the current immunosuppression era. Clin Transplant 2001; 15:410–414.

    Article  PubMed  CAS  Google Scholar 

  147. Xu D, Alegre ML, Varga SS, et al. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell Immunol 2000; 200:16–26.

    Article  PubMed  CAS  Google Scholar 

  148. Popma SH, Griswold DE, Li L. Anti-CD3 antibodies OKT3 and hOKT3gamma1(Ala-Ala) induce proliferation of T cells but impair expansion of alloreactive T cells; aspecifc T cell proliferation induced by Anti-CD3 antibodies correlates with impaired expansion of alloreactive T cells. Int Immunopharmacol 2005; 5:155–162.

    Article  PubMed  CAS  Google Scholar 

  149. Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest 2005; 115:2904–2913.

    Article  PubMed  CAS  Google Scholar 

  150. Choi I, De Ines C, Kurschner T, et al. Recombinant chimeric OKT3 scFv IgM antibodies mediate immune suppression while reducing T cell activation in vitro. Eur J Immunol 2001; 31:94–106.

    Article  PubMed  CAS  Google Scholar 

  151. Carpenter PA, Tso JY, Press OW, Yu X, Anasetti C. Non-FcR-binding, humanized anti-CD3 antibody Hu291 induces apoptosis of human T cells more effectively than OKT3 and is immunosuppressive in vivo. Transplant Proc 2000; 32:1545–1546.

    Article  PubMed  CAS  Google Scholar 

  152. Herold KC, Gitelman SE, Masharani U, et al. A single course of antiCD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 2005; 54:1763–1769.

    Article  PubMed  CAS  Google Scholar 

  153. Ravandi F, O’Brien S. Alemtuzumab. Expert Rev Anticancer Ther. 2005; 5:39–51.

    Article  PubMed  CAS  Google Scholar 

  154. Wandroo F, Auguston B, Cook M, Craddock C, Mahendra P. Successful use of Campath-1H in the treatment of steroid refractory liver GvHD. Bone Marrow Transplant 2004; 34:285–287.

    Article  PubMed  CAS  Google Scholar 

  155. Marcos A, Eghtesad B, Fung JJ, et al. Use of alemtuzumab and tacrolimus monotherapy for cadaveric liver transplantation: with particular reference to hepatitis C virus. Transplantation 2004; 78:966–971.

    Article  PubMed  CAS  Google Scholar 

  156. Iannitto E, Minardi V, Calvaruso G, et al. Hepatitis B virus reactivation and alemtuzumab therapy. Eur J Haematol 2005; 74:254–258.

    Article  PubMed  Google Scholar 

  157. Cannon GW, Kremer JM. Leflunomide. Rheum Dis Clin North Am 2004; 30:295–309.

    Article  PubMed  Google Scholar 

  158. Yao HW, Li J, Chen JQ, Xu SY. Leflunomide attenuates hepatocyte injury by inhibiting Kupffer cells. World J Gastroenterol 2004; 10:1608–1611.

    PubMed  CAS  Google Scholar 

  159. Migita K, Miyashita T, Ishibashi H, et al. Suppressive effect of leflunomide metabolite (A77 1726) on metalloproteinase production in IL-1beta stimulated rheumatoid synovial fibroblasts. Clin Exp Immunol 2004; 137:612–616.

    Article  PubMed  CAS  Google Scholar 

  160. Chiba K, Matsuyuki H, Maeda Y, Sugahara K. Role of sphingosine 1-phosphate receptor type 1 in lymphocyte egress from secondary lymphoid tissues and thymus. Cell Mol Immunol 2006; 3:11–19.

    PubMed  CAS  Google Scholar 

  161. Brinkmann V, Cyster JG, Hla T. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 2004; 4:1019–1025.

    Article  PubMed  CAS  Google Scholar 

  162. Czeloth N, Bernhardt G, Hofmann F, Genth H, Forster R. Sphingosine-1-phosphate mediates migration of mature dendritic cells. J Immunol 2005; 175:2960–2967.

    PubMed  CAS  Google Scholar 

  163. Muller H, Hofer S, Kaneider N, et al. The immunomodulator FTY720 interferes with effector functions of human monocytederived dendritic cells. Eur J Immunol 2005; 35:533–545.

    Article  PubMed  CAS  Google Scholar 

  164. Lee WJ, Yoo HS, Suh PG, Oh S, Lim JS, Lee YM. Sphingosine mediates FTY720induced apoptosis in LLC-PK1 cells. Exp Mol Med 2004; 36:420–427.

    PubMed  CAS  Google Scholar 

  165. Kimura T, Hasegawa T, Nakai H, et al. FTY720 reduces T-cell recruitment into murine intestinal allograft and prevents activation of graft-infiltrating cells. Transplantation 2003; 75:1469–1474.

    Article  PubMed  CAS  Google Scholar 

  166. Han S, Zhang X, Wang G, et al. FTY720 suppresses humoral immunity by inhibiting germinal center reaction. Blood 2004; 104: 4129–4133.

    Article  PubMed  CAS  Google Scholar 

  167. Mulgaonkar S, Tedesco H, Oppenheimer F, et al. FTY720/ cyclosporine regimens in de novo renal transplantation: a 1-year dose-finding study. Am J Transplant 2006; 6:1848–1857.

    Article  PubMed  CAS  Google Scholar 

  168. Kaneko T, Murakami T, Kawana H, Takahashi M, Yasue T, Kobayashi E. Sphingosine-1-phosphate receptor agonists suppress concanavalin A-induced hepatic injury in mice. Biochem Biophys Res Commun 2006; 345:85–92.

    Article  PubMed  CAS  Google Scholar 

  169. Kaudel CP, Schmiddem U, Frink M, et al. FTY720 for treatment of ischemia-reperfusion injury following complete renal ischemia in C57/BL6 mice. Transplant Proc 2006; 38:679–681.

    Article  PubMed  CAS  Google Scholar 

  170. Fujii R, Kanai T, Nemoto Y, et al. FTY720 suppresses CD4+ CD44highC. Am J Physiol Gastrointest Liver Physiol 2006; 291:G267–274.

    Article  PubMed  CAS  Google Scholar 

  171. Kataoka H, Sugahara K, Shimano K, et al. FTY720, sphingosine 1phosphate receptor modulator, ameliorates experimental autoimmune encephalomyelitis by inhibition of T cell infiltration. Cell Mol Immunol 2005; 2:439–448.

    PubMed  CAS  Google Scholar 

  172. LaMontagne K, Littlewood-Evans A, Schnell C, et al. Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res 2006; 66:221–231.

    Article  PubMed  CAS  Google Scholar 

  173. Zhang Q, Chen Y, Fairchild RL, Heeger PS, Valujskikh A. Lymphoid sequestration of alloreactive memory CD4 T cells promotes cardiac allograft survival. J Immunol 2006; 176:770–777.

    PubMed  CAS  Google Scholar 

  174. Koyrakh L, Roman MI, Brinkmann V, Wickman K. The heart rate decrease caused by acute FTY720 administration is mediated by the G protein-gated potassium channel I. Am J Transplant 2005; 5: 529–536.

    Article  PubMed  CAS  Google Scholar 

  175. Miller DH, Khan OA, Sheremata WA, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2003; 348:15–23.

    Article  PubMed  CAS  Google Scholar 

  176. Ghosh S, Goldin E, Gordon FH, et al. Natalizumab for active Crohn’s disease. N Engl J Med 2003; 348:24–32.

    Article  PubMed  CAS  Google Scholar 

  177. Bennett JL. Natalizumab and progressive multifocal leukoencephalopathy: migrating towards safe adhesion molecule therapy in multiple sclerosis. Neurol Res 2006; 28:291–298.

    Article  PubMed  CAS  Google Scholar 

  178. Campbell DJ, Kim CH, Butcher EC. Chemokines in the systemic organization of immunity. Immunol Rev 2003; 195:58–71.

    Article  PubMed  CAS  Google Scholar 

  179. Grainger DJ, Reckless J, Fox DJ. Broad spectrum chemokine inhibitors related to NR58-3.14.3. Mini Rev Med Chem 2005; 5:825–832.

    Article  PubMed  CAS  Google Scholar 

  180. Matsui M, Weaver J, Proudfoot AE, et al. Treatment of experimental autoimmune encephalomyelitis with the chemokine receptor antagonist Met-RANTES. J Neuroimmunol 2002; 128:16–22.

    Article  PubMed  CAS  Google Scholar 

  181. Sigrist S, Oberholzer J, Bohbot A, et al. Activation of human macrophages by allogeneic islets preparations: inhibition by AOPRANTES and heparinoids. Immunology 2004; 111:416–421.

    Article  PubMed  CAS  Google Scholar 

  182. Heise CE, Pahuja A, Hudson SC, et al. Pharmacological characterization of CXC chemokine receptor 3 (CXCR3) ligands and a smallmolecule antagonist. J Pharmacol Exp Ther 2005; 313:1263–1271.

    Article  PubMed  CAS  Google Scholar 

  183. Sato T, Thorlacius H, Johnston B, et al. Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver. J Immunol 2005; 174:277–283.

    PubMed  CAS  Google Scholar 

  184. Tamamura H, Fujii N. The therapeutic potential of CXCR4 antagonists in the treatment of HIV infection, cancer metastasis and rheumatoid arthritis. Expert Opin Ther Targets 2005; 9:1267–1282.

    Article  PubMed  CAS  Google Scholar 

  185. Shaw JP, Johnson Z, Borlat F, et al. The X-ray structure of RANTES: heparin-derived disaccharides allows the rational design of chemokine inhibitors. Structure (Camb) 2004; 12:2081–2093.

    Article  CAS  Google Scholar 

  186. Kawamura T, Bruse SE, Abraha A, et al. PSC-RANTES blocks R5 human immunodeficiency virus infection of Langerhans cells isolated from individuals with a variety of CCR5 diplotypes. J Virol 2004; 78:7602–7609.

    Article  PubMed  CAS  Google Scholar 

  187. Song E, Zou H, Yao Y, et al. Early application of Met-RANTES ameliorates chronic allograft nephropathy. Kidney Int 2002; 61: 676–685.

    Article  PubMed  CAS  Google Scholar 

  188. Belperio JA, Keane MP, Burdick MD, et al. Role of CXCL9/CXCR3 chemokine biology during pathogenesis of acute lung allograft rejection. J Immunol 2003; 171:4844–4852.

    PubMed  CAS  Google Scholar 

  189. Stokkers PC, Hommes DW. New cytokine therapeutics for inflammatory bowel disease. Cytokine 2004; 28:167–173.

    Article  PubMed  CAS  Google Scholar 

  190. van Roon J, Wijngaarden S, Lafeber FP, Damen C, van de WJ, Bijlsma JW. Interleukin 10 treatment of patients with rheumatoid arthritis enhances Fc gamma receptor expression on monocytes and responsiveness to immune complex stimulation. J Rheumatol 2003; 30:648–651.

    PubMed  Google Scholar 

  191. Demols A, Deviere J. New frontiers in the pharmacological prevention of post-ERCP pancreatitis: the cytokines. JOP 2003; 4:49–57.

    PubMed  Google Scholar 

  192. Nelson DR, Tu Z, Soldevila-Pico C, et al. Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology 2003; 38:859–868.

    PubMed  CAS  Google Scholar 

  193. Rea D, Laface D, Hutchins B, et al. Recombinant adenovirus-transduced human dendritic cells engineered to secrete interleukin-10 (IL-10) suppress Th1-type responses while selectively activating IL10-producing CD4+ T cells. Hum Immunol 2004; 65:1344–1355.

    Article  PubMed  CAS  Google Scholar 

  194. Chen D, Ding Y, Zhang N, et al. Viral IL-10 gene transfer inhibits the expression of multiple chemokine and chemokine receptor genes induced by inflammatory or adaptive immune stimuli. Am J Transplant 2003; 3:1538–1549.

    Article  PubMed  CAS  Google Scholar 

  195. Patriarca F, Sperotto A, Damiani D, et al. Infliximab treatment for steroid-refractory acute graft-versus-host disease. Haematologica 2004; 89:1352–1359.

    PubMed  CAS  Google Scholar 

  196. Doty JD, Mazur JE, Judson MA. Treatment of sarcoidosis with infliximab. Chest 2005; 127:1064–1071.

    Article  PubMed  CAS  Google Scholar 

  197. Zein NN. Etanercept as an adjuvant to interferon and ribavirin in treatment-natïve patients with chronic hepatitis C virus infection: a phase 2 randomized, double-blind, placebo-controlled study. J Hepatol 2005; 42:315–322.

    Article  PubMed  CAS  Google Scholar 

  198. Shen C, Assche GV, Colpaert S, et al. Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept. Aliment Pharmacol Ther 2005; 21:251–258.

    Article  PubMed  CAS  Google Scholar 

  199. van den BJ, Hommes DW, Peppelenbosch MP. Infliximab induced T lymphocyte apoptosis in Crohn’s disease. J Rheumatol Suppl 2005; 74:26–30.

    Google Scholar 

  200. Tak PP. Effects of infliximab treatment on rheumatoid synovial tissue. J Rheumatol Suppl2005; 74:31–34.

    PubMed  CAS  Google Scholar 

  201. Lehnen M, Franckson T, Knab J, Hoeft D, Grabbe S, Dissemond J. Successful infliximab therapy of psoriasis vulgaris and psoriatic arthritis in a patient with cirrhosis. Br J Dermatol 2005; 153:212–214.

    Article  PubMed  CAS  Google Scholar 

  202. Tobon GJ, Canas C, Jaller JJ, Restrepo JC, Anaya JM. Serious liver disease induced by infliximab. Clin Rheumatol 2006.

    Google Scholar 

  203. Baker DE. Adalimumab: human recombinant immunoglobulin g1 anti-tumor necrosis factor monoclonal antibody. Rev Gastroenterol Disord 2004; 4:196–210.

    PubMed  Google Scholar 

  204. Brocq O, Albert C, Roux C, Gerard D, Breuil V, Ziegler LE. Adalimumab in rheumatoid arthritis after failed infliximab and/or etanercept therapy: experience with 18 patients. Joint Bone Spine 2004; 71:601–603.

    Article  PubMed  CAS  Google Scholar 

  205. Papadakis KA, Shaye OA, Vasiliauskas EA, et al. Safety and efficacy of adalimumab (D2E7) in Crohn’s disease patients with an attenuated response to infliximab. Am J Gastroenterol 2005; 100:75–79.

    Article  PubMed  CAS  Google Scholar 

  206. Nanda S, Bathon JM. Etanercept: a clinical review of current and emerging indications. Expert Opin Pharmacother 2004; 5:1175–1186.

    Article  PubMed  CAS  Google Scholar 

  207. Simonini G, Giani T, Stagi S, de Martino M, Falcini F. Bone status over 1 yr of etanercept treatment in juvenile idiopathic arthritis. Rheumatology (Oxford) 2005;44:517–521.

    Article  Google Scholar 

  208. Lebwohl MG. Use of etanercept in the dermatology setting. A review. Am J Clin Dermatol 2005; 6:49–59.

    Article  PubMed  Google Scholar 

  209. Roderfeld M, Geier A, Dietrich CG, et al. Cytokine blockade inhibits hepatic tissue inhibitor of metalloproteinase-1 expression and up-regulates matrix metalloproteinase-9 in toxic liver injury. Liver Int 2006; 26:579–586.

    Article  PubMed  CAS  Google Scholar 

  210. Kita H, Imawari M, Gershwin ME. Cellular immune response in primary biliary cirrhosis. Hepatol Res 2004; 28:12–17.

    Article  PubMed  CAS  Google Scholar 

  211. Rastetter W, Molina A, White CA. Rituximab: expanding role in therapy for lymphomas and autoimmune diseases. Annu Rev Med 2004; 55:477–503.

    Article  PubMed  CAS  Google Scholar 

  212. Horning SJ. Optimizing rituximab in B-cell lymphoma. J Clin Oncol 2005; 23:1056–1058.

    Article  PubMed  Google Scholar 

  213. Chen RW, Sweetenham JW. High-intensity chemotherapy and rituximab for the treatment of posttransplant lymphoproliferative disorder. Am J Clin Oncol 2006; 29:211–212.

    Article  PubMed  Google Scholar 

  214. Usuda M, Fujimori K, Koyamada N, et al. Successful use of antiCD20 monoclonal antibody (rituximab) for ABO-incompatible living-related liver transplantation. Transplantation 2005; 79:12–16.

    Article  PubMed  Google Scholar 

  215. Virgolini L, Marzocchi V. Rituximab in autoimmune diseases. Biomed Pharmacother 2004; 58:299–309.

    Article  PubMed  CAS  Google Scholar 

  216. Aksoy S, Abali H, Kilickap S, Erman M, Kars A. Accelerated hepatitis C virus replication with rituximab treatment in a non-Hodgkin’s lymphoma patient. Clin Lab Haematol 2006; 28:211–214.

    Article  PubMed  CAS  Google Scholar 

  217. Qazilbash MH, Qu Z, Hosing C, et al. Rituximab-induced acute liver failure after an allogeneic transplantation for chronic myeloid leukemia. Am J Hematol 2005; 80:43–45.

    Article  PubMed  Google Scholar 

  218. Crisby M. Modulation of the inflammatory process by statins. Drugs Today (Barc) 2003; 39:137–143.

    Article  CAS  Google Scholar 

  219. Ritzel U, Leonhardt U, Nather M, Schafer G, Armstrong VW, Ramadori G. Simvastatin in primary biliary cirrhosis: effects on serum lipids and distinct disease markers. J Hepatol 2002; 36:454–458.

    Article  PubMed  CAS  Google Scholar 

  220. Wiklund O, Mattsson-Hulten L, Hurt-Camejo E, Oscarsson J. Effects of simvastatin and atorvastatin on inflammation markers in plasma. J Intern Med 2002; 251:338–347.

    Article  PubMed  CAS  Google Scholar 

  221. Kiyici M, Gulten M, Gurel S, et al. Ursodeoxycholic acid and atorvastatin in the treatment of nonalcoholic steatohepatitis. Can J Gastroenterol 2003; 17:713–718.

    PubMed  Google Scholar 

  222. Kleemann R, Verschuren L, de Rooij BJ, et al. Evidence for antiinflammatory activity of statins and PPARalpha activators in human C-reactive protein transgenic mice in vivo and in cultured human hepatocytes in vitro. Blood 2004; 103:4188–4194.

    Article  PubMed  CAS  Google Scholar 

  223. Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 2006; 17:4–12.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Vierling, J.M. (2007). Clinical Use of Immunosuppressive Drugs to Control the Immune Response. In: Gershwin, M.E., Vierling, J.M., Manns, M.P. (eds) Liver Immunology. Humana Press. https://doi.org/10.1007/978-1-59745-518-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-518-3_31

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-818-8

  • Online ISBN: 978-1-59745-518-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics