Advertisement

Ischemic Heart Disease

Part of the Contemporary Cardiology book series (CONCARD)
  1. 1.

    For CMR coronary angiography, data are typically obtained over several cardiac cycles. To freeze cardiac motion, it is desirable to obtain image data during a very short time period within each cycle.

    What would the optimal time for data collection be?
    1. A.

      75 ms after the QRS

       
    2. B.

      150 ms after the QRS

       
    3. C.

      Early diastole

       
    4. D.

      Mid diastole

       
    5. E.

      Late diastole

       

    Correct answer is D.

    Coronary motion is typically minimal during diastasis that occurs after rapid ventricular filling and before atrial filling, i.e., in mid diastole. End systole (typically occurring at 250–300 ms after the QRS) is another phase of relatively little cardiac motion [1, 2]. In certain individuals, and particularly those with fast heart rates and children, end systole may be more appropriate for coronary MR angiography, because, with tachycardia, the diastolic period, and particularly diastasis, significantly shortens. During the early phases of ventricular contraction (100–200 ms), there is fast displacement of...

Keywords

Correct Answer Myocardial Viability Constrictive Pericarditis Dobutamine Echocardiography Infarct Territory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    1. Al-Kwifi O, Stainsby J, Foltz WD, Sussman MS, Huang Y, and Wright GA. Characterizing coronary motion and its effect on MR coronary angiography—initial experience. J Magn Reson Imaging, 2006;24(4):842–850.CrossRefPubMedGoogle Scholar
  2. 2.
    2. Wang Y, Watts R, Mitchell I, et al. Coronary MR angiography: selection of acquisition window of minimal cardiac motion with electrocardiography-triggered navigator cardiac motion prescanning—initial results. Radiology, 2001;218(2):580–585.PubMedGoogle Scholar
  3. 3.
    3. Jackson E, Bellenger N, Seddon M, Harden S, and Peebles C. Ischaemic and non-ischaemic cardiomyopathies—cardiac MRI appearances with delayed enhancement. Clin Radiol, 2007;62(5):395–403.CrossRefPubMedGoogle Scholar
  4. 4.
    4. McCrohon JA, Moon JC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation, 2003;108(1):54–59.CrossRefPubMedGoogle Scholar
  5. 5.
    5. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, and Kim RJ. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet, 2001;357(9249):21–28.CrossRefPubMedGoogle Scholar
  6. 6.
    6. Horn M. 23Na magnetic resonance imaging for the determination of myocardial viability: the status and the challenges. Curr Vasc Pharmacol, 2004;2(4):329–333.CrossRefPubMedGoogle Scholar
  7. 7.
    7. Kim RJ, Judd RM, Chen EL, Fieno DS, Parrish TB, and Lima JA. Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation, 1999;100(2):185–192.PubMedGoogle Scholar
  8. 8.
    8. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med, 2000;343(20):1445–1453.CrossRefPubMedGoogle Scholar
  9. 9.
    9. Mollet NR, Dymarkowski S, Volders W, et al. Visualization of ventricular thrombi with contrast-enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation, 2002;106(23):2873–2876.CrossRefPubMedGoogle Scholar
  10. 10.
    10. Hombach V, Grebe O, Merkle N, et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J, 2005;26(6):549–557.CrossRefPubMedGoogle Scholar
  11. 11.
    11. Hernandez-Pampaloni M, Peral V, Carreras JL, Sanchez-Harguindey L, and Vilacosta I. Biphasic response to dobutamine predicts improvement of left ventricular dysfunction after revascularization: correlation with positron emission and rest-redistribution 201Tl tomographies. Int J Cardiovasc Imaging, 2003;19(6):519–528.CrossRefPubMedGoogle Scholar
  12. 12.
    12. Lancellotti P, Hoffer EP, and Pierard LA. Detection and clinical usefulness of a biphasic response during exercise echocardiography early after myocardial infarction. J Am Coll Cardiol, 2003;41(7):1142–1147.CrossRefPubMedGoogle Scholar
  13. 13.
    13. Senior R and Lahiri A. Enhanced detection of myocardial ischemia by stress dobutamine echocardiography utilizing the “biphasic” response of wall thickening during low and high dose dobutamine infusion. J Am Coll Cardiol, 1995;26(1):26–32.CrossRefPubMedGoogle Scholar
  14. 14.
    14. van Rossum AC, Galjee MA, Doesburg T, Hofman M, and Valk J. The role of magnetic resonance in the evaluation of functional results after CABG/PTCA. Int J Card Imaging, 1993;9 Suppl 1:59–69.CrossRefPubMedGoogle Scholar
  15. 15.
    15. Langerak SE, Vliegen HW, de Roos A, et al. Detection of vein graft disease using high-resolution magnetic resonance angiography. Circulation, 2002;105(3):328–333.CrossRefPubMedGoogle Scholar
  16. 16.
    16. Weissman NJ, Levangie MW, Guerrero JL, Weyman AE, and Picard MH. Effect of beta-blockade on dobutamine stress echocardiography. Am Heart J, 1996;131(4):698–703.CrossRefPubMedGoogle Scholar
  17. 17.
    17. Shehata AR, Gillam LD, Mascitelli VA, et al. Impact of acute propranolol administration on dobutamine-induced myocardial ischemia as evaluated by myocardial perfusion imaging and echocardiography. Am J Cardiol, 1997;80(3):268–272.CrossRefPubMedGoogle Scholar
  18. 18.
    18. Danias PG, Roussakis A, and Ioannidis JP. Diagnostic performance of coronary magnetic resonance angiography as compared against conventional X-ray angiography: a meta-analysis. J Am Coll Cardiol, 2004;44(9):1867–1876.PubMedGoogle Scholar
  19. 19.
    19. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med, 2001;345(26):1863–1869.CrossRefPubMedGoogle Scholar
  20. 20.
    20. Danias PG, Stuber M, McConnell MV, and Manning WJ. The diagnosis of congenital coronary anomalies with magnetic resonance imaging. Coron Artery Dis, 2001;12(8):621–626.CrossRefPubMedGoogle Scholar
  21. 21.
    21. Crean A and Merchant N. MR perfusion and delayed enhancement imaging in the heart. Clin Radiol, 2006;61(3):225–236.CrossRefPubMedGoogle Scholar
  22. 22.
    22. Croisille P, Revel D, and Saeed M. Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside. Eur Radiol, 2006;16(9):1951–1963.CrossRefPubMedGoogle Scholar
  23. 23.
    23. Pennell DJ. Cardiovascular magnetic resonance and the role of adenosine pharmacologic stress. Am J Cardiol, 2004;94(2A):26D–31D; discussion 31D–32D.CrossRefPubMedGoogle Scholar
  24. 24.
    24. Prasad SK, Lyne J, Chai P, and Gatehouse P. Role of CMR in assessment of myocardial perfusion. Eur Radiol, 2005;15 Suppl 2:B42–47.PubMedGoogle Scholar
  25. 25.
    25. Nagel E, al-Saadi N, and Fleck E. Cardiovascular magnetic resonance: myocardial perfusion. Herz, 2000;25(4):409–416.CrossRefPubMedGoogle Scholar
  26. 26.
    26. Cury RC, Cattani CA, Gabure LA, et al. Diagnostic performance of stress perfusion and delayed-enhancement MR imaging in patients with coronary artery disease. Radiology, 2006;240(1):39–45.CrossRefPubMedGoogle Scholar
  27. 27.
    27. Nagel E, Klein C, Paetsch I, et al. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation, 2003;108(4):432–437.CrossRefPubMedGoogle Scholar
  28. 28.
    28. Ishida N, Sakuma H, Motoyasu M, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology, 2003;229(1):209–216.CrossRefPubMedGoogle Scholar
  29. 29.
    29. Schwitter J. Myocardial perfusion imaging by cardiac magnetic resonance. J Nucl Cardiol, 2006;13(6):841–854.CrossRefPubMedGoogle Scholar
  30. 30.
    30. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation, 2000;101(12):1379–1383.PubMedGoogle Scholar
  31. 31.
  32. 32.
    32. Danias PG, Ahlberg AW, Clark BA, 3rd, et al. Combined assessment of myocardial perfusion and left ventricular function with exercise technetium-99m sestamibi gated single-photon emission computed tomography can differentiate between ischemic and nonischemic dilated cardiomyopathy. Am J Cardiol, 1998;82(10):1253–1258.CrossRefPubMedGoogle Scholar
  33. 33.
    33. McCrohon JA, Lyne JC, Rahman SL, Lorenz CH, Underwood SR, and Pennell DJ. Adjunctive role of cardiovascular magnetic resonance in the assessment of patients with inferior attenuation on myocardial perfusion SPECT. J Cardiovasc Magn Reson, 2005;7(2):377–382.CrossRefPubMedGoogle Scholar
  34. 34.
    34. Deetjen AG, Conradi G, Mollmann S, Rad A, Hamm CW, and Dill T. Value of gadolinium-enhanced magnetic resonance imaging in patients with Tako-Tsubo-like left ventricular dysfunction. J Cardiovasc Magn Reson, 2006;8(2):367–372.CrossRefPubMedGoogle Scholar
  35. 35.
    35. Nef HM, Mollmann H, Kostin S, et al. Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional recovery. Eur Heart J, 2007;28(20):2456–2464.CrossRefPubMedGoogle Scholar
  36. 36.
    36. Shechter G, Resar JR, and McVeigh ER. Rest period duration of the coronary arteries: implications for magnetic resonance coronary angiography. Med Phys, 2005;32(1):255–262.CrossRefPubMedGoogle Scholar
  37. 37.
    37. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation, 1999;99(6):763–770.PubMedGoogle Scholar
  38. 38.
    38. Mandapaka S and Hundley WG. Dobutamine cardiovascular magnetic resonance: a review. J Magn Reson Imaging, 2006;24(3):499–512.CrossRefPubMedGoogle Scholar
  39. 39.
    39. Hundley WG, Hamilton CA, Thomas MS, et al. Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation, 1999;100(16):1697–1702.PubMedGoogle Scholar
  40. 40.
    40. Rerkpattanapipat P, Link KM, Hamilton CA, and Hundley WG. Clinical utility of assessments of left ventricular systolic function and coronary arterial blood flow during pharmacological stress with magnetic resonance imaging. Top Magn Reson Imaging, 2000;11(6):399–405.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Personalised recommendations