Skip to main content

Models of Cannabinoid Inverse Agonism, Neutral Antagonism, and Agonism: Tools for Rational Drug Design

  • Chapter
The Cannabinoid Receptors

Part of the book series: The Receptors ((REC))

  • 1432 Accesses

Abstract

The cannabinoid receptors belong to Class A of the G protein-coupled receptor (GPCR) family. GPCRs are assumed to have a common topology and to share a common molecular activation mechanism involving their intracellular domains. However, each individual receptor will also have a molecular switch within the ligand-binding pocket that is a noncovalent, intramolecular interaction in the basal state of the GPCR that must be disrupted to achieve an active state. Knowledge of the molecular switch within the ligand-binding pocket can greatly facilitate the rational design of inverse agonists, neutral antagonists, and agonists.

This chapter reviews the experimental literature on GPCR structure and activation and then focuses on sequence divergences between the cannabinoid CB1/CB2 receptors and other Class A GPCRs that may cause CB1 and CB2 to diverge from the structure of the prototypical Class A GPCR, rhodospin. Results of computer modeling, mutation, and covalent labeling studies are presented that have led to our current understanding of cannabinoid CB1 and CB2 receptor structure and activation at a molecular level. An outgrowth of these studies has been the identification of the CB1 receptor F3.36/W6.48 molecular toggle switch. The design of compounds that stabilizes this toggle switch (inverse agonists) versus those that disrupt the switch (agonists) are presented by examining the interaction of each cannabinoid ligand structural class at their receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsuda LA, Lolait SJ, Brownstein MJ, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346:561–4.

    CAS  PubMed  Google Scholar 

  2. Shire D, Carillon C, Kaghad M, et al. An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem. 1995;270:3726–31.

    CAS  PubMed  Google Scholar 

  3. Gerard CM, Mollereau C, Vassart G, et al. Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J. 1991;279 (Pt 1):129–34.

    CAS  PubMed  Google Scholar 

  4. Abood ME, Ditto KE, Noel MA, et al. Isolation and expression of a mouse CB1 cannabinoid receptor gene. Comparison of binding properties with those of native CB1 receptors in mouse brain and N18TG2 neuroblastoma cells. Biochem Pharmacol. 1997;53:207–14.

    CAS  PubMed  Google Scholar 

  5. Bouaboula M, Perrachon S, Milligan L, et al. A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J Biol Chem. 1997;272:22330–9.

    CAS  PubMed  Google Scholar 

  6. Pan X, Ikeda SR, Lewis DL. SR 141716A acts as an inverse agonist to increase neuronal voltage-dependent Ca2 + currents by reversal of tonic CB1 cannabinoid receptor activity. Mol Pharmacol. 1998;54:1064–72.

    CAS  PubMed  Google Scholar 

  7. Meschler JP, Kraichely DM, Wilken GH, et al. Inverse agonist properties of N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl (SR141716A) and 1-(2-chlorophenyl)-4-cyano-5-(4-methoxyphenyl)-1H-pyrazole-3-carboxyl ic acid phenylamide (CP-272871) for the CB(1) cannabinoid receptor. Biochem Pharmacol. 2000;60:1315–23.

    CAS  PubMed  Google Scholar 

  8. Mato S, Pazos A, Valdizan EM. Cannabinoid receptor antagonism and inverse agonism in response to SR141716A on cAMP production in human and rat brain. Eur J Pharmacol. 2002;443:43–6.

    CAS  PubMed  Google Scholar 

  9. Kearn CS, Greenberg MJ, DiCamelli R, et al. Relationships between ligand affinities for the cerebellar cannabinoid receptor CB1 and the induction of GDP/GTP exchange. J Neurochem. 1999;72:2379–87.

    CAS  PubMed  Google Scholar 

  10. Andersson H, D’Antona AM, Kendall DA, et al. Membrane assembly of the cannabinoid receptor 1: impact of a long N-terminal tail. Mol Pharmacol. 2003;64:570–7.

    CAS  PubMed  Google Scholar 

  11. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61–5.

    CAS  PubMed  Google Scholar 

  12. Griffin G, Tao Q, Abood ME. Cloning and pharmacological characterization of the rat CB(2) cannabinoid receptor. J Pharmacol Exp Ther. 2000;292:886–94.

    CAS  PubMed  Google Scholar 

  13. Shire D, Calandra B, Rinaldi-Carmona M, et al. Molecular cloning, expression and function of the murine CB2 peripheral cannabinoid receptor. Biochim Biophys Acta. 1996;1307:132–6.

    PubMed  Google Scholar 

  14. Bouaboula M, Desnoyer N, Carayon P, et al. Gi protein modulation induced by a selective inverse agonist for the peripheral cannabinoid receptor CB2: implication for intracellular signalization cross-regulation. Mol Pharmacol. 1999;55:473–80.

    CAS  PubMed  Google Scholar 

  15. Pertwee RG. Pharmacological actions of cannabinoids. In: Pertwee R, editor. Cannabinoids, Vol. 168. New York: Springer; 2005. pp. 1–51.

    Google Scholar 

  16. Begg M, Pacher P, Batkai S, et al. Evidence for novel cannabinoid receptors. Pharmacol Ther. 2005;106:133–45.

    CAS  PubMed  Google Scholar 

  17. Petitet F, Donlan M, Michel A. GPR55 as a new cannabinoid receptor: still a long way to prove it. Chem Biol Drug Des. 2006;67:252–3.

    CAS  PubMed  Google Scholar 

  18. Brown A, Ueno S, Suen K, et al. Molecular identification of GPR55 as a third G-protein coupled receptor responsive to cannabinoid ligands, 2005 Symposium of the Cannabinoids. Clearwater, FL: International Cannabinoid Research Society; 2005.

    Google Scholar 

  19. Sjogren S, Ryberg E, Lindblom A, et al. A new receptor for cannabinoid ligands, 2005 Symposium on the Cannabinoids. Clearwater, FL: International Cannabinoid Research Society; 2005.

    Google Scholar 

  20. Ford L, Henstridge C, Deehan M, et al. Preliminary studies on the pharmacology and regulation of the putative cannabinoid receptor GPR55, 17th Annual Symposium on the Cannabinoids. St-Sauveur, 2007.

    Google Scholar 

  21. Brown A, Wise A. Identification of modulators of GPR55 activity. WO0186305. USPTO: GlaxoSmithKline, 2003.

    Google Scholar 

  22. Drmota T, Greasley P, Groblewski T. Screening assays for cannabinoid-ligand type modulators of GPR55. USA: Astrazeneca, 2004.

    Google Scholar 

  23. Sawzdargo M, Nguyen T, Lee DK, et al. Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res Mol Brain Res. 1999;64:193–8.

    CAS  PubMed  Google Scholar 

  24. Sugiura T, Nakajiima K, Kishimoto S, et al. An endogenous ligand for GPR55, a G protein-coupled receptor, 17th Annual Symposium on the Cannabinoids. St-Sauveur: International Cannabinoid Research Society; 2007.

    Google Scholar 

  25. Devane WA, Dysarz FA, 3rd, Johnson MR, et al. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34:605–13.

    CAS  PubMed  Google Scholar 

  26. Melvin LS, Milne GM, Johnson MR, et al. Structure-activity relationships defining the ACD-tricyclic cannabinoids: Cannabinoid receptor binding and analgesic activity. Drug Des Discov. 1995;13:155–66.

    CAS  PubMed  Google Scholar 

  27. D’Ambra TE, Estep KG, Bell MR, et al. Conformationally restrained analogues of pravadoline: Nanomolar potent, enantioselective, (aminoalkyl)indole agonists of the cannabinoid receptor. J Med Chem. 1992;35:124–35.

    PubMed  Google Scholar 

  28. Ward SJ, Baizman E, Bell M, et al. Aminoalkylindoles (AAIs): a new route to the cannabinoid receptor? NIDA Res Monogr. 1991;105:425–6.

    Google Scholar 

  29. Compton DR, Gold LH, Ward SJ, et al. Aminoalkylindole analogs: cannabimimetic activity of a class of compounds structurally distinct from delta- 9-tetrahydrocannabinol. J Pharmacol Exp Ther. 1992;263:1118–26.

    CAS  PubMed  Google Scholar 

  30. Reggio PH, Panu AM, Miles S. Characterization of a region of steric interference at the cannabinoid receptor using the active analog approach. J Med Chem. 1993;36:1761–71.

    CAS  PubMed  Google Scholar 

  31. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–9.

    CAS  PubMed  Google Scholar 

  32. Bracey MH, Hanson MA, Masuda KR, et al. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science. 2002;298:1793–6.

    CAS  PubMed  Google Scholar 

  33. Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50:83–90.

    CAS  PubMed  Google Scholar 

  34. Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature. 1997;388:773–8.

    CAS  PubMed  Google Scholar 

  35. Hanus L, Abu-Lafi S, Fride E, et al. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci USA. 2001;98:3662–5.

    CAS  PubMed  Google Scholar 

  36. Rinaldi-Carmona M, Barth F, Heaulme M, et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 1994;350:240–4.

    CAS  PubMed  Google Scholar 

  37. Felder CC, Joyce KE, Briley EM, et al. LY320135, a novel cannabinoid CB1 receptor antagonist, unmasks coupling of the CB1 receptor to stimulation of cAMP accumulation. J Pharmacol Exp Ther. 1998;284:291–7.

    CAS  PubMed  Google Scholar 

  38. Ross RA, Brockie HC, Fernando SR, et al. Comparison of cannabinoid binding sites in guinea-pig forebrain and small intestine. Br J Pharmacol. 1998;125:1345–51.

    CAS  PubMed  Google Scholar 

  39. Stoit AR, Lange JHM, den Hartog AP, et al. Design, synthesis and biological activity of rigid cannabinoid CB1 receptor antagonists. Chem Pharm Bull (Tokyo). 2002;50:1109–13.

    CAS  Google Scholar 

  40. Lange JH, Coolen HK, van Stuivenberg HH, et al. Synthesis, biological properties, and molecular modeling investigations of novel 3,4-diarylpyrazolines as potent and selective CB(1) cannabinoid receptor antagonists. J Med Chem. 2004;47:627–43.

    CAS  PubMed  Google Scholar 

  41. Sim-Selley LJ, Brunk LK, Selley DE. Inhibitory effects of SR141716A on G-protein activation in rat brain. Eur J Pharmacol. 2001;414:135–43.

    CAS  PubMed  Google Scholar 

  42. Rinaldi-Carmona M, Barth F, Millan J, et al. SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J Pharmacol Exp Ther. 1998;284:644–50.

    CAS  PubMed  Google Scholar 

  43. Iwamura H, Suzuki H, Ueda Y, et al. In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor. J Pharmacol Exp Ther. 2001;296:420–5.

    CAS  PubMed  Google Scholar 

  44. Ross RA, Brockie HC, Stevenson LA, et al. Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656, and AM630. Br J Pharmacol. 1999;126:665–72.

    CAS  PubMed  Google Scholar 

  45. Ballesteros JA, Weinstein H. Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. In: Sealfon SC, editor. Methods in neuroscience, Vol. 25. San Diego, CA: Academic Press; 1995. pp. 366–428.

    Google Scholar 

  46. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000;289:739–45.

    CAS  PubMed  Google Scholar 

  47. Li J, Edwards PC, Burghammer M, et al. Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol. 2004;343:1409–38.

    CAS  PubMed  Google Scholar 

  48. Okada T, Fujiyoshi Y, Silow M, et al. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc Natl Acad Sci USA. 2002;99:5982–7.

    CAS  PubMed  Google Scholar 

  49. Okada T, Sugihara M, Bondar AN, et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol. 2004;342:571–83.

    CAS  PubMed  Google Scholar 

  50. Wess J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 1997;11:346–54.

    CAS  PubMed  Google Scholar 

  51. Iiri T, Farfel Z, Bourne HR. G-protein diseases furnish a model for the turn-on switch. Nature. 1998;394:35–8.

    CAS  PubMed  Google Scholar 

  52. Schertler GF. Structure of rhodopsin and the metarhodopsin I photointermediate. Curr Opin Struct Biol. 2005;15:408–15.

    CAS  PubMed  Google Scholar 

  53. Szundi I, Ruprecht JJ, Epps J, et al. Rhodopsin photointermediates in two-dimensional crystals at physiological temperatures. Biochemistry. 2006;45:4974–82.

    CAS  PubMed  Google Scholar 

  54. Salom D, Lodowski DT, Stenkamp RE, et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci USA. 2006;103:16123–8.

    CAS  PubMed  Google Scholar 

  55. Gether U, Kobilka BK. G protein-coupled receptors. II. Mechanism of agonist activation. J Biol Chem. 1998;273:17979–82.

    CAS  PubMed  Google Scholar 

  56. Niv MY, Skrabanek L, Filizola M, et al. Modeling activated states of GPCRs: The rhodopsin template. J Comput Aided Mol Des. 2006;20:437–48.

    CAS  PubMed  Google Scholar 

  57. Farrens D, Altenbach C, Ynag K, et al. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996;274:768–70.

    CAS  PubMed  Google Scholar 

  58. Ghanouni P, Steenhuis JJ, Farrens DL, et al. Agonist-induced conformational changes in the G-protein-coupling domain of the beta 2 adrenergic receptor. Proc Natl Acad Sci USA. 2001;98:5997–6002.

    CAS  PubMed  Google Scholar 

  59. Lin SW, Sakmar TP. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state. Biochemistry. 1996;35:11149–59.

    CAS  PubMed  Google Scholar 

  60. Javitch JA, Fu D, Liapakis G, et al. Constitutive activation of the beta2 adrenergic receptor alters the orientation of its sixth membrane-spanning segment. J Biol Chem. 1997;272:18546–9.

    CAS  PubMed  Google Scholar 

  61. Jensen AD, Guarnieri F, Rasmussen SG, et al. Agonist-induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the beta 2 adrenergic receptor mapped by site-selective fluorescent labeling. J Biol Chem. 2001;276:9279–90.

    CAS  PubMed  Google Scholar 

  62. Nakanishi J, Takarada T, Yunoki S, et al. FRET-based monitoring of conformational change of the beta2 adrenergic receptor in living cells. Biochem Biophys Res Commun. 2006;343:1191–6.

    CAS  PubMed  Google Scholar 

  63. Ward SD, Hamdan FF, Bloodworth LM, et al. Use of an in situ disulfide cross-linking strategy to study the dynamic properties of the cytoplasmic end of transmembrane domain VI of the M(3) muscarinic acetylcholine receptor. Biochemistry. 2006;45:676–85.

    CAS  PubMed  Google Scholar 

  64. Ballesteros J, Jensen A, Liapakis G, et al. Activation of the β2 adrenegic receptor involves disruption of an ionic link between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem. 2001;276:29171–29177.

    CAS  PubMed  Google Scholar 

  65. Visiers I, Ebersole BJ, Dracheva S, et al. Structural motifs as functional microdomains in G-protein-coupled receptors: Energetic considerations in the mechanism of activation of the serotonin 5-HT2a receptor by disruption of the ionic lock of the arginine cage. Int J Quantum Chem. 2002;88:65–75.

    CAS  Google Scholar 

  66. Arnis S, Fahmy K, Hofmann KP, et al. A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. J Biol Chem. 1994;269:23879–81.

    CAS  PubMed  Google Scholar 

  67. Bramblett RD, Panu AM, Ballesteros JA, et al. Construction of a 3D model of the cannabinoid CB1 receptor: Determination of helix ends and helix orientation. Life Sci. 1995;56:1971–82.

    CAS  PubMed  Google Scholar 

  68. Ballesteros JA, Shi L, Javitch JA. Structural mimicry in G protein-coupled receptors: implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol Pharmacol. 2001;60:1–19.

    CAS  PubMed  Google Scholar 

  69. Shim JY, Welsh WJ, Howlett AC. Homology model of the CB1 cannabinoid receptor: sites critical for nonclassical cannabinoid agonist interaction. Biopolymers. 2003;71:169–89.

    CAS  PubMed  Google Scholar 

  70. Xie XQ, Chen JZ, Billings EM. 3D structural model of the G-protein-coupled cannabinoid CB2 receptor. Proteins. 2003;53:307–19.

    CAS  PubMed  Google Scholar 

  71. Salo OM, Raitio KH, Savinainen JR, et al. Virtual screening of novel CB2 ligands using a comparative model of the human cannabinoid CB2 receptor. J Med Chem. 2005;48:7166–71.

    CAS  PubMed  Google Scholar 

  72. Yates AS, Doughty SW, Kendall DA, et al. Chemical modification of the naphthoyl 3-position of JWH-015: In search of a fluorescent probe to the cannabinoid CB2 receptor. Bioorg Med Chem Lett. 2005;15:3758–62.

    CAS  PubMed  Google Scholar 

  73. Brizzi A, Cascio MG, Brizzi V, et al. Design, synthesis, binding, and molecular modeling studies of new potent ligands of cannabinoid receptors. Bioorg Med Chem. 2007;15:5406–16.

    CAS  PubMed  Google Scholar 

  74. Shi L, Liapakis G, Xu R, et al. Beta 2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J Biol Chem. 2002;277:40989–96.

    CAS  PubMed  Google Scholar 

  75. Barnett-Norris J, Hurst DP, Buehner K, et al. Agonist alkyl tail interaction with cannabinoid CB1 receptor V6.43/I6.46 groove induces a Helix 6 active conformation. Int J Quantum Chem. 2002;88:76–86.

    CAS  Google Scholar 

  76. Guarnieri F, Weinstein H. Conformational memories and the exploration of biologically relevant peptide conformations: an illustration for the gonadotropin-releasing hormone. J Am Chem Soc. 1996;118:5580–9.

    CAS  Google Scholar 

  77. Shire D, Calandra B, Bouaboula M, et al. Cannabinoid receptor interactions with the antagonists SR 141716A and SR 144528. Life Sci. 1999;65:627–35.

    CAS  PubMed  Google Scholar 

  78. Fay JF, Dunham TD, Farrens DL. Cysteine residues in the human cannabinoid receptor: only C257 and C264 are required for a functional receptor, and steric bulk at C386 impairs antagonist SR141716A binding. Biochemistry. 2005;44:8757–69.

    CAS  PubMed  Google Scholar 

  79. Hurst D, Umejiego U, Lynch D, et al. Biarylpyrazole inverse agonists at the cannabinoid CB1 receptor: importance of the C-3 carboxamide oxygen/lysine3.28(192) interaction. J Med Chem. 2006;49:5969–87.

    CAS  PubMed  Google Scholar 

  80. Altenbach C, Cai K, Klein-Seetharaman J, et al. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306-319 at the cytoplasmic end of helix TM7 and in helix H8. Biochemistry. 2001;40:15483–92.

    CAS  PubMed  Google Scholar 

  81. Fritze O, Filipek S, Kuksa V, et al. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci USA. 2003;100:2290–5.

    CAS  PubMed  Google Scholar 

  82. Prioleau C, Visiers I, Ebersole BJ, et al. Conserved helix 7 tyrosine acts as a multistate conformational switch in the 5HT2C receptor. Identification of a novel “locked-on” phenotype and double revertant mutations. J Biol Chem. 2002;277:36577–84.

    CAS  PubMed  Google Scholar 

  83. Mukhopadhyay S, Cowsik SM, Lynn AM, et al. Regulation of Gi by the CB1 cannabinoid receptor C-terminal juxtamembrane region: structural requirements determined by peptide analysis. Biochemistry. 1999;38:3447–55.

    CAS  PubMed  Google Scholar 

  84. Choi G, Guo J, Makriyannis A. The conformation of the cytoplasmic helix 8 of the CB1 cannabinoid receptor using NMR and circular dichroism. Biochem Biophys Acta. 2005;1668:1–9.

    CAS  PubMed  Google Scholar 

  85. Xie XQ, Chen JZ. NMR structural comparison of the cytoplasmic juxtamembrane domains of G-protein-coupled CB1 and CB2 receptors in membrane mimetic dodecylphosphocholine micelles. J Biol Chem. 2005;280:3605–12.

    CAS  PubMed  Google Scholar 

  86. Grace CR, Cowsik SM, Shim JY, et al. Unique helical conformation of the fourth cytoplasmic loop of the CB1 cannabinoid receptor in a negatively charged environment. J Struct Biol. 2007;159:359–68.

    CAS  PubMed  Google Scholar 

  87. Anavi-Goffer S, Fleischer D, Hurst DP, et al. Helix 8 Leu in the CB1 cannabinoid receptor contributes to selective signal transduction mechanisms. J Biol Chem. 2007;282:25100–13.

    CAS  PubMed  Google Scholar 

  88. Zhang R, Hurst DP, Barnett-Norris J, et al. Cysteine 2.59(89) in the second transmembrane domain of human CB2 receptor is accessible within the ligand binding crevice: evidence for possible CB2 deviation from a rhodopsin template. Mol Pharmacol. 2005;68:69–83.

    CAS  PubMed  Google Scholar 

  89. Ballesteros JA, Deupi X, Olivella M, et al. Serine and threonine residues bend alpha-helices in the chi(1) = g(–) conformation. Biophys J. 2000;79:2754–60.

    CAS  PubMed  Google Scholar 

  90. Kapur A, Hurst DP, Fleischer D, et al. Mutation Studies of S7.39 and S2.60 in the human CB1 cannabinoid receptor: evidence for a serine induced bend in CB1 transmembrane helix 7. Mol Pharmacol. 2007;71:1512–24.

    Google Scholar 

  91. Leff P. The two-state model of receptor activation. Trends Pharmacol Sci. 1995;16:89–97.

    CAS  PubMed  Google Scholar 

  92. Samama P, Pei G, Costa T, et al. Negative antagonists promote an inactive conformation of the beta 2-adrenergic receptor. Mol Pharmacol. 1994;45:390–4.

    CAS  PubMed  Google Scholar 

  93. Schwartz TW, Frimurer TM, Holst B, et al. Molecular mechanism of 7TM receptor activation – a global toggle switch model. Annu Rev Pharmacol Toxicol. 2006;46:481–519.

    CAS  PubMed  Google Scholar 

  94. Kobilka BK, Deupi X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci. 2007;28:397–406.

    CAS  PubMed  Google Scholar 

  95. McAllister SD, Hurst DP, Barnett-Norris J, et al. Structural mimicry in class A G protein-coupled receptor rotamer toggle switches: the importance of the F3.36(201)/W6.48(357) interaction in cannabinoid CB1 receptor activation. J Biol Chem. 2004;279:48024–37.

    CAS  PubMed  Google Scholar 

  96. Klein-Seetharaman J, Yanamala NV, Javeed F, et al. Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR. Proc Natl Acad Sci USA. 2004;101:3409–13.

    CAS  PubMed  Google Scholar 

  97. Borhan B, Souto ML, Imai H, et al. Movement of retinal along the visual transduction path. Science. 2000;288:2209–12.

    CAS  PubMed  Google Scholar 

  98. Singh R, Hurst DP, Barnett-Norris J, et al. Activation of the cannabinoid CB1 receptor may involve a W6.48/F3.36 rotamer toggle switch. J Pept Res. 2002;60:357–70.

    CAS  PubMed  Google Scholar 

  99. Hurst DP, Lynch DL, Barnett-Norris J, et al. N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716A) interaction with LYS 3.28(192) is crucial for its inverse agonism at the cannabinoid CB1 receptor. Mol Pharmacol. 2002;62:1274–87.

    CAS  PubMed  Google Scholar 

  100. McAllister SD, Tao Q, Barnett-Norris J, et al. A critical role for a tyrosine residue in the cannabinoid receptors for ligand recognition. Biochem Pharmacol. 2002;63:2121–36.

    CAS  PubMed  Google Scholar 

  101. McAllister SD, Rizvi G, Anavi-Goffer S, et al. An aromatic microdomain at the cannabinoid CB(1) receptor constitutes an agonist/inverse agonist binding region. J Med Chem. 2003;46:5139–52.

    CAS  PubMed  Google Scholar 

  102. Perez DM, Karnik SS. Multiple signaling states of G-protein-coupled receptors. Pharmacol Rev. 2005;57:147–61.

    CAS  PubMed  Google Scholar 

  103. Kenakin T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci. 1995;16:232–8.

    CAS  PubMed  Google Scholar 

  104. Glass M, Northup JK. Agonist selective regulation of G proteins by cannabinoid CB(1) and CB(2) receptors. Mol Pharmacol. 1999;56:1362–9.

    CAS  PubMed  Google Scholar 

  105. Mukhopadhyay S, Shim JY, Assi AA, et al. CB(1) cannabinoid receptor-G protein association: a possible mechanism for differential signaling. Chem Phys Lipids. 2002;121:91–109.

    CAS  PubMed  Google Scholar 

  106. Song ZH, Bonner TI. A lysine residue of the cannabinoid receptor is critical for receptor recognition by several agonists but not WIN55212–2. Mol Pharmacol. 1996;49:891–6.

    CAS  PubMed  Google Scholar 

  107. Chin C, Lucas-Lenard J, Abadji V, et al. Ligand binding and modulation of cyclic AMP levels depend on the chemical nature of residue 192 of the human cannabinoid receptor 1. J Neurochem. 1998;70:366–73.

    CAS  PubMed  Google Scholar 

  108. Song ZH, Slowey CA, Hurst DP, et al. The difference between the CB(1) and CB(2) cannabinoid receptors at position 5.46 is crucial for the selectivity of WIN55212-2 for CB(2). Mol Pharmacol. 1999;56:834–40.

    CAS  PubMed  Google Scholar 

  109. Huffman J, Dai D, Martin B, et al. Design, synthesis and pharmacology of cannabimimetic indoles. Bioorg Med Chem Lett. 1994;4:563–6.

    Google Scholar 

  110. Eissenstat MA, Bell MR, D’Ambra TE, et al. Aminoalkylindoles: structure-activity relationships of novel cannabinoid mimetics. J Med Chem. 1995;38:3094–105.

    CAS  PubMed  Google Scholar 

  111. Reggio PH, Basu-Dutt S, Barnett-Norris J, et al. The bioactive conformation of aminoalkylindoles at the cannabinoid CB1 and CB2 receptors: insights gained from (E)- and (Z)-naphthylidene indenes. J Med Chem. 1998;41:5177–87.

    CAS  PubMed  Google Scholar 

  112. Huffman J, Mabon R, Wua M-J, et al. 3-Indolyl-1-naphthylmethanes: new cannabimimetic indoles provide evidence for aromatic stacking interactions with the CB1 cannabinoid receptor. Bioorg Med Chem. 2003;11:539–49.

    CAS  PubMed  Google Scholar 

  113. Huffman JW, Zengin G, Wu MJ, et al. Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB(1) and CB(2) receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB(2) receptor agonists. Bioorg Med Chem. 2005;13:89–112.

    CAS  PubMed  Google Scholar 

  114. Shim JY, Howlett AC. WIN55212-2 docking to the CB1 cannabinoid receptor and multiple pathways for conformational induction. J Chem Inf Model. 2006;46:1286–300.

    CAS  PubMed  Google Scholar 

  115. Razdan RK. Structure-activity relationships in cannabinoids. Pharmacol Rev. 1986;38:75–149.

    CAS  PubMed  Google Scholar 

  116. Makriyannis A, Rapaka RS. The molecular basis of cannabinoid activity. Life Sci. 1990;47:2173–84.

    CAS  PubMed  Google Scholar 

  117. Xie XQ, Pavlopoulos S, DiMeglio CM, et al. Conformational studies on a diastereoisomeric pair of tricyclic nonclassical cannabinoids by NMR spectroscopy and computer molecular modeling. J Med Chem. 1998;41:167–74.

    CAS  PubMed  Google Scholar 

  118. Xie XQ, Melvin LS, Makriyannis A. The conformational properties of the highly selective cannabinoid receptor ligand CP-55,940. J Biol Chem. 1996;271:10640–7.

    CAS  PubMed  Google Scholar 

  119. Xie XQ, Yang DP, Melvin LS, et al. Conformational analysis of the prototype nonclassical cannabinoid CP-47,497, using 2D NMR and computer molecular modeling. J Med Chem. 1994;37:1418–26.

    CAS  PubMed  Google Scholar 

  120. Lagu SG, Varona A, Chambers JD, et al. Construction of a steric map of the binding pocket for cannabinoids at the cannabinoid receptor. Drug Des Discov. 1995;12:179–92.

    CAS  PubMed  Google Scholar 

  121. Melvin LS, Johnson MR. Structure-activity relationships of tricyclic and nonclassical bicyclic cannabinoids. NIDA Res Monogr. 1987;79:31–47.

    CAS  PubMed  Google Scholar 

  122. Howlett AC, Johnson MR, Melvin LS, et al. Nonclassical cannabinoid analgetics inhibit adenylate cyclase: Development of a cannabinoid receptor model. Mol Pharmacol. 1988;33:297–302.

    CAS  PubMed  Google Scholar 

  123. Huffman JW, Yu S, Showalter V, et al. Synthesis and pharmacology of a very potent cannabinoid lacking a phenolic hydroxyl with high affinity for the CB2 receptor. J Med Chem. 1996;39:3875–7.

    CAS  PubMed  Google Scholar 

  124. Tius MA, Makriyannis A, Zoua XL, et al. Conformationally restricted hybrids of CP-55,940 and HHC: stereoselective synthesis and activity. Tetrahedron. 1994;50:2671–80.

    CAS  Google Scholar 

  125. Drake DJ, Jensen RS, Busch-Petersen J, et al. Classical/nonclassical hybrid cannabinoids: southern aliphatic chain-functionalized C-6beta methyl, ethyl, and propyl analogues. J Med Chem. 1998;41:3596–608.

    CAS  PubMed  Google Scholar 

  126. Shim JY, Howlett AC. Steric trigger as a mechanism for CB1 cannabinoid receptor activation. J Chem Inf Comput Sci. 2004;44:1466–76.

    CAS  PubMed  Google Scholar 

  127. Picone RP, Khanolkar AD, Xu W, et al. (–)-7′-Isothiocyanato-11-hydroxy-1′,1′-dimethylheptylhexahydrocannabinol (AM841), a high-affinity electrophilic ligand, interacts covalently with a cysteine in helix six and activates the CB1 cannabinoid receptor. Mol Pharmacol. 2005;68:1623–35.

    CAS  PubMed  Google Scholar 

  128. Seltzman HH, Fleming DN, Thomas BF, et al. Synthesis and pharmacological comparison of dimethylheptyl and pentyl analogs of anandamide. J Med Chem. 1997;40:3626–34.

    CAS  PubMed  Google Scholar 

  129. Ryan WJ, Banner WK, Wiley JL, et al. Potent anandamide analogs: the effect of changing the length and branching of the end pentyl chain. J Med Chem. 1997;40:3617–25.

    CAS  PubMed  Google Scholar 

  130. Reggio PH, Traore H. Conformational requirements for endocannabinoid interaction with the cannabinoid receptors, the anandamide transporter and fatty acid amidohydrolase. Chem Phys Lipids. 2000;108:15–35.

    CAS  PubMed  Google Scholar 

  131. Sheskin T, Hanus L, Slager J, et al. Structural requirements for binding of anandamide-type compounds to the brain cannabinoid receptor. J Med Chem. 1997;40:659–67.

    CAS  PubMed  Google Scholar 

  132. Barnett-Norris J, Hurst DP, Lynch DL, et al. Conformational memories and the endocannabinoid binding site at the cannabinoid CB1 receptor. J Med Chem. 2002;45:3649–59.

    CAS  PubMed  Google Scholar 

  133. LaLonde JM, Levenson MA, Roe JJ, et al. Adipocyte lipid-binding protein complexed with arachidonic acid. Titration calorimetry and X-ray crystallographic studies. J Biol Chem. 1994;269:25339–47.

    CAS  PubMed  Google Scholar 

  134. Pinto JC, Potie F, Rice KC, et al. Cannabinoid receptor binding and agonist activity of amides and esters of arachidonic acid. Mol Pharmacol. 1994;46:516–22.

    CAS  PubMed  Google Scholar 

  135. Hillard CJ, Manna S, Greenberg MJ, et al. Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther. 1999;289:1427–33.

    CAS  PubMed  Google Scholar 

  136. Bonechi C, Brizzi A, Brizzi V, et al. Conformational analysis of N-arachidonylethanolamide (anandamide) using nuclear magnetic resonance and theoretical calculations. Magn Reson Chem. 2001;39:432–7.

    CAS  Google Scholar 

  137. Lynch DL, Reggio PH. Molecular dynamics simulations of the endocannabinoid N-arachidonoylethanolamine (anandamide) in a phospholipid bilayer: probing structure and dynamics. J Med Chem. 2005;48:4824–33.

    CAS  PubMed  Google Scholar 

  138. Lynch DL, Reggio PH. Cannabinoid CB1 receptor recognition of endocannabinoids via the lipid bilayer: molecular dynamics simulations of CB1 transmembrane helix 6 and anandamide in a phospholipid bilayer. J Comput Aided Mol Des. 2006;20:495–509.

    CAS  PubMed  Google Scholar 

  139. Nebane NM, Reggio PH, Song Z-H. V6.43 and I6.46 are essential for ligand alky/acyl side chain interaction with the CB1 cannabinoid receptor, Symposium on the Cannabinoids, Cornwall, Ontario:International Cannabinoid Research Society; 2003.

    Google Scholar 

  140. Reggio PH, Nebane NM, Lynch DL, et al. A CB1 lipid face V6.43A/I6.46A mutation completely separates the binding pockets of SR141716A and WIN55212-2 vs. AEA, CP55940 and HU-210: Implications for ligand entry into CB1, Symposium on the Cannabinoids, Clearwater, FL: International Cannabinoid Research Society; 2005.

    Google Scholar 

  141. Bari M, Battista N, Fezza F, et al. Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. J Biol Chem. 2005;280:12212–20.

    CAS  PubMed  Google Scholar 

  142. Bari M, Paradisi A, Pasquariello N, et al. Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells. J Neurosci Res. 2005;81:275–83.

    CAS  PubMed  Google Scholar 

  143. Bari M, Spagnuolo P, Fezza F, et al. Effect of lipid rafts on CB2 receptor signaling and 2-arachidonoyl-glycerol metabolism in human immune cells. J Immunol. 2006;177:4971–80.

    CAS  PubMed  Google Scholar 

  144. Unger VM, Hargrave PA, Baldwin JM, et al. Arrangement of rhodopsin transmembrane alpha-helicies. Nature. 1997;389:203–6.

    CAS  PubMed  Google Scholar 

  145. Baldwin JM, Schertler GFX, Unger VM. An alpha-carbon template for the transmembrane helicies in the rhodopsin family of G protein-coupled receptors. J Mol Biol. 1997;272:144–64.

    CAS  PubMed  Google Scholar 

  146. Gouldson P, Calandra B, Legoux P, et al. Mutational analysis and molecular modelling of the antagonist SR 144528 binding site on the human cannabinoid CB(2) receptor. Eur J Pharmacol. 2000;401:17–25.

    CAS  PubMed  Google Scholar 

  147. Pertwee RG. The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J. 2005;7:E625–54.

    CAS  PubMed  Google Scholar 

  148. Langmead CJ, Christopoulos A. Allosteric agonists of 7TM receptors: expanding the pharmacological toolbox. Trends Pharmacol Sci. 2006;27:475–81.

    CAS  PubMed  Google Scholar 

  149. Christopoulos A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discov. 2002;1:198–210.

    CAS  PubMed  Google Scholar 

  150. Price MR, Baillie GL, Thomas A, et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol. 2005;68:1484–95.

    CAS  PubMed  Google Scholar 

  151. Horswill JG, Bali U, Shaaban S, et al. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br J Pharmacol. 2007;152:805–14.

    CAS  PubMed  Google Scholar 

  152. Adam L, Salois D, Rihakova L, et al. Positive allosteric modulators of CB1 receptors, 17th Annual Symposium on the Cannabinoids. St-Sauveur; 2007.

    Google Scholar 

  153. Schwartz TW, Holst B. Allosteric enhancers, allosteric agonists and ago-allosteric modulators: where do they bind and how do they act? Trends Pharmacol Sci. 2007;28:366–73.

    CAS  PubMed  Google Scholar 

  154. Barber TS, Hurst DP, Ross RA, et al. Cavity-biased grand canonical Monte Carlo studies of small-molecule binding sites of the cannabinoid CB1 receptor, 51st Annual Meeting of the Biopysical Society Meeting. Baltimore, MD: Biophysical Society; 2007.

    Google Scholar 

  155. Guarnieri F, Mezei M. Simulated annealing of chemical potential: a general procedure for locating bound waters. Application to the study of the differential hydration propensities of the major and minor grooves of DNA. J Am Chem Soc. 1996;118:8493–4.

    CAS  Google Scholar 

  156. Moore WR. Maximizing discovery efficiency with a computationally driven fragment approach. Curr Opin Drug Discov Devel. 2005;8:355–64.

    CAS  PubMed  Google Scholar 

  157. Clark M, Guarnieri F, Shkurko I, et al. Grand canonical Monte Carlo simulation of ligand-protein binding. J Chem Inf Model. 2006;46:231–42.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants: RO1 DA03934 and KO5 DA021358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia H. Reggio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hurst, D.P., Reggio, P.H. (2009). Models of Cannabinoid Inverse Agonism, Neutral Antagonism, and Agonism: Tools for Rational Drug Design. In: Reggio, P.H. (eds) The Cannabinoid Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-503-9_9

Download citation

Publish with us

Policies and ethics