Skip to main content

Role and Function of Liver Sinusoidal Endothelial Cells

  • Chapter

Abstract

The liver holds a unique position with regard to the blood circulation. It receives venous blood draining from almost the entire gastrointestinal tract via the portal vein and from the systemic circulation via the hepatic artery. More than 2000 L of blood stream daily through the human liver, and peripheral blood leukocytes pass through the liver on average more than 300 times per day. These simple facts clearly demonstrate that the liver is a “meeting point” for antigens and leukocytes circulating in the blood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cantor H, Dumont A. Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature 1967;215:744.

    Article  PubMed  CAS  Google Scholar 

  2. Calne RY. Induction of immunological tolerance by porcine liver allografts. Nature 1969;223:472–476.

    Article  PubMed  CAS  Google Scholar 

  3. Dahmen U, Qian S, Rao AS, et al. Split tolerance induced by orthotopic liver transplantation in mice. Transplantation 1994;58:1–8.

    PubMed  CAS  Google Scholar 

  4. Barker CF, Corriere JN, Jr. Canine renal Homotransplantation with venous drainage via the portal vein. Ann Surg 1967;165:279–282.

    Article  PubMed  CAS  Google Scholar 

  5. May AG, Bauer S, Leddy JP, Panner B, Vaughan J, Russell PS. Survival of allografts after hepatic portal venous administration of specific transplantation antigen. Ann Surg 1969;170:824–832.

    Article  PubMed  CAS  Google Scholar 

  6. Boeckx W, Sobis H, Lacquet A, Gruwez J, Vandeputte M. Prolongation of allogeneic heart graft survival in the rat after implantation on portal vein. Transplantation 1975;19:145–149.

    Article  PubMed  CAS  Google Scholar 

  7. Gorczynski RM, Chan Z, Chung S, et al. Prolongation of rat small bowel or renal allograft survival by pretransplant transfusion and/or by varying the route of allograft venous drainage. Transplantation 1994;58:816–820.

    PubMed  CAS  Google Scholar 

  8. Callery MP, Kamei T, Flye MW. Kupffer cell blockade inhibits induction of tolerance by the portal venous route. Transplantation 1989;47:1092–1094.

    Article  PubMed  CAS  Google Scholar 

  9. Sriwatanawongsa V, Davies HS, Calne RY. The essential roles of parenchymal tissues and passenger leukocytes in the tolerance induced by liver grafting in rats. Nat Med 1995;1:428–432.

    Article  PubMed  CAS  Google Scholar 

  10. Thomson AW, O’Connell PJ, Steptoe RJ, Lu L. Immunobiology of liver dendritic cells. Immunol Cell Biol 2002;80:65–73.

    Article  PubMed  Google Scholar 

  11. Bertolino P, Trescol-Biemont MC, Rabourdin-Combe C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 1998; 28: 221–236.

    Article  PubMed  CAS  Google Scholar 

  12. Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol 2003; 3:51–62.

    Article  PubMed  CAS  Google Scholar 

  13. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5:215–229.

    Article  PubMed  CAS  Google Scholar 

  14. Blouin A, Bolender RP, Weibel ER. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol 1977; 72:441–455.

    Article  PubMed  CAS  Google Scholar 

  15. Wisse E, De, Zanger RB, Charels K, Van Der Smissen P, McCuskey RS. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Dissé. Hepatology 1985; 5:683–692.

    Article  PubMed  CAS  Google Scholar 

  16. Oda M, Han JY, Yokomori H. Local regulators of hepatic sinusoidal microcirculation: recent advances. Clin Hemorheol Microcirc 2002; 23:85–94.

    Google Scholar 

  17. MacPhee PJ, Schmidt EE, Groom AC. Intermittence of blood flow in liver sinusoids, studied by highresolution in vivo microscopy. Am J Physiol 1995; 269(5p+1)G692–698.

    PubMed  CAS  Google Scholar 

  18. Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 1970; 31: 125–150.

    Article  PubMed  CAS  Google Scholar 

  19. Fraser R, Clark SA, Day WA, Murray FE. Nicotine decreases the porosity of the rat liver sieve: a possible mechanism for hypercholesterolaemia. Br J Exp Pathol 1988; 69:345–350.

    PubMed  CAS  Google Scholar 

  20. Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 2002; 1:1.

    Article  PubMed  Google Scholar 

  21. Sanan DA, Fan J, Bensadoun A, Taylor JM. Hepatic lipase is abundant on both hepatocyte and endothelial cell surfaces in the liver. J Lipid Res 1997; 38:1002–1013.

    PubMed  CAS  Google Scholar 

  22. Fraser R, Dobbs BR, Rogers GW Lipoproteins and the liver sieve: the role of the fenestrated sinusoidal endothelium in lipoprotein metabolism, atherosclerosis, and cirrhosis. Hepatology 1995; 21: 863–874.

    PubMed  CAS  Google Scholar 

  23. Kempka G, Kolb-Bachofen V. Binding, uptake, and transcytosis of ligands for mannose-specific receptors in rat liver: an electron microscopic study. Exp Cell Res 1988; 176:38–48.

    Article  PubMed  CAS  Google Scholar 

  24. Wisse E, van’t Noordende JM, van der Meulen J, Daems WT. The pit cell: description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell Tissue Res 1976; 173: 423–435.

    Article  PubMed  CAS  Google Scholar 

  25. Wisse E, Luo D, Vermijlen D, Kanellopoulou C, De Zanger R, Braet F. On the function of pit cells, the liver-specific natural killer cells. Semin Liver Dis 1997; 17:265–286.

    PubMed  CAS  Google Scholar 

  26. Kronenberg M, Gapin L. The unconventional lifestyle of NKT cells. Nat Rev Immunol 2002; 2:557–568.

    PubMed  CAS  Google Scholar 

  27. Geissmann F, Cameron TO, Sidobre S, et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 2005; 3:e113.

    Article  PubMed  CAS  Google Scholar 

  28. Thomson AW, Drakes ML, Zahorchak AF, et al. Hepatic dendritic cells: immunobiology and role in liver transplantation. J Leukoc Biol 1999; 66:322–330.

    PubMed  CAS  Google Scholar 

  29. Matsuno K, Ezaki T, Kudo S, Uehara Y. A life stage of particleladen rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J Exp Med 1996; 183:1865–1878.

    Article  PubMed  CAS  Google Scholar 

  30. Kudo S, Matsuno K, Ezaki T, Ogawa M. A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation. J Exp Med 1997; 185:777–784.

    Article  PubMed  CAS  Google Scholar 

  31. Pillarisetty VG, Shah AB, Miller G, Bleier JI, DeMatteo RP. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J Immunol 2004; 172: 1009–1017.

    PubMed  CAS  Google Scholar 

  32. Jomantaite I, Dikopoulos N, Kroger A, et al. Hepatic dendritic cell subsets in the mouse. Eur J Immunol 2004; 34:355–365.

    Article  PubMed  CAS  Google Scholar 

  33. O’Connell PJ, Morelli AE, Logar AJ, Thomson AW. Phenotypic and functional characterization of mouse hepatic CD8 alpha+ lymphoidrelated dendritic cells. J Immunol 2000; 165:795–803.

    PubMed  CAS  Google Scholar 

  34. Smedsrod B. Clearance function of scavenger endothelial cells. Comp Hepatol 2004; 3(Suppl 1):S22.

    Article  PubMed  Google Scholar 

  35. Smedsrod B, Pertoft H, Gustafson S, Laurent TC. Scavenger functions of the liver endothelial cell. Biochem J 1990; 266: 313–327.

    PubMed  CAS  Google Scholar 

  36. Magnusson S, Berg T. Extremely rapid endocytosis mediated by the mannose receptor of sinusoidal endothelial rat liver cells. Biochem J 1989; 257:651–656.

    PubMed  CAS  Google Scholar 

  37. Knolle PA, Germann T, Treichel U, et al. Endotoxin down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells. J Immunol 1999; 162:1401–1407.

    PubMed  CAS  Google Scholar 

  38. Uhrig A, Banafsche R, Kremer M, et al. Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver. J Leukoc Biol 2005; 77:626–633.

    Article  PubMed  CAS  Google Scholar 

  39. Martin-Armas M, Simon-Santamaria J, Pettersen I, Moens U, Smedsrod B, Sveinbjornsson B. Toll-like receptor 9 (TLR9) is present in murine liver sinusoidal endothelial cells (LSECs) and mediates the effect of CpG-oligonucleotides. J Hepatol 2006; 44: 939–946.

    Article  PubMed  CAS  Google Scholar 

  40. Bashirova AA, Geijtenbeek TB, van Duijnhoven GC, et al. A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med 2001; 193:671–678.

    Article  PubMed  CAS  Google Scholar 

  41. Maeno Y, Fujioka H, Hollingdale MR, Ockenhouse CF, Nakazawa S, Aikawa M. Ultrastructural localization of CD36 in human hepatic sinusoidal lining cells, hepatocytes, human hepatoma (HepG2-A16) cells, and C32 amelanotic melanoma cells. Exp Parasitai 1994; 79:383–390.

    Article  CAS  Google Scholar 

  42. Muro H, Shirasawa H, Maeda M, Nakamura S. Fc receptors of liver sinusoidal endothelium in normal rats and humans. A histologic study with soluble immune complexes. Gastroenterology 1987; 93: 1078–1085.

    PubMed  CAS  Google Scholar 

  43. Lovdal T, Andersen E, Brech A, Berg T. Fc receptor mediated endocytosis of small soluble immunoglobulin G immune complexes in Kupffer and endothelial cells from rat liver. J Cell Sci 2000; 113:3255–3266.

    PubMed  CAS  Google Scholar 

  44. McCourt PA, Hansen B, Svistuonov D, et al. The liver sinusoidal endothelial cell hyaluronan receptor and its homolog, stabilin-1 — their roles (known and unknown) in endocytosis. Comp Hepatol 2004; 3(Suppl 1):S24.

    Article  PubMed  Google Scholar 

  45. Liu W, Tang L, Zhang G, et al. Characterization of a novel C-type lectin-like gene, LSECtin: demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node. J Biol Chem 2004; 279:18,748–18,758.

    Article  PubMed  CAS  Google Scholar 

  46. Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 1995; 182:389–400.

    Article  PubMed  CAS  Google Scholar 

  47. Steffan AM, Gendrault JL, McCuskey RS, McCuskey PA, Kirn A. Phagocytosis, an unrecognized property of murine endothelial liver cells. Hepatology 1986; 6:830–836.

    Article  PubMed  CAS  Google Scholar 

  48. Dini L, Lentini A, Diez GD, et al. Phagocytosis of apoptotic bodies by liver endothelial cells. J Cell Sci 1995; 108:967–973.

    PubMed  CAS  Google Scholar 

  49. Jacob AI, Goldberg PK, Bloom N, Degenshein GA, Kozinn PJ. Endotoxin and bacteria in portal blood. Gastroenterology 1977; 72: 1268–1270.

    PubMed  CAS  Google Scholar 

  50. Nolan JP Endotoxin, reticuloendothelial function, and liver injury. Hepatology 1981; 1:458–465.

    Article  PubMed  CAS  Google Scholar 

  51. Shnyra A, Lindberg AA. Scavenger receptor pathway for lipopolysaccharide binding to Kupffer and endothelial liver cells in vitro. Infect Immun 1995; 63:865–873.

    PubMed  CAS  Google Scholar 

  52. Catala M, Anton A, Portoles MT. Characterization of the simultaneous binding of Escherichia coli endotoxin to Kupffer and endothelial liver cells by flow cytometry. Cytometry 1999; 36: 123–130.

    Article  PubMed  CAS  Google Scholar 

  53. van Oosten M, van de Bilt E, van Berkel TJ, Kuiper J. New scavenger receptor-like receptors for the binding of lipopolysaccharide to liver endothelial and Kupffer cells. Infect Immun 1998; 66: 5107–5112.

    PubMed  Google Scholar 

  54. Smedsrod B, Melkko J, Araki N, Sano H, Horiuchi S. Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem J 1997; 322:567–573.

    PubMed  CAS  Google Scholar 

  55. Matsumoto K, Sano H, Nagai R, et al. Endocytic uptake of advanced glycation end products by mouse liver sinusoidal endothelial cells is mediated by a scavenger receptor distinct from the macrophage scavenger receptor class A. Biochem J 2000; 352: 233–240.

    Article  PubMed  CAS  Google Scholar 

  56. Melkko J, Hellevik T, Risteli L, Risteli J, Smedsrod B. Clearance of NH2-terminal propeptides of types I and III procollagen is a physiological function of the scavenger receptor in liver endothelial cells. J Exp Med 1994; 179:405–412.

    Article  PubMed  CAS  Google Scholar 

  57. Eriksson S, Fraser JR, Laurent TC, Pertoft H, Smedsrod B. Endothelial cells are a site of uptake and degradation of hyaluronic acid in the liver. Exp Cell Res 1983; 144:223–228.

    Article  PubMed  CAS  Google Scholar 

  58. Seternes T, Sorensen K, Smedsrod B. Scavenger endothelial cells of vertebrates: a nonperipheral leukocyte system for high-capacity elimination of waste macromolecules. Proc Natl Acad Sci USA 2002; 99:7594–7597.

    Article  PubMed  CAS  Google Scholar 

  59. Tavassoli M, Kishimoto T, Kataoka M. Liver endothelium mediates the hepatocyte’s uptake of ceruloplasmin. J Cell Biol 1986; 102: 1298–1303.

    Article  PubMed  CAS  Google Scholar 

  60. Tavassoli M, Kishimoto T, Soda R, Kataoka M, Harjes K. Liver endothelium mediates the uptake of iron-transferrin complex by hepatocytes. Exp Cell Res 1986; 165:369–379.

    Article  PubMed  CAS  Google Scholar 

  61. Geijtenbeek TB, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000; 100:587–597.

    Article  PubMed  CAS  Google Scholar 

  62. Breiner KM, Schaller H, Knolle PA. Endothelial cell-mediated uptake of a hepatitis B virus: a new concept of liver targeting of hepatotropic microorganisms. Hepatology 2001; 34:803–808.

    Article  PubMed  CAS  Google Scholar 

  63. Gardner JP, Durso RJ, Arrigale RR, et al. L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci USA 2003; 100:4498–4503.

    Article  PubMed  CAS  Google Scholar 

  64. Cormier EG, Durso RJ, Tsamis F, et al. L-SIGN (CD209L) and DCSIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc Natl Acad Sci USA 2004; 101:14,067–14,072.

    Article  PubMed  CAS  Google Scholar 

  65. Lozach PY, Amara A, Bartosch B, et al. C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J Biol Chem 2004; 279:32,035–32,045.

    Article  PubMed  CAS  Google Scholar 

  66. Pohlmann S, Zhang J, Baribaud F, et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 2003; 77: 4070–4080.

    Article  PubMed  CAS  Google Scholar 

  67. Lozach PY, Lortat-Jacob H, de Lacroix de Lavalette A, et al. DCSIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem 2003; 278:20,358–20,366.

    Article  PubMed  CAS  Google Scholar 

  68. Ludwig IS, Lekkerkerker AN, Depla E, et al. Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virol 2004; 78:8322–8332.

    Article  PubMed  CAS  Google Scholar 

  69. Pohlmann S, Soilleux EJ, Baribaud F, et al. DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proc Natl Acad Sci USA 2001; 98:2670–2675.

    Article  PubMed  CAS  Google Scholar 

  70. Steffan AM, Lafon ME, Gendrault JL, et al. Primary cultures of endothelial cells from the human liver sinusoid are permissive for human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1992; 89:1582–1586.

    Article  PubMed  CAS  Google Scholar 

  71. Hellevik T, Martinez I, Olsen R, Toh BH, Webster P, Smedsrod B. Transport of residual endocytosed products into terminal lysosomes occurs slowly in rat liver endothelial cells. Hepatology 1998; 28: 1378–1389.

    Article  PubMed  CAS  Google Scholar 

  72. Nahmias Y, Casali M, Barbe L, Berthiaume, F. Yarmush ML. Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes. Hepatology 2006; 43:257–265.

    Article  PubMed  CAS  Google Scholar 

  73. Fechner H, Haack A, Wang H, et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 1999; 6:1520–1535.

    Article  PubMed  CAS  Google Scholar 

  74. Hegenbarth S, Gerolami R, Protzer U, et al. Liver sinusoidal endothelial cells are not permissive for adenovirus type 5. Hum Gene Ther 2000; 11:481–486.

    Article  PubMed  CAS  Google Scholar 

  75. Lievens J, Snoeys J, Vekemans K, et al. The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer. Gene Ther 2004; 11:1523–1531.

    Article  PubMed  CAS  Google Scholar 

  76. Feder LS, Todaro JA, Laskin DL. Characterization of interleukin-1 and interleukin-6 production by hepatic endothelial cells and macrophages. J Leukoc Biol 1993; 53:126–132.

    PubMed  CAS  Google Scholar 

  77. Shields PL, Morland CM, Salmon M, Qin S, Hubscher SG, Adams DH. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver. J Immunol 1999; 163: 6236–6243.

    PubMed  CAS  Google Scholar 

  78. Umansky V, Rocha M, Schirrmacher V Liver endothelial cells: participation in host response to lymphoma metastasis. Cancer Metastasis Rev 1996; 15:273–279.

    Article  PubMed  CAS  Google Scholar 

  79. Rockey DC, Chung JJ. Regulation of inducible nitric oxide synthase in hepatic sinusoidal endothelial cells. Am J Physiol 1996; 271: G260–G267.

    PubMed  CAS  Google Scholar 

  80. Kuiper J, Zijlstra FJ, Kamps JA, van Berkel TJ. Identification of prostaglandin D2 as the major eicosanoid from liver endothelial and Kupffer cells. Biochim Biophys Acta 1988; 959:143–152.

    PubMed  CAS  Google Scholar 

  81. Billiar TR, Curran RD, Williams DL, Kispert PH. Liver nonparenchymal cells are stimulated to provide interleukin 6 for induction of the hepatic acute-phase response in endotoxemia but not in remote localized inflammation. Arch Surg 1992; 127:31–36; discussion 36–37.

    PubMed  CAS  Google Scholar 

  82. Knolle PA, Loser E, Protzer U, et al. Regulation of endotoxininduced IL-6 production in liver sinusoidal endothelial cells and Kupffer cells by IL-10. Clin Exp Immunol 1997; 107:555–561.

    Article  PubMed  CAS  Google Scholar 

  83. Casteleijn E, Kuiper J, Van Rooij HC, Kamps JA, Koster JF, Van Berkel TJ. Endotoxin stimulates glycogenolysis in the liver by means of intercellular communication. J Biol Chem 1988; 263: 6953–6955.

    PubMed  CAS  Google Scholar 

  84. Patel S, Robb-Gaspers LD, Stellato KA, Shon M, Thomas AP Coordination of calcium signalling by endothelial-derived nitric oxide in the intact liver. Nat Cell Biol 1999; 1:467–471.

    Article  PubMed  CAS  Google Scholar 

  85. Essani NA, Fisher MA, Simmons CA, Hoover JL, Farhood A, Jaeschke H. Increased P-selectin gene expression in the liver vasculature and its role in the pathophysiology of neutrophil-induced liver injury in murine endotoxin shock. J Leukoc Biol 1998; 63: 288–296.

    PubMed  CAS  Google Scholar 

  86. Shi J, Kokubo Y, Wake K. Expression of P-selectin on hepatic endothelia and platelets promoting neutrophil removal by liver macrophages. Blood 1998; 92:520–528.

    PubMed  CAS  Google Scholar 

  87. Gregory SH, Wing EJ. Neutrophil-Kupffer-cell interaction in host defenses to systemic infections. Immunol Today 1998; 19: 507–510.

    Article  PubMed  CAS  Google Scholar 

  88. Callery MP, Mangino MJ, Flye MW. A biologic basis for limited Kupffer cell reactivity to portal-derived endotoxin. Surgery 1991; 110:221–230.

    PubMed  CAS  Google Scholar 

  89. Komatsu S, Berg RD, Russell JM, Nimura Y, Granger DN. Enteric microflora contribute to constitutive ICAM-1 expression on vascular endothelial cells. Am J Physiol Gastrointest Liver Physiol 2000; 279:G186–G191.

    PubMed  CAS  Google Scholar 

  90. Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Buschenfelde KH, Gerken G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 1995; 22: 226–229.

    Article  PubMed  CAS  Google Scholar 

  91. Bissell DM, Wang SS, Jarnagin WR, Roll FJ. Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J Clin Invest 1995; 96:447–455.

    PubMed  CAS  Google Scholar 

  92. Rieder H, Ramadori G, Allmann KH, Meyer zBK. Prostanoid release of cultured liver sinusoidal endothelial cells in response to endotoxin and tumor necrosis factor. Comparison with umbilical vein endothelial cells. J Hepatol 1990; 11:359–366.

    Article  PubMed  CAS  Google Scholar 

  93. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 2003; 3:331–341.

    Article  PubMed  CAS  Google Scholar 

  94. Wang HH, Qiu H, Qi K, Orr FW. Current views concerning the influences of murine hepatic endothelial adhesive and cytotoxic properties on interactions between metastatic tumor cells and the liver. Comp Hepatol 2005; 4:8.

    Article  PubMed  CAS  Google Scholar 

  95. Rocha M, Kruger A, Van Rooijen N, Schirrmacher V, Umansky V Liver endothelial cells participate in T-cell-dependent host resistance to lymphoma metastasis by production of nitric oxide in vivo. Int J Cancer 1995; 63:405–411.

    Article  PubMed  CAS  Google Scholar 

  96. Muschen M, Warskulat U, Douillard P, Gilbert E, Haussinger D. Regulation of CD95 (APOI/Fas) receptor and ligand expression by lipopolysaccharide and dexamethasone in parenchymal and nonparenchymal rat liver cells. Hepatology 1998; 27:200–208.

    Article  PubMed  CAS  Google Scholar 

  97. Lawrence MB, Springer TA. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 1991; 65:859–873.

    Article  PubMed  CAS  Google Scholar 

  98. Wong J, Johnston B, Lee SS, et al. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J Clin Invest 1997; 99:2782–2790.

    PubMed  CAS  Google Scholar 

  99. Essani NA, McGuire GM, Manning AM, Jaeschke H. Endotoxininduced activation of the nuclear transcription factor kappa B and expression of E-selectin messenger RNA in hepatocytes, Kupffer cells, and endothelial cells in vivo. J Immunol 1996; 156: 2956–2963.

    PubMed  CAS  Google Scholar 

  100. Jaeschke H. Cellular adhesion molecules: regulation and functional significance in the pathogenesis of liver diseases. Am J Physiol 1997; 273:G602–G611.

    PubMed  CAS  Google Scholar 

  101. Scoazec JY, Feldmann G. The cell adhesion molecules of hepatic sinusoidal endothelial cells. J Hepatol 1994; 20:296–300.

    Article  PubMed  CAS  Google Scholar 

  102. McCuskey RS, Urbaschek R, Urbaschek B. The microcirculation during endotoxemia. Cardiovasc Res 1996; 32:752–763.

    Article  PubMed  CAS  Google Scholar 

  103. Mehal WZ, Juedes AE, Crispe IN. Selective retention of activated CD8+ T cells by the normal liver. J Immunol 1999; 163: 3202–3210.

    PubMed  CAS  Google Scholar 

  104. Mehal WZ, Azzaroli F, Crispe IN. Antigen presentation by liver cells controls intrahepatic T cell trapping, whereas bone marrowderived cells preferentially promote intrahepatic T cell apoptosis. J Immunol 2001; 167:667–673.

    PubMed  CAS  Google Scholar 

  105. Hamann A, Klugewitz K, Austrup F, Jablonski-Westrich D. Activation induces rapid and profound alterations in the trafficking of T cells. Eur J Immunol 2000; 30:3207–3218.

    Article  PubMed  CAS  Google Scholar 

  106. Fox-Robichaud A, Kubes P. Molecular mechanisms of tumor necrosis factor alpha-stimulated leukocyte recruitment into the murine hepatic circulation. Hepatology 2000; 31:1123–1127.

    Article  PubMed  CAS  Google Scholar 

  107. McNab G, Reeves JL, Salmi M, Hubscher S, Jalkanen S, Adams DH. Vascular adhesion protein 1 mediates binding of T cells to human hepatic endothelium. Gastroenterology 1996; 110: 522–528.

    Article  PubMed  CAS  Google Scholar 

  108. Salmi M, Jalkanen S. Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol 2005; 5:760–771.

    Article  PubMed  CAS  Google Scholar 

  109. Stolen CM, Marttila-Ichihara F, Koskinen K, et al. Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity 2005; 22:105–115.

    Article  PubMed  CAS  Google Scholar 

  110. Lalor PF, Edwards S, McNab G, Salmi M, Jalkanen S, Adams DH. Vascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells. J Immunol 2002; 169:983–992.

    PubMed  CAS  Google Scholar 

  111. Bonder CS, Norman MU, Swain MG, et al. Rules of recruitment for Th1 and Th2 lymphocytes in inflamed liver: a role for alpha-4 integrin and vascular adhesion protein-1. Immunity 2005;23: 153–163.

    Article  PubMed  CAS  Google Scholar 

  112. Merinen M, Irjala H, Salmi M, Jaakkola I, Hanninen A, Jalkanen S. Vascular adhesion protein-1 is involved in both acute and chronic inflammation in the mouse. Am J Pathol 2005; 166:793–800.

    PubMed  CAS  Google Scholar 

  113. Edwards S, Lalor PF, Nash GB, Rainger GE, Adams DH. Lymphocyte traffic through sinusoidal endothelial cells is regulated by hepatocytes. Hepatology 2005; 41:451–459.

    Article  PubMed  Google Scholar 

  114. Eksteen B, Grant AJ, Miles A, et al. Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med 2004; 200: 1511–1517.

    Article  PubMed  CAS  Google Scholar 

  115. Grant AJ, Lalor PF, Hubscher SG, Briskin M, Adams DH. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology 2001; 33: 1065–1072.

    Article  PubMed  CAS  Google Scholar 

  116. Adams DH, Eksteen B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol 2006; 6:244–251.

    Article  PubMed  CAS  Google Scholar 

  117. Mendoza L, Olaso E, Anasagasti MJ, Fuentes AM, Vidal-Vanaclocha, F. Mannose receptor-mediated endothelial cell activation contributes to B16 melanoma cell adhesion and metastasis in liver. J Cell Physiol 1998; 174:322–330.

    Article  PubMed  CAS  Google Scholar 

  118. Vidal-Vanaclocha F, Fantuzzi G, Mendoza L, et al. IL-18 regulates IL-1 beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci USA 2000; 97:734–739.

    Article  PubMed  CAS  Google Scholar 

  119. Mendoza L, Carrascal T, De Luca M, et al. Hydrogen peroxide mediates vascular cell adhesion molecule-1 expression from interleukin-18-activated hepatic sinusoidal endothelium: implications for circulating cancer cell arrest in the murine liver. Hepatology 2001; 34:298–310.

    Article  PubMed  CAS  Google Scholar 

  120. Anasagasti MJ, Alvarez A, Martin JJ, Mendoza L, Vidal-Vanaclocha F Sinusoidal endothelium release of hydrogen peroxide enhances very late antigen-4-mediated melanoma cell adherence and tumor cytotoxicity during interleukin-1 promotion of hepatic melanoma metastasis in mice. Hepatology 1997; 25:840–846.

    Article  PubMed  CAS  Google Scholar 

  121. Scoazec JY, Feldmann G. In situ immunophenotyping study of endothelial cells of the human hepatic sinusoid: results and functional implications. Hepatology 1991; 14:789–797.

    Article  PubMed  CAS  Google Scholar 

  122. Knolle PA, Schmitt E, Jin S, et al. Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Thl cells. Gastroenterology 1999; 116:1428–1440.

    Article  PubMed  CAS  Google Scholar 

  123. Lohse AW, Knolle PA, Bilo K, et al. Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology 1996; 110:1175–1181.

    Article  PubMed  CAS  Google Scholar 

  124. Iwai Y, Terawaki S, Ikegawa M, Okazaki T, Honjo T. PD-1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med 2003; 198:39–50.

    Article  PubMed  CAS  Google Scholar 

  125. Rubinstein D, Roska AK, Lipsky PE. Liver sinusoidal lining cells express class II major histocompatibility antigens but are poor stimulators of fresh allogeneic T lymphocytes. J Immunol 1986; 137: 1803–1810.

    PubMed  CAS  Google Scholar 

  126. Gao Z, McAlister VC, Williams GM. Repopulation of liver endothelium by bone-marrow-derived cells. Lancet 2001; 357: 932–933.

    Article  PubMed  CAS  Google Scholar 

  127. Starzl TE, Demetris AJ, Trucco M, et al. Systemic chimerism in human female recipients of male livers. Lancet 1992; 340: 876–877.

    Article  PubMed  CAS  Google Scholar 

  128. Thomson AW, Lu L, Murase N, Demetris AJ, Rao AS, Starzl TE. Microchimerism, dendritic cell progenitors and transplantation tolerance. Stem Cells 1995; 13:622–639.

    Article  PubMed  CAS  Google Scholar 

  129. Katz SC, Pillarisetty VG, Bleier JI, Shah AB, DeMatteo RP Liver sinusoidal endothelial cells are insufficient to activate T cells. J Immunol 2004; 173:230–235.

    PubMed  CAS  Google Scholar 

  130. Leifeld L, Trautwein C, Dumoulin FL, Manns MP, Sauerbruch T, Spengler U. Enhanced expression of CD80 (B7-1), CD86 (B7-2), and CD40 and their ligands CD28 and CD154 in fulminant hepatic failure. Am J Pathol 1999; 154:1711–1720.

    PubMed  CAS  Google Scholar 

  131. Kojima N, Sato M, Suzuki A, et al. Enhanced expression of B7-1, B7-2, and intercellular adhesion molecule 1 in sinusoidal endothelial cells by warm ischemia/reperfusion injury in rat liver. Hepatology 2001; 34:751–757.

    PubMed  CAS  Google Scholar 

  132. Ogasawara J, Watanabe-Fukunaga R, Adachi M, et al. Lethal effect of the anti-Fas antibody in mice. Nature 1993; 364:806–809.

    Article  PubMed  CAS  Google Scholar 

  133. Wanner GA, Mica L, Wanner-Schmid E, et al. Inhibition of caspase activity prevents CD95-mediated hepatic microvascular perfusion failure and restores Kupffer cell clearance capacity. FASEB J 1999; 13:1239–1248.

    PubMed  CAS  Google Scholar 

  134. Cardier JE, Schulte T, Kammer H, Kwak J, Cardier M. Fas (CD95, APO-1) antigen expression and function in murine liver endothelial cells: implications for the regulation of apoptosis in liver endothelial cells. FASEB J 1999; 13:1950–1960.

    PubMed  CAS  Google Scholar 

  135. Winn RK, Harlan JM. The role of endothelial cell apoptosis in inflammatory and immune diseases. J Thromb Haemost 2005; 3:1815–1824.

    Article  PubMed  CAS  Google Scholar 

  136. Ito Y, Bethea NW, Abril ER, McCuskey RS. Early hepatic microvascular injury in response to acetaminophen toxicity. Microcirculation 2003; 10:391–400.

    Article  PubMed  CAS  Google Scholar 

  137. McCuskey RS, Bethea NW, Wong J, et al. Ethanol binging exacerbates sinusoidal endothelial and parenchymal injury elicited by acetaminophen. J Hepatol 2005; 42:371–377.

    Article  PubMed  CAS  Google Scholar 

  138. DeLeve LD, Wang X, Kaplowitz N, Shulman HM, Bart JA, van der Hoek A. Sinusoidal endothelial cells as a target for acetaminophen toxicity. Direct action versus requirement for hepatocyte activation in different mouse strains. Biochem Pharmacol 1997; 53: 1339–1345.

    Article  PubMed  CAS  Google Scholar 

  139. Jaeschke H, Farhood A, Smith CW. Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism. Am J Physiol 1991; 261:G1051–G1056.

    PubMed  CAS  Google Scholar 

  140. Ito Y, Abril ER, Bethea NW, et al. Mechanisms and pathophysiological implications of sinusoidal endothelial cell gap formation following treatment with galactosamine/endotoxin in mice. Am J Physiol Gastrointest Liver Physiol 2006; 291: G211–G218.

    Article  PubMed  CAS  Google Scholar 

  141. Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 1992; 90:196–203.

    PubMed  CAS  Google Scholar 

  142. Gantner F, Leist M, Lohse AW, Germann PG, Tiegs G. Concanavalin A-induced T-cell-mediated hepatic injury in mice: the role of tumor necrosis factor. Hepatology 1995; 21:190–198.

    PubMed  CAS  Google Scholar 

  143. Kunstle G, Hentze H, Germann PG, Tiegs G, Meergans T, Wendel A. Concanavalin A hepatotoxicity in mice: tumor necrosis factor-mediated organ failure independent of caspase-3-like protease activation. Hepatology 1999; 30:1241–1251.

    Article  PubMed  CAS  Google Scholar 

  144. Knolle PA, Gerken G, Loser E, et al. Role of sinusoidal endothelial cells of the liver in concanavalin A-induced hepatic injury in mice. Hepatology 1996; 24:824–829.

    Article  PubMed  CAS  Google Scholar 

  145. Caldwell-Kenkel JC, Currin RT, Tanaka Y, Thurman RG, Lemasters JJ. Reperfusion injury to endothelial cells following cold ischemie storage of rat livers. Hepatology 1989; 10:292–299.

    Article  PubMed  CAS  Google Scholar 

  146. Myagkaya GL, van Veen HA, James J. Ultrastructural changes in the rat liver during Euro-Collins storage, compared with hypothermic in vitro ischemia. Virchows Arch B Cell Pathol Incl Mol Pathol 1987; 53:176–182.

    Article  PubMed  CAS  Google Scholar 

  147. Huet PM, Nagaoka MR, Desbiens G, et al. Sinusoidal endothelial cell and hepatocyte death following cold ischemia-warm reperfusion of the rat liver. Hepatology 2004; 39:1110–1119.

    Article  PubMed  Google Scholar 

  148. Gao W, Bentley RC, Madden JF, Clvien PA. Apoptosis of sinusoidal endothelial cells is a critical mechanism of preservation injury in rat liver transplantation. Hepatology 1998; 27:1652–1660.

    Article  PubMed  CAS  Google Scholar 

  149. Khandoga A, Hanschen M, Kessler JS, Krombach F. CD4+ T cells contribute to postischemic liver injury in mice by interacting with sinusoidal endothelium and platelets. Hepatology 2006; 43: 306–315.

    Article  PubMed  CAS  Google Scholar 

  150. Sindram D, Porte RJ, Hoffman MR, Bentley RC, Clavien PA. Platelets induce sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver. Gastroenterology 2000; 118:183–191.

    Article  PubMed  CAS  Google Scholar 

  151. Tian Y, Jochum W, Georgiev P, Moritz W, Graf R, Clavien PA. Kupffer cell-dependent TNF-alpha signaling mediates injury in the arterialized smallfor-size liver transplantation in the mouse. Proc Natl Acad Sci USA 2006; 103:4598–4603.

    Article  PubMed  CAS  Google Scholar 

  152. Vermijlen D, Luo D, Froelich CJ, et al. Hepatic natural killer cells exclusively kill splenic/blood natural killer-resistant tumor cells by the perform/granzyme pathway. J Leukoc Biol 2002; 72: 668–676.

    PubMed  CAS  Google Scholar 

  153. Arai M, Peng XX, Currin RT, Thurman RG, Lemasters JJ. Protection of sinusoidal endothelial cells against storage/reperfusion injury by prostaglandin E2 derived from Kupffer cells. Transplantation 1999; 68:440–445.

    Article  PubMed  CAS  Google Scholar 

  154. Arai M, Thurman RG, Lemasters JJ. Contribution of adenosine A(2) receptors and cyclic adenosine monophosphate to protective ischemic preconditioning of sinusoidal endothelial cells against storage/ reperfusion injury in rat livers. Hepatology 2000; 32: 297–302.

    Article  PubMed  CAS  Google Scholar 

  155. Bijsterbosch MK, Manoharan M, Rump ET, et al. In vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells. Nucleic Acids Res 1997; 25:3290–3296.

    Article  PubMed  CAS  Google Scholar 

  156. Hisazumi J, Kobayashi N, Nishikawa M, Takakura Y. Significant role of liver sinusoidal endothelial cells in hepatic uptake and degradation of naked plasmid DNA after intravenous injection. Pharm Res 2004; 21:1223–1228.

    Article  PubMed  CAS  Google Scholar 

  157. Rubinstein D, Roska AK, Lipsky PE Antigen presentation by liver sinusoidal lining cells after antigen exposure in vivo. J Immunol 1987; 138:1377–1382.

    PubMed  CAS  Google Scholar 

  158. Knolle PA, Uhrig A, Protzer U, et al. Interleukin-10 expression is autoregulated at the transcriptional level in human and murine Kupffer cells. Hepatology 1998; 27:93–99.

    Article  PubMed  CAS  Google Scholar 

  159. Knolle PA, Uhrig A, Hegenbarth S, et al. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol 1998; 114:427–433.

    Article  PubMed  CAS  Google Scholar 

  160. Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 1997; 9:10–16.

    Article  PubMed  CAS  Google Scholar 

  161. Cunningham AC, Zhang JG, Moy JV, Ali S, Kirby JA. A comparison of the antigen-presenting capabilities of class II MHC-expressing human lung epithelial and endothelial cells. Immunology 1997; 91:458–463.

    Article  PubMed  CAS  Google Scholar 

  162. Haraldsen G, Sollid LM, Bakke O, et al. Major histocompatibility complex class II-dependent antigen presentation by human intestinal endothelial cells. Gastroenterology 1998; 114:649–656.

    Article  PubMed  CAS  Google Scholar 

  163. Marelli-Berg FM, Hargreaves RE, Carmichael P, Dorling A, Lombardi G, Lechler RI. Major histocompatibility complex class II-expressing endothelial cells induce allospecific nonresponsiveness in naive T cells. J Exp Med 1996; 183:1603–1612.

    Article  PubMed  CAS  Google Scholar 

  164. Wiegard C, Frenzel C, Herkel J, Kallen KJ, Schmitt E, Lohse AW. Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology 2005; 42: 193–199.

    Article  PubMed  CAS  Google Scholar 

  165. Onoe T, Ohdan H, Tokita D, et al. Liver sinusoidal endothelial cells tolerize T cells across MHC barriers in mice. J Immunol 2005; 175:139–146.

    PubMed  CAS  Google Scholar 

  166. Uchiyama H, Kishihara K, Minagawa R, Hashimoto K, Sugimachi K, Nomoto K. Crucial Fas-Fas ligand interaction in spontaneous acceptance of hepatic allografts in mice. Immunology 2002; 105:450–457.

    Article  PubMed  CAS  Google Scholar 

  167. Ma W, Pober JS. Human endothelial cells effectively costimulate cytokine production by, but not differentiation of, naive CD4+ T cells. J Immunol 1998; 161:2158–2167.

    PubMed  CAS  Google Scholar 

  168. Gorczynski RM. Adoptive transfer of unresponsiveness to allogeneic skin grafts with hepatic gamma delta + T cells. Immunology 1994; 81:27–35.

    PubMed  CAS  Google Scholar 

  169. Bevan MJ. Interaction antigens detected by cytotoxic T cells with the major histocompatibility complex as modifier. Nature 1975; 256:419–421.

    Article  PubMed  CAS  Google Scholar 

  170. Heath WR, Kurts C, Miller JF, Carbone FR. Cross-tolerance: a pathway for inducing tolerance to peripheral tissue antigens. J Exp Med 1998; 187:1549–1553.

    Article  PubMed  CAS  Google Scholar 

  171. Kurts C. Cross-presentation: inducing CD8 T cell immunity and tolerance. J Mol Med 2000; 78:326–332.

    Article  PubMed  CAS  Google Scholar 

  172. Sigal LJ, Crotty S, Andino R, Rock KL Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 1999; 398:77–80.

    Article  PubMed  CAS  Google Scholar 

  173. Limmer A, Ohl J, Kurts C, et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigenspecific T-cell tolerance. Nat Med 2000; 6:1348–1354.

    Article  PubMed  CAS  Google Scholar 

  174. Peng HJ, Turner MW, Strobel S. The kinetics of oral hyposensitization to a protein antigen are determined by immune status and the timing, dose and frequency of antigen administration. Immunology 1989; 67:425–430.

    PubMed  CAS  Google Scholar 

  175. Gutgemann I, Fahrer AM, Altman JD, Davis MM, Chien YH. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 1998; 8: 667–673.

    Article  PubMed  CAS  Google Scholar 

  176. Blanas E, Carbone FR, Allison J, Miller JF, Heath WR. Induction of autoimmune diabetes by oral administration of autoantigen. Science 1996; 274:1707–1709.

    Article  PubMed  CAS  Google Scholar 

  177. Watanabe T, Katsukura H, Shirai Y, et al. A liver tolerates a portal antigen by generating CD11c+ cells, which select Fas ligand+ Th2 cells via apoptosis. Hepatology 2003; 38:403–412.

    Article  PubMed  CAS  Google Scholar 

  178. Limmer A, Ohl J, Wingender G, et al. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur J Immunol 2005; 35:2970–2981.

    Article  PubMed  CAS  Google Scholar 

  179. Huang L, Soldevila G, Leeker M, Flavell R, Crispe IN. The liver eliminates T cells undergoing antigen-triggered apoptosis in vivo. Immunity 1994; 1:741–749.

    Article  PubMed  CAS  Google Scholar 

  180. Limmer A, Sacher T, Alferink J, et al. Failure to induce organ-specific autoimmunity by breaking of tolerance: importance of the microenvironment. Eur J Immunol 1998; 28:2395–2406.

    Article  PubMed  CAS  Google Scholar 

  181. Ando K, Guidotti LG, Cerny A, Ishikawa T, Chisari FV. CTL access to tissue antigen is restricted in vivo. J Immunol 1994; 153: 482–488.

    PubMed  CAS  Google Scholar 

  182. Groux H, O’Garra A, Bigler M, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389:737–742.

    Article  PubMed  CAS  Google Scholar 

  183. Jonuleit H, Schmitt E, Steinbrink K, Enk AH. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol 2001; 22:394–400.

    Article  PubMed  CAS  Google Scholar 

  184. Liblau RS, Tisch R, Shokat K, et al. Intravenous injection of soluble antigen induces thymic and peripheral T-cells apoptosis. Proc Natl Acad Sci USA 1996; 93:3031–3036.

    Article  PubMed  CAS  Google Scholar 

  185. Jacobs MJ, van denHoek AE, van de Putte LB, van den Berg WB. Anergy of antigen-specific T lymphocytes is a potent mechanism of intravenously induced tolerance. Immunology 1994; 82: 294–300.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Knolle, P.A. (2007). Role and Function of Liver Sinusoidal Endothelial Cells. In: Gershwin, M.E., Vierling, J.M., Manns, M.P. (eds) Liver Immunology. Humana Press. https://doi.org/10.1007/978-1-59745-518-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-518-3_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-818-8

  • Online ISBN: 978-1-59745-518-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics