Skip to main content

The Role of Inflammation and Immunity in the Pathogenesis of Liver Fibrosis

  • Chapter
Liver Immunology

Abstract

Hepatic fibrosis represents a ubiquitous response of the liver to acute or chronic injury. Tremendous progress in understanding the pathophysiology of this wound-healing response has led to realistic expectations for treating fibrosis in patients with chronic liver disease owing to either viral hepatitis or metabolic or autoimmune diseases, among others. There has been continued clarification of the cellular source of extracellular matrix (ECM) in hepatic fibrosis, major advances in understanding signaling and transcriptional events, and exciting insights into the biology of fibrosis progression and resolution (see refs. 14 and references therein for more general reviews).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rockey D. Vascular mediators in the injured liver. Hepatology 2003; 37:4–12.

    Article  PubMed  CAS  Google Scholar 

  2. Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets. Dig Liver Dis 2004; 36:231–242.

    Article  PubMed  CAS  Google Scholar 

  3. Schuppan D, Porov Y. Hepatic fibrosis: from bench to bedside. J Gastroenterol Hepatol 2002; 17(Suppl 3):S300–S305.

    Article  PubMed  Google Scholar 

  4. Friedman SL Mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 2004; 1:98–105.

    Article  PubMed  Google Scholar 

  5. Lupher ML Jr, Gallatin WM. Regulation of fibrosis by the immune system. Adv Immunol 2006; 89:245–288.

    Article  PubMed  CAS  Google Scholar 

  6. Sangiovanni A, Prati GM, Fasani P, et al. The natural history of compensated cirrhosis due to hepatitis C virus: a 17-year cohort study of 214 patients. Hepatology 2006; 43:1303–1310.

    Article  PubMed  Google Scholar 

  7. Fattovich G, Giustina G, Degos F, et al. Morbidity and mortality in compensated cirrhosis type C: a retrospective follow-up study of 384 patients. Gastroenterology 1997; 112:463–472.

    Article  PubMed  CAS  Google Scholar 

  8. Kim WR, Brown RS Jr, Terrault NA, E1-Serag H. Burden of liver disease in the United States: summary of a workshop. Hepatology 2002; 36:227–242.

    Article  PubMed  Google Scholar 

  9. Friedman SL, Bansal MB. Reversal of hepatic fibrosis—fact or fantasy? Hepatology 2006; 43 (2 Suppl 1):S82–S88.

    Article  PubMed  CAS  Google Scholar 

  10. Kaneda K, Wake K. Distribution and morphological characteristics of the pit cells in the liver of the rat. Cell Tissue Res 1983; 233: 485–505.

    Article  PubMed  CAS  Google Scholar 

  11. Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of naturalkiller-cell surveillance and therapy of cancer. Nat Rev Cancer 2002; 2:850–861.

    Article  PubMed  CAS  Google Scholar 

  12. Nakatani K, Kaneda K, Seki S, Nakajima Y Pit cells as liver-associated natural killer cells: morphology and function. Med Electron Microsc 2004; 37:29–36.

    Article  PubMed  Google Scholar 

  13. Ljunggren HG, Karre K In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 1990; 11:237–244.

    Article  PubMed  CAS  Google Scholar 

  14. Klugewitz K, Adams DH, Emoto M, Eulenburg K, Hamann A. The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol 2004; 25:590–594.

    Article  PubMed  CAS  Google Scholar 

  15. Klugewitz K, Blumenthal Barby F, Eulenburg K, Emoto M, Hamann A. The spectrum of lymphoid subsets preferentially recruited into the liver reflects that of resident populations. Immunol Lett 2004; 93:159–162.

    Article  PubMed  CAS  Google Scholar 

  16. Chang KM. Regulatory T cells and the liver: a new piece of the puzzle. Hepatology 2005; 41:700–702.

    Article  PubMed  CAS  Google Scholar 

  17. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299:1057–1061.

    Article  PubMed  CAS  Google Scholar 

  18. Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002; 2:389–400.

    PubMed  CAS  Google Scholar 

  19. Beutler B, Jiang Z, Georgel P, et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol 2006; 24:353–389.

    Article  PubMed  CAS  Google Scholar 

  20. Wagner H, Bauer S. All is not Toll: new pathways in DNA recognition. J Exp Med 2006; 203:265–268.

    Article  PubMed  Google Scholar 

  21. Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 2003; 4: 95–104.

    Article  PubMed  CAS  Google Scholar 

  22. Medzhitov R CpG DNA: security code for host defense. Nat Immunol 2001; 2:15–16.

    Article  PubMed  CAS  Google Scholar 

  23. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 2001; 276:4812–4818.

    Article  PubMed  CAS  Google Scholar 

  24. Hugot JP, Laurent-Puig P, Gower-Rousseau C, et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 1996; 379:821–823.

    Article  PubMed  CAS  Google Scholar 

  25. Wells RG, Kruglov E, Dranoff JA. Autocrine release of TGF-beta by portal fibroblasts regulates cell growth. FEBS Lett 2004; 559: 107–110.

    Article  PubMed  CAS  Google Scholar 

  26. Kinnman N, Housset C. Peribiliary myofibroblasts in biliary type liver fibrosis. Front Biosci 2002; 7:D496–D503.

    Article  PubMed  CAS  Google Scholar 

  27. Kruglov EA, Jain D, Dranoff JA. Isolation of primary rat liver fibroblasts. J Invest Med 2002; 50:179–184

    Article  Google Scholar 

  28. Forbes SJ, Russo FP, Rey V, et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 2004; 126:955–963.

    Article  PubMed  Google Scholar 

  29. Russo FP, Alison MR, Bigger BW, et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 2006; 130: 1807–1821.

    Article  PubMed  Google Scholar 

  30. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112:1776–1784.

    Article  PubMed  CAS  Google Scholar 

  31. Zeisberg M, Shah AA, Kalluri R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem 2005; 280:8094–8100.

    Article  PubMed  CAS  Google Scholar 

  32. Okada H, Kalluri R. Cellular and molecular pathways that lead to progression and regression of renal fibrogenesis. Curr Mol Med 2005; 5:467–474

    Article  PubMed  CAS  Google Scholar 

  33. Friedman SL. Liver fibrosis—from bench to bedside. J Hepatol 2003; 38(Suppl 1):S38–S53.

    Article  PubMed  Google Scholar 

  34. Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J Hepatol 2002; 36:200–209.

    Article  PubMed  Google Scholar 

  35. Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 2001; 21: 311–335.

    Article  PubMed  CAS  Google Scholar 

  36. Magness ST, Bataller R, Yang L, Brenner DA. A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology 2004; 40:1151–1159.

    Article  PubMed  CAS  Google Scholar 

  37. Friedman SL. Stellate cells: a moving target in hepatic fibrogenesis. Hepatology 2004; 40:1041–1043.

    Article  PubMed  CAS  Google Scholar 

  38. Apte MV, Wilson JS. Mechanisms of pancreatic fibrosis. Dig Dis 2004; 22:273–279.

    Article  PubMed  CAS  Google Scholar 

  39. Bachern MG, Schunemann M, Ramadani M, et al. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 2005; 128:907–921.

    Article  CAS  Google Scholar 

  40. Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci 2002; 7:1720–1726.

    Article  Google Scholar 

  41. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis 2001; 21:397–416.

    Article  PubMed  CAS  Google Scholar 

  42. Di Sario A, Bendia E, Taffetani S, et al. Selective Na+/H+ exchange inhibition by cariporide reduces liver fibrosis in the rat. Hepatology 2003; 37:256–266.

    Article  PubMed  CAS  Google Scholar 

  43. Yoshiji H, Kuriyama S, Yoshii J, et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut 2003; 52:1347–1354.

    Article  PubMed  CAS  Google Scholar 

  44. Marra F, Grandaliano G, Valente AJ, Abboud HE. Thrombin stimulates proliferation of liver fat-storing cells and expression of monocyte chemotactic protein-1: potential role in liver injury. Hepatology 1995; 22:780–787.

    PubMed  CAS  Google Scholar 

  45. Marra F, DeFranco R, Grappone C, et al. Expression of the thrombin receptor in human liver: up-regulation during acute and chronic injury. Hepatology 1998; 27:462–471.

    Article  PubMed  CAS  Google Scholar 

  46. Steiling H, Muhlbauer M, Bataille F, Scholmerich J, Werner S, Hellerbrand C. Activated hepatic stellate cells express keratinocyte growth factor in chronic liver disease. Am J Pathol 2004; 165: 1233–1241.

    PubMed  CAS  Google Scholar 

  47. Yu C, Wang F, Jin C, et al. Role of fibroblast growth factor type 1 and 2 in carbon tetrachloride-induced hepatic injury and fibrogenesis. Am J Pathol 2003; 163:1653–1662.

    PubMed  CAS  Google Scholar 

  48. Marra F. Chemokines in liver inflammation and fibrosis. Front Biosci 2002; 7:1899–1914.

    Article  Google Scholar 

  49. Efsen E, Grappone C, DeFranco RM, et al. Up-regulated expression of fractalkine and its receptor CX3CR1 during liver injury in humans. J Hepatol 2002; 37:39–47.

    Article  PubMed  CAS  Google Scholar 

  50. Mazzocca A, Carloni V, Sciammetta S, et al. Expression of transmembrane 4 superfamily (TM4SF) proteins and their role in hepatic stellate cell motility and wound healing migration. J Hepatol 2002; 37:322–330.

    Article  PubMed  CAS  Google Scholar 

  51. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci 2002; 7:D793–D807.

    Article  PubMed  CAS  Google Scholar 

  52. Inagaki Y, Okazaki I. Emerging insights into TGFbeta and Smad signaling in hepatic fibrogenesis. Gut 2007, in press.

    Google Scholar 

  53. Tsukada S, Westwick JK, Ikejima K, Sato N, Rippe RA. SMAD and p38 MAPK signaling pathways independently regulate alphal(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells. J Biol Chem 2005; 280: 10,055–10,064.

    Article  PubMed  CAS  Google Scholar 

  54. Bonacchi A, Romagnani P, Romanelli RG, et al. Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 2001; 276: 9945–9954.

    Article  PubMed  CAS  Google Scholar 

  55. Wiercinska E, Wickert L, Denecke B, et al. Id1 is a critical mediator in TGF-beta-induced transdifferentiation of rat hepatic stellate cells. Hepatology 2006; 43:1032–1041.

    Article  PubMed  CAS  Google Scholar 

  56. Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 2003; 125:178–191.

    Article  PubMed  CAS  Google Scholar 

  57. Tahashi Y, Matsuzaki K, Date M, et al. Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology 2002; 35:49–61.

    Article  PubMed  CAS  Google Scholar 

  58. Kopp J, Preis E, Said H, et al. Abrogation of transforming growth factor-beta signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem 2005; 280:21,570–21,576.

    Article  PubMed  CAS  Google Scholar 

  59. Jonuleit H, Adema G, Schmitt E. Immune regulation by regulatory T cells: implications for transplantation. Transplant Immunol 2003; 11:267–276.

    Article  CAS  Google Scholar 

  60. Shao R, Yan W, Rockey DC. Regulation of endothelin-1 synthesis by endothelin-converting enzyme-1 during wound healing. J Biol Chem 1999; 274:3228–3234.

    Article  PubMed  CAS  Google Scholar 

  61. Bataller R, Sancho-Bru P, Gines P, et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology 2003; 125:117–125.

    Article  PubMed  CAS  Google Scholar 

  62. Bataller R, Gines P, Nicolas JM, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology 2000; 118:1149–1156.

    Article  PubMed  CAS  Google Scholar 

  63. Bataller R, Schwabe R, Choi Y, et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 2003; 112:1383–1394.

    Article  PubMed  CAS  Google Scholar 

  64. Marra F, Pinzani M. Role of hepatic stellate cells in the pathogenesis of portal hypertension. Nefrologia 2002; 22(Suppl 5):34–40.

    PubMed  Google Scholar 

  65. Svegliati-Baroni G, Saccomanno S, van Goor H, Jansen P, Benedetti A, Moshage H. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells. Liver 2001; 21:1–12.

    Article  PubMed  CAS  Google Scholar 

  66. Iredale JP Hepatic stellate cell behavior during resolution of liver injury. Semin Liver Dis 2001; 21:427–436.

    Article  PubMed  CAS  Google Scholar 

  67. Benyon D, Arthur MJP Extracellular matrix degradation and the role of stellate cells. Semin Liver Dis 2001; 21:373–384.

    Article  PubMed  CAS  Google Scholar 

  68. Arthur MJ. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2000; 279: G245–G249.

    PubMed  CAS  Google Scholar 

  69. Han YP, Zhou L, Wang J, et al. Essential role of matrix metalloproteinases in interleukin-1-induced myofibroblastic activation of hepatic stellate cell in collagen. J Biol Chem 2004; 279: 4820–4828.

    Article  PubMed  CAS  Google Scholar 

  70. Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005; 115:56–65.

    Article  PubMed  CAS  Google Scholar 

  71. Friedman SL. Mac the knife? Macrophages—the double-edged sword of hepatic fibrosis. J Clin Invest 2005; 115:29–32.

    Article  PubMed  CAS  Google Scholar 

  72. Murawaki Y, Ikuta Y, Idobe Y, Kitamura Y, Kawasaki H. Tissue inhibitor of metalloproteinase-1 in the liver of patients with chronic liver disease. J Hepatol 1997; 26:1213–1219.

    Article  PubMed  CAS  Google Scholar 

  73. Iredale JP, Benyon RC, Pickering J, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998; 102:538–549.

    Article  PubMed  CAS  Google Scholar 

  74. Herbst H, Wege T, Milani S, et al. Tissue inhibitor of metalloproteinase-1 and-2 RNA expression in rat and human liver fibrosis. Am J Pathol 1997; 150:1647–1659.

    PubMed  CAS  Google Scholar 

  75. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275: 2247–2250.

    Article  PubMed  CAS  Google Scholar 

  76. Bonacchi A, Petrai I, Defranco RM, et al. The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C. Gastroenterology 2003; 125:1060–1076.

    Article  PubMed  CAS  Google Scholar 

  77. Schwabe RF, Bataller R, Brenner DA. Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol 2003; 285:G949–G958.

    PubMed  CAS  Google Scholar 

  78. Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 2003; 37:1043–1055.

    Article  PubMed  CAS  Google Scholar 

  79. Brun P, Castagliuolo I, Pinzani M, Palu G, Martines D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2005; 289:G571–G578.

    Article  PubMed  CAS  Google Scholar 

  80. Vinas O, Bataller R, Sancho-Bru P, et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 2003; 38:919–929.

    PubMed  CAS  Google Scholar 

  81. Kobayashi S, Seki S, Kawada N, et al. Apoptosis of T cells in the hepatic fibrotic tissue of the rat: a possible inducing role of hepatic myofibroblast-like cells. Cell Tissue Res 2003; 311:353–364.

    PubMed  Google Scholar 

  82. Safadi R, Ohta M, Alvarez CE, et al. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology 2004; 127:870–882.

    Article  PubMed  CAS  Google Scholar 

  83. Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ, Marshak-Rothstein A. Activation of autoreactive B cells by CpG dsDNA. Immunity 2003; 19:837–847.

    Article  PubMed  CAS  Google Scholar 

  84. Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology 2004; 39:273–278.

    Article  PubMed  Google Scholar 

  85. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440:237–241.

    Article  PubMed  CAS  Google Scholar 

  86. Valentino KL, Gutierrez M, Sanchez R, Winship MJ, Shapiro DA. First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther 2003; 41:441–449.

    PubMed  CAS  Google Scholar 

  87. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006; 130:435–452.

    Article  PubMed  CAS  Google Scholar 

  88. Rockey DC, Chung JJ. Interferon gamma inhibits lipocyte activation and extracellular matrix mRNA expression during experimental liver injury: implications for treatment of hepatic fibrosis. J Investi Med 1994; 42:660–670.

    CAS  Google Scholar 

  89. Melhem A, Muhanna N, Bishara A, et al. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol 2006; 45:60–71.

    Article  PubMed  CAS  Google Scholar 

  90. Morishima C, Paschal DM, Wang CC, et al. Decreased NK cell frequency in chronic hepatitis C does not affect ex vivo cytolytic killing. Hepatology 2006; 43:573–580.

    Article  PubMed  Google Scholar 

  91. Moretta A. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2002; 2:957–964.

    Article  PubMed  CAS  Google Scholar 

  92. Backstrom E, Chambers BJ, Ho EL, et al. Natural killer cellmediated lysis of dorsal root ganglia neurons via RAE1/NKG2D interactions. Eur J Immunol 2003; 33:92–100.

    Article  PubMed  CAS  Google Scholar 

  93. Otsuka M, Kato N, Moriyama M, et al. Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses. Hepatology 2005; 41:1004–1012.

    Article  PubMed  CAS  Google Scholar 

  94. Hudnall SD. Cyclosporin A renders target cells resistant to immune cytolysis. Eur J Immunol 1991; 21:221–226.

    Article  PubMed  CAS  Google Scholar 

  95. Fauci AS, Mavilio D, Kottilil S. NK cells in HIV infection: paradigm for protection or targets for ambush. Nat Rev Immunol 2005; 5:835–843.

    Article  PubMed  CAS  Google Scholar 

  96. Shi Z, Wakil AE, Rockey DC. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci USA 1997; 94:10,663–10,668.

    Article  PubMed  CAS  Google Scholar 

  97. Hoffmann KF, Cheever AW, Wynn TA. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J Immunol 2000; 164:6406–6416.

    PubMed  CAS  Google Scholar 

  98. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 2004; 4:583–594.

    Article  PubMed  CAS  Google Scholar 

  99. Hesse M, Modolell M, La Flamme AC, et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type I/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of Larginine metabolism. J Immunol 2001; 167:6533–6544.

    PubMed  CAS  Google Scholar 

  100. Vaillant B, Chiaramonte MG, Cheever AW, Soloway PD, Wynn TA. Regulation of hepatic fibrosis and extracellular matrix genes by the Th response: new insight into the role of tissue inhibitors of matrix metalloproteinases. J Immunol 2001; 167:7017–7026.

    PubMed  CAS  Google Scholar 

  101. Chiaramonte MG, Cheever AW, Malley JD, Donaldson DD, Wynn TA. Studies of murine schistosomiasis reveal interleukin-13 blockade as a treatment for established and progressive liver fibrosis. Hepatology 2001; 34:273–282.

    Article  PubMed  CAS  Google Scholar 

  102. Yu MC, Chen CH, Liang X, et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 2004; 40:1312–1321.

    Article  PubMed  CAS  Google Scholar 

  103. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005; 23:515–548.

    Article  PubMed  CAS  Google Scholar 

  104. Novobrantseva TI, Majeau GR, Amatucci A, et al. Attenuated liver fibrosis in the absence of B cells. J Clin Invest 2005; 115: 3072–3082.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Mehal, W.Z., Friedman, S.L. (2007). The Role of Inflammation and Immunity in the Pathogenesis of Liver Fibrosis. In: Gershwin, M.E., Vierling, J.M., Manns, M.P. (eds) Liver Immunology. Humana Press. https://doi.org/10.1007/978-1-59745-518-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-518-3_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-818-8

  • Online ISBN: 978-1-59745-518-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics