Skip to main content

Therapeutic Applications for Agents that Act at CB1 and CB2 Receptors

  • Chapter
The Cannabinoid Receptors

Part of the book series: The Receptors ((REC))

Abstract

This chapter reviews evidence that supports the established therapeutic uses of cannabinoid receptor ligands: CB1 and/or CB2 receptor agonists as anti-emetics, appetite stimulants, and analgesics for the relief of neuropathic pain, and CB1 receptor antagonists for the treatment of obesity and related metabolic risk factors. It also identifies and discusses some additional potential therapeutic applications of cannabinoid receptor ligands for which the preclinical and clinical evidence is particularly promising. These include the use of cannabinoid receptor agonists for the management of multiple sclerosis and inflammatory pain. In addition, brief mention is made of a range of other possible therapeutic uses for cannabinoid receptor agonists, antagonists, and inverse agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howlett AC, Barth F, Bonner TI, et al. International union of pharmacology. XXVII classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.

    CAS  PubMed  Google Scholar 

  2. Di Marzo V, De Petrocellis L, Bisogno T. The biosynthesis, fate and pharmacological properties of endocannabinoids. In: Pertwee RG, editor. Cannabinoids. Handbook of experimental pharmacology, Vol. 168. Heidelberg: Springer-Verlag; 2005. pp. 147–185.

    Google Scholar 

  3. Pertwee RG. The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J. 2005;7:E625–54 (http://www.aapsj.org/view.asp?art=aapsj070364)

  4. Pertwee RG. Pharmacological actions of cannabinoids. In: Pertwee RG, editor. Cannabinoids. Handbook of experimental pharmacology, Vol. 168. Heidelberg: Springer-Verlag; 2005. pp. 1–51.

    Google Scholar 

  5. Pertwee RG. Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci. 2005;76:1307–24.

    CAS  PubMed  Google Scholar 

  6. Rinaldi-Carmona M, Barth F, Congy C, et al. SR147778 [5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-ethyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide], a new potent and selective antagonist of the CB1 cannabinoid receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther. 2004;310:905–14.

    CAS  PubMed  Google Scholar 

  7. Valenzano KJ, Tafesse L, Lee G, et al. Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology. 2005;48:658–72.

    CAS  PubMed  Google Scholar 

  8. Price MR, Baillie GL, Thomas A, et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol. 2005;68:1484–95.

    CAS  PubMed  Google Scholar 

  9. Pertwee RG. The pharmacology and therapeutic potential of cannabidiol. In: Di Marzo V, editor. Cannabinoids. New York: Kluwer Academic/Plenum Publishers; 2004. pp. 32–83.

    Google Scholar 

  10. Robson P. Human studies of cannabinoids and medicinal cannabis. In: Pertwee RG, editor. Cannabinoids. Handbook of experimental pharmacology, Vol. 168. Heidelberg: Springer-Verlag; 2005. pp. 719–756.

    Google Scholar 

  11. Adriani W, Caprioli A, Granstrem O, Carli M, Laviola G. The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci Biobehav Rev. 2003;27:639–51.

    PubMed  Google Scholar 

  12. Adriani W, Laviola G. Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol. 2004;15:341–52.

    CAS  PubMed  Google Scholar 

  13. Fernández-Ruiz J, González S. Cannabinoid control of motor function at the basal ganglia. In: Pertwee RG, editor. Cannabinoids. Handbook of experimental pharmacology, Vol. 168. Heidelberg: Springer-Verlag; 2005. pp. 479–507.

    Google Scholar 

  14. Raman C, McAllister SD, Rizvi G, Patel SG, Moore DH, Abood ME. Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5:33–9.

    CAS  PubMed  Google Scholar 

  15. Weydt P, Hong S, Witting A, Möller T, Stella N, Kliot M. Cannabinol delays symptom onset in SOD1 (G93A) transgenic mice without affecting survival. Amyotroph Lateral Scler. 2005;6:182–4.

    CAS  Google Scholar 

  16. Izzo AA, Coutts AA. Cannabinoids and the digestive tract. In: Pertwee RG, editor. Cannabinoids. Handbook of experimental pharmacology, Vol. 168. Heidelberg: Springer–Verlag; 2005. pp. 573–598.

    Google Scholar 

  17. Duncan M, Davison JS, Sharkey KA. Review article: endocannabinoids and their receptors in the enteric nervous system. Aliment Pharmacol Ther. 2005;22:667–83.

    CAS  PubMed  Google Scholar 

  18. Hornby PJ, Prouty SM. Involvement of cannabinoid receptors in gut motility and visceral perception. Br J Pharmacol. 2004;141:1335–45.

    CAS  PubMed  Google Scholar 

  19. Guzmán M. Effects on cell viability. In: Pertwee RG, editor. Cannabinoids. Handbook of experimental pharmacology, Vol. 168. Heidelberg: Springer-Verlag; 2005. pp. 627–642.

    Google Scholar 

  20. Tomida I, Pertwee RG, Azuara-Blanco A. Cannabinoids and glaucoma. Br J Ophthalmol. 2004;88:708–13.

    CAS  PubMed  Google Scholar 

  21. Morita K, Kamei J. Antitussive effect of WIN 55212-2, a cannabinoid receptor agonist. Eur J Pharmacol. 2003;474:269–72.

    CAS  PubMed  Google Scholar 

  22. Patel HJ, Birrell MA, Crispino N, et al. Inhibition of guinea-pig and human sensory nerve activity and the cough reflex in guinea-pigs by cannabinoid (CB2) receptor activation. Br J Pharmacol. 2003;140:261–8.

    CAS  PubMed  Google Scholar 

  23. Neff GW, O’Brien CB, Reddy KR, et al. Preliminary observation with dronabinol in patients with intractable pruritus secondary to cholestatic liver disease. Am J Gastroenterol. 2002;97:2117–9.

    PubMed  Google Scholar 

  24. Gingold AR, Bergasa NV. The cannabinoid agonist WIN 55, 212-2 increases nociception threshold in cholestatic rats: implications for the treatment of the pruritus of cholestasis. Life Sci. 2003;73:2741–7.

    CAS  PubMed  Google Scholar 

  25. Le Foll B, Goldberg SR. Cannabinoid CB1 receptor antagonists as promising new medications for drug dependence. J Pharmacol Exp Ther. 2005;312:875–83.

    PubMed  Google Scholar 

  26. Klein TW. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol. 2005;5:400–11.

    CAS  PubMed  Google Scholar 

  27. Walter L, Stella N. Cannabinoids and neuroinflammation. Br J Pharmacol. 2004;141:775–85.

    CAS  PubMed  Google Scholar 

  28. Idris AI, Van’t Hof RJ, Greig IR, et al. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med. 2005;11:774–9.

    CAS  PubMed  Google Scholar 

  29. Ofek O, Karsak M, Leclerc N, et al. Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci USA. 2006;103:696–701.

    CAS  PubMed  Google Scholar 

  30. Martin BR, Lichtman AH. Cannabinoid transmission and pain perception. Neurobiol Dis. 1998;5:447–61.

    CAS  PubMed  Google Scholar 

  31. Pertwee RG. Cannabinoid receptors and pain. Prog Neurobiol. 2001;63:569–611.

    CAS  PubMed  Google Scholar 

  32. Cravatt BF, Lichtman AH. The endogenous cannabinoid system and its role in nociceptive behavior. J Neurobiol. 2004;61:149–160.

    CAS  PubMed  Google Scholar 

  33. Walker JM, Hohmann AG. Cannabinoid mechanisms of pain suppression. In: Pertwee RG, editor. Cannabinoids. Handbook of experimental pharmacology, Vol. 168. Heidelberg: Springer-Verlag; 2005. pp. 509–554.

    Google Scholar 

  34. Fox A, Bevan S. Therapeutic potential of cannabinoid receptor agonists as analgesic agents. Expert Opin Investig Drugs. 2005;14:695–703.

    CAS  PubMed  Google Scholar 

  35. Kelly S, Jhaveri MD, Sagar DR, Kendall DA, Chapman V. Activation of peripheral cannabinoid CB1 receptors inhibits mechanically evoked responses of spinal neurons in noninflamed rats and rats with hindpaw inflammation. Eur J Neurosci. 2003;18:2239–43.

    PubMed  Google Scholar 

  36. Ibrahim MM, Deng H, Zvonok A, et al. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci USA. 2003;100:10529–33.

    CAS  PubMed  Google Scholar 

  37. Edsall SA, Knapp RJ, Vanderah TW, Roeske WR, Consroe P, Yamamura HI. Antisense oligodeoxynucleotide treatment to the brain cannabinoid receptor inhibits antinociception. Neuroreport. 1996;7:593–6.

    CAS  PubMed  Google Scholar 

  38. Richardson JD, Aanonsen L, Hargreaves KM. Hypoactivity of the spinal cannabinoid system results in NMDA-dependent hyperalgesia. J Neurosci. 1998;18:451–7.

    CAS  PubMed  Google Scholar 

  39. Dogrul A, Gardell LR, Ma S, Ossipov MH, Porreca F, Lai J. ‘Knock-down’ of spinal CB1 receptors produces abnormal pain and elevates spinal dynorphin content in mice. Pain. 2002;100:203–9.

    CAS  PubMed  Google Scholar 

  40. Valverde O, Karsak M, Zimmer A. Analysis of the endocannabinoid system by using CB1 cannabinoid receptor knockout mice. In: Pertwee RG, editor. Cannabinoids. Handbook of experimental pharmacology, Vol. 168. Heidelberg: Springer-Verlag; 2005. pp. 117–145.

    Google Scholar 

  41. Malan TP, Ibrahim MM, Deng H, et al. CB2 cannabinoid receptor-mediated peripheral antinociception. Pain. 2001;93:239–45.

    CAS  PubMed  Google Scholar 

  42. Nackley AG, Makriyannis A, Hohmann AG. Selective activation of cannabinoid CB2 receptors suppresses spinal fos protein expression and pain behavior in a rat model of inflammation. Neuroscience. 2003;119:747–57.

    CAS  PubMed  Google Scholar 

  43. Quartilho A, Mata HP, Ibrahim MM, et al. Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors. Anesthesiology. 2003;99:955–60.

    CAS  PubMed  Google Scholar 

  44. Hohmann AG, Farthing JN, Zvonok AM, Makriyannis A. Selective activation of cannabinoid CB2 receptors suppresses hyperalgesia evoked by intradermal capsaicin. J Pharmacol Exp Ther. 2004;308:446–53.

    CAS  PubMed  Google Scholar 

  45. Hanus L, Breuer A, Tchilibon S, et al. HU-308: a specific agonist for CB2, a peripheral cannabinoid receptor. Proc Natl Acad Sci USA. 1999;96:14228–33.

    CAS  PubMed  Google Scholar 

  46. Whiteside GT, Gottshall SL, Boulet JM, et al. A role for cannabinoid receptors, but not endogenous opioids, in the antinociceptive activity of the CB2-selective agonist, GW405833. Eur J Pharmacol. 2005;528:65–72.

    CAS  PubMed  Google Scholar 

  47. Clayton N, Marshall FH, Bountra C, O’Shaughnessy CT. CB1 and CB2 cannabinoid receptors are implicated in inflammatory pain. Pain. 2002;96:253–60.

    CAS  PubMed  Google Scholar 

  48. Elmes SJR, Winyard LA, Medhurst SJ, et al. Activation of CB1 and CB2 receptors attenuates the induction and maintenance of inflammatory pain in the rat. Pain. 2005;118:327–35.

    CAS  PubMed  Google Scholar 

  49. LaBuda CJ, Koblish M, Little PJ. Cannabinoid CB2 receptor agonist activity in the hindpaw incision model of postoperative pain. Eur J Pharmacol. 2005;527:172–4.

    CAS  PubMed  Google Scholar 

  50. Scott DA, Wright CE, Angus JA. Evidence that CB-1 and CB-2 cannabinoid receptors mediate antinociception in neuropathic pain in the rat. Pain. 2004;109:124–31.

    CAS  PubMed  Google Scholar 

  51. Ibrahim MM, Porreca F, Lai J, et al. CB2 Cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci USA. 2005;102:3093–8.

    CAS  PubMed  Google Scholar 

  52. Walczak JS, Pichette V, Leblond F, Desbiens K, Beaulieu P. Behavioral, pharmacological and molecular characterization of the saphenous nerve partial ligation: a new model of neuropathic pain. Neuroscience. 2005;132:1093–102.

    CAS  PubMed  Google Scholar 

  53. Wotherspoon G, Fox A, McIntyre P, Colley S, Bevan S, Winter J. Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience. 2005;135:235–45.

    CAS  PubMed  Google Scholar 

  54. Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O’Donnell D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci. 2003;17:2750–4.

    PubMed  Google Scholar 

  55. Ross RA, Coutts AA, McFarlane SM, et al. Actions of cannabinoid receptor ligands on rat cultured sensory neurones: implications for antinociception. Neuropharmacology. 2001;40:221–32.

    CAS  PubMed  Google Scholar 

  56. Skaper SD, Buriani A, Dal Toso R, et al. The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci USA. 1996;93:3984–9.

    CAS  PubMed  Google Scholar 

  57. Van Sickle MD, Duncan M, Kingsley PJ, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–32.

    PubMed  Google Scholar 

  58. Pertwee RG. Cannabinoids and multiple sclerosis. Pharmacol Ther. 2002;95:165–74.

    CAS  PubMed  Google Scholar 

  59. Pertwee RG. Cannabinoids. In: Bountra C, Munglani R, Schmidt WK, editors. Pain: current understanding, emerging therapies, and novel approaches to drug discovery. New York: Marcel Dekker; 2003. pp. 683–706.

    Google Scholar 

  60. Jain AK, Ryan JR, McMahon FG, Smith G. Evaluation of intramuscular levonantradol and placebo in acute postoperative pain. J Clin Pharmacol. 1981;21:320s–6s.

    CAS  PubMed  Google Scholar 

  61. Noyes R, Brunk SF, Avery DH, Canter A. Analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clin Pharmacol Ther. 1975;18:84–9.

    PubMed  Google Scholar 

  62. Noyes R, Brunk SF, Baram DA, Canter A. Analgesic effect of delta-9-tetrahydrocannabinol. J Clin Pharmacol. 1975;15:139–43.

    PubMed  Google Scholar 

  63. Maurer M, Henn V, Dittrich A, Hofmann A. Delta-9-tetrahydrocannabinol shows antispastic and analgesic effects in a single case double-blind trial. Eur Arch Psychiatry Clin Neurosci. 1990;240:1–4.

    CAS  PubMed  Google Scholar 

  64. Brenneisen R, Egli A, ElSohly MA, Henn V, Spiess Y. The effect of orally and rectally administered delta-9-tetrahydrocannabinol on spasticity: a pilot study with two patients. Int J Clin Pharmacol Ther. 1996;34:446–52.

    CAS  PubMed  Google Scholar 

  65. Martyn CN, Illis LS, Thom J. Nabilone in the treatment of multiple sclerosis. Lancet. 1995;345:579.

    CAS  PubMed  Google Scholar 

  66. Hamann W, di Vadi PP. Analgesic effect of the cannabinoid analogue nabilone is not mediated by opioid receptors. Lancet. 1999;353:560.

    CAS  PubMed  Google Scholar 

  67. Zajicek J, Fox P, Sanders H, et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet. 2003;362:1517–26.

    CAS  PubMed  Google Scholar 

  68. Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. Br Med J. 2004;329:253–7.

    CAS  Google Scholar 

  69. Wade DT, Robson P, House H, Makela P, Aram J. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin Rehabil. 2003;17:21–9.

    PubMed  Google Scholar 

  70. Brady CM, DasGupta R, Dalton C, Wiseman OJ, Berkley KJ, Fowler CJ. An open-label pilot study of cannabis-based extracts for bladder dysfunction in advanced multiple sclerosis. Mult Scler. 2004;10:425–33.

    CAS  PubMed  Google Scholar 

  71. Rog DJ, Nurmikko TJ, Friede T, Young CA. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology. 2005;65:812–9.

    PubMed  Google Scholar 

  72. Notcutt W, Price M, Miller R, et al. Initial experiences with medicinal extracts of cannabis for chronic pain: results from 34 ‘N of 1’ studies. Anaesthesia. 2004;59:440–52.

    PubMed  Google Scholar 

  73. Berman JS, Symonds C, Birch R. Efficacy of two cannabis based medicinal extracts for relief of central neuropathic pain from brachial plexus avulsion: results of a randomised controlled trial. Pain. 2004;112:299–306.

    PubMed  Google Scholar 

  74. Karst M, Salim K, Burstein S, Conrad I, Hoy L, Schneider U. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain. A randomized controlled trial. JAMA. 2003;290:1757–62.

    CAS  PubMed  Google Scholar 

  75. Salim K, Schneider U, Burstein S, Hoy L, Karst M. Pain measurements and side effect profile of the novel cannabinoid ajulemic acid. Neuropharmacology. 2005;48:1164–71.

    CAS  PubMed  Google Scholar 

  76. Blake DR, Robson P, Ho M, Jubb RW, McCabe CS. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology. 2006;45:50–2.

    CAS  PubMed  Google Scholar 

  77. Gauter B, Rukwied R, Konrad C. Cannabinoid agonists in the treatment of blepharospasm – a case report study. Neuro Endocrinol Lett. 2004;25:45–8.

    PubMed  Google Scholar 

  78. Greenwald MK, Stitzer ML. Antinociceptive, subjective and behavioral effects of smoked marijuana in humans. Drug Alcohol Depend. 2000;59:261–75.

    CAS  PubMed  Google Scholar 

  79. Wade DT, Makela P, Robson P, House H, Bateman C. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler. 2004;10:434–41.

    CAS  PubMed  Google Scholar 

  80. Clermont-Gnamien S, Atlani S, Attal N, Le Mercier F, Guirimand F, Brasseur L. The therapeutic use of delta-9-tetrahydrocannabinol (dronabinol) in refractory neuropathic pain. Presse Med. 2002;31:1840–5.

    PubMed  Google Scholar 

  81. Attal N, Brasseur L, Guirimand D, Clermond-Gnamien S, Atlami S, Bouhassira D. Are oral cannabinoids safe and effective in refractory neuropathic pain? Eur J Pain. 2004;8:173–7.

    CAS  PubMed  Google Scholar 

  82. Buggy DJ, Toogood L, Maric S, Sharpe P, Lambert DG, Rowbotham DJ. Lack of analgesic efficacy of oral delta-9-tetrahydrocannabinol in postoperative pain. Pain. 2003;106:169–72.

    CAS  PubMed  Google Scholar 

  83. Mechoulam R. The pharmacohistory of Cannabis sativa. In: Mechoulam R, editor. Cannabinoids as therapeutic agents. Boca Raton: CRC Press; 1986. pp. 1–19.

    Google Scholar 

  84. Consroe P, Musty R, Rein J, Tillery W, Pertwee R. The perceived effects of smoked cannabis on patients with multiple sclerosis. Eur Neurol. 1997;38:44–8.

    CAS  PubMed  Google Scholar 

  85. Howard J, Anie KA, Holdcroft A, Korn S, Davies SC. Cannabis use in sickle cell disease: a questionnaire study. Br J Haematol. 2005;131:123–8.

    PubMed  Google Scholar 

  86. Page SA, Verhoef MJ, Stebbins RA, Metz LM, Levy JC. Cannabis use as described by people with multiple sclerosis. Can J Neurol Sci. 2003;30:201–5.

    CAS  PubMed  Google Scholar 

  87. Clark AJ, Ware MA, Yazer E, Murray TJ, Lynch ME. Patterns of cannabis use among patients with multiple sclerosis. Neurology. 2004;62:2098–100.

    CAS  PubMed  Google Scholar 

  88. Ware MA, Doyle CR, Woods R, Lynch ME, Clark AJ. Cannabis use for chronic non-cancer pain: results of a prospective survey. Pain. 2003;102:211–6.

    PubMed  Google Scholar 

  89. Ware MA, Adams H, Guy GW. The medicinal use of cannabis in the UK: results of a nationwide survey. Int J Clin Pract. 2005;59:291–5.

    CAS  PubMed  Google Scholar 

  90. Lyman WD, Sonett JR, Brosnan CF, Elkin R, Bornstein MB. Delta-9-tetrahydrocannabinol: a novel treatment for experimental autoimmune encephalomyelitis. J Neuroimmunol. 1989;23:73–81.

    CAS  PubMed  Google Scholar 

  91. Ni X, Geller EB, Eppihimer MJ, Eisenstein TK, Adler MW, Tuma RF. Win 55212-2, a cannabinoid receptor agonist, attenuates leukocyte/endothelial interactions in an experimental autoimmune encephalomyelitis model. Mult Scler. 2004;10:158–64.

    CAS  PubMed  Google Scholar 

  92. Wirguin I, Mechoulam R, Breuer A, Schezen E, Weidenfeld J, Brenner T. Suppression of experimental autoimmune encephalomyelitis by cannabinoids. Immunopharmacology. 1994;28:209–14.

    CAS  PubMed  Google Scholar 

  93. Arévalo-Martín A, Vela JM, Molina-Holgado E, Borrell J, Guaza C. Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci. 2003;23:2511–6.

    PubMed  Google Scholar 

  94. Baker D, Pryce G, Croxford JL, et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature. 2000;404:84–7.

    CAS  PubMed  Google Scholar 

  95. Croxford JL, Miller SD. Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R(+)WIN55,212. J Clin Invest. 2003;111:1231–40.

    CAS  PubMed  Google Scholar 

  96. Baker D, Pryce G, Croxford JL, et al. Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J. 2001;15:300–2.

    CAS  PubMed  Google Scholar 

  97. Brooks JW, Pryce G, Bisogno T, et al. Arvanil-induced inhibition of spasticity and persistent pain: evidence for therapeutic sites of action different from the vanilloid VR1 receptor and cannabinoid CB1/CB2 receptors. Eur J Pharmacol. 2002;439:83–92.

    CAS  PubMed  Google Scholar 

  98. Wilkinson JD, Whalley BJ, Baker D, et al. Medicinal cannabis: is delta-9-tetrahydrocannabinol necessary for all its effects? J Pharm Pharmacol. 2003;55:1687–94.

    CAS  PubMed  Google Scholar 

  99. Pryce G, Ahmed Z, Hankey DJR, et al. Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain. 2003;126:2191–202.

    PubMed  Google Scholar 

  100. Jackson SJ, Baker D, Cuzner ML, Diemel LT. Cannabinoid-mediated neuroprotection following interferon-gamma treatment in a three-dimensional mouse brain aggregate cell culture. Eur J Neurosci. 2004;20:2267–75.

    PubMed  Google Scholar 

  101. Jackson SJ, Pryce G, Diemel LT, Cuzner ML, Baker D. Cannabinoid-receptor 1 null mice are susceptible to neurofilament damage and caspase 3 activation. Neuroscience. 2005;134:261–8.

    CAS  PubMed  Google Scholar 

  102. Marsicano G, Goodenough S, Monory K, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003;302:84–8.

    CAS  PubMed  Google Scholar 

  103. Cabral GA, Staab A. Effects on the immune system. In: Pertwee RG, editor. Cannabinoids. Handbook of experimental pharmacology, Vol. 168. Heidelberg: Springer-Verlag; 2005. pp. 385–423.

    Google Scholar 

  104. Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN. Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem. 2005;95:437–45.

    CAS  PubMed  Google Scholar 

  105. Katona S, Kaminski E, Sanders H, Zajicek J. Cannabinoid influence on cytokine profile in multiple sclerosis. Clin Exp Immunol. 2005;140:580–5.

    CAS  PubMed  Google Scholar 

  106. Ungerleider JT, Andyrsiak T, Fairbanks L, Ellison GW, Myers LW. Delta-9-THC in the treatment of spasticity associated with multiple sclerosis. Adv Alcohol Subst Abuse. 1987;7:39–50.

    CAS  PubMed  Google Scholar 

  107. Vaney C, Heinzel-Gutenbrunner M, Jobin P, et al. Efficacy, safety and tolerability of an orally administered cannabis extract in the treatment of spasticity in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled, crossover study. Mult Scler. 2004;10:417–24.

    CAS  PubMed  Google Scholar 

  108. Killestein J, Hoogervorst ELJ, Reif M, et al. Safety, tolerability, and efficacy of orally administered cannabinoids in MS. Neurology. 2002;58:1404–7.

    CAS  PubMed  Google Scholar 

  109. Meinck H-M, Schönle PW, Conrad B. Effect of cannabinoids on spasticity and ataxia in multiple sclerosis. J Neurol. 1989;236:120–2.

    CAS  PubMed  Google Scholar 

  110. Petro DJ, Ellenberger C. Treatment of human spasticity with delta-9-tetrahydrocannabinol. J Clin Pharmacol. 1981;21:413S–16S.

    CAS  PubMed  Google Scholar 

  111. Schon F, Hart PE, Hodgson TL, et al. Suppression of pendular nystagmus by smoking cannabis in a patient with multiple sclerosis. Neurology. 1999;53:2209–10.

    CAS  PubMed  Google Scholar 

  112. Clifford DB. Tetrahydrocannabinol for tremor in multiple sclerosis. Ann Neurol. 1983;13:669–71.

    CAS  PubMed  Google Scholar 

  113. Fox P, Bain PG, Glickman S, Carroll C, Zajicek J. The effect of cannabis on tremor in patients with multiple sclerosis. Neurology. 2004;62:1105–9.

    CAS  PubMed  Google Scholar 

  114. Schnelle M, Grotenhermen F, Reif M, Gorter RW. Results of a standardized survey on the medical use of cannabis products in the German speech area. Forsch Komplementärmed. 1999;6 Suppl 3:28–36.

    PubMed  Google Scholar 

  115. Dunn M, Davis R. The perceived effects of marijuana on spinal cord injured males. Paraplegia. 1974;12:175.

    CAS  PubMed  Google Scholar 

  116. Malec J, Harvey RF, Cayner JJ. Cannabis effect on spasticity in spinal cord injury. Arch Phys Med Rehabil. 1982;63:116–8.

    CAS  PubMed  Google Scholar 

  117. Grinspoon L, Bakalar JB. Marijuana: the forbidden medicine. New Haven: Yale University Press; 1993.

    Google Scholar 

  118. Iversen LL. The science of marijuana. New York: Oxford University Press; 2000.

    Google Scholar 

  119. Parker LA, Limebeer CL, Kwiatkowska M. Cannabinoids: effects on vomiting and nausea in animal models. In: Mechoulam R, editor. Cannabinoids as therapeutics. Basel: Birkhaüser Verlag; 2005. pp. 183–200.

    Google Scholar 

  120. Tramèr MR, Carroll D, Campbell FA, Reynolds DJM, Moore RA, McQuay HJ. Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. Br Med J. 2001;323:16–21.

    Google Scholar 

  121. Abrahamov A, Abrahamov A, Mechoulam R. An efficient new cannabinoid antiemetic in pediatric oncology. Life Sci. 1995;56:2097–102.

    CAS  PubMed  Google Scholar 

  122. Söderpalm AHV, Schuster A, de Wit H. Antiemetic efficacy of smoked marijuana. Subjective and behavioral effects on nausea induced by syrup of ipecac. Pharmacol Biochem Behav. 2001;69:343–50.

    PubMed  Google Scholar 

  123. Van Sickle MD, Oland LD, Mackie K, Davison JS, Sharkey KA. Delta-9-tetrahydrocannabinol selectively acts on CB1 receptors in specific regions of dorsal vagal complex to inhibit emesis in ferrets. Am J Physiol Gastrointest Liver Physiol. 2003;285:G566–76.

    PubMed  Google Scholar 

  124. Darmani NA. Delta-9-tetrahydrocannabinol differentially suppresses cisplatin-induced emesis and indices of motor function via cannabinoid CB1 receptors in the least shrew. Pharmacol Biochem Behav. 2001;69:239–49.

    CAS  PubMed  Google Scholar 

  125. Darmani NA. The cannabinoid CB1 receptor antagonist SR 141716A reverses the antiemetic and motor depressant actions of WIN 55, 212-2. Eur J Pharmacol. 2001;430:49–58.

    CAS  PubMed  Google Scholar 

  126. Darmani NA, Sim-Selley LJ, Martin BR, et al. Antiemetic and motor-depressive actions of CP55,940: cannabinoid CB1 receptor characterization, distribution, and G-protein activation. Eur J Pharmacol. 2003;459:83–95.

    CAS  PubMed  Google Scholar 

  127. Simoneau II, Hamza MS, Mata HP, et al. The cannabinoid agonist WIN55,212-2 suppresses opioid-induced emesis in ferrets. Anesthesiology. 2001;94:882–7.

    CAS  PubMed  Google Scholar 

  128. Van Sickle MD, Oland LD, Ho W, et al. Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology. 2001;121:767–4.

    PubMed  Google Scholar 

  129. Parker LA, Kwiatkowska M, Burton P, Mechoulam R. Effect of cannabinoids on lithium-induced vomiting in the Suncus murinus (house musk shrew). Psychopharmacology. 2004;171:156–61.

    CAS  PubMed  Google Scholar 

  130. Darmani NA, Johnson JC. Central and peripheral mechanisms contribute to the antiemetic actions of delta-9-tetrahydrocannabinol against 5-hydroxytryptophan-induced emesis. Eur J Pharmacol. 2004;488:201–12.

    CAS  PubMed  Google Scholar 

  131. Darmani NA. Delta-9-tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid CB1 receptor antagonist/inverse agonist SR 141716A. Neuropsychopharmacology. 2001;24:198–203.

    CAS  PubMed  Google Scholar 

  132. Limebeer CL, Parker LA. Delta-9-tetrahydrocannabinol interferes with the establishment and the expression of conditioned rejection reactions produced by cyclophosphamide: a rat model of nausea. Neuroreport. 1999;10:3769–72.

    CAS  PubMed  Google Scholar 

  133. Parker LA, Mechoulam R, Schlievert C, Abbott L, Fudge ML, Burton P. Effects of cannabinoids on lithium-induced conditioned rejection reactions in a rat model of nausea. Psychopharmacology. 2003;166:156–62.

    CAS  PubMed  Google Scholar 

  134. Darmani NA. The potent emetogenic effects of the endocannabinoid, 2-AG (2-arachidonoylglycerol) are blocked by delta-9-tetrahydrocannabinol and other cannnabinoids. J Pharmacol Exp Ther. 2002;300:34–42.

    CAS  PubMed  Google Scholar 

  135. Abel EL. Cannabis: effects on hunger and thirst. Behav Biol. 1975;15:255–81.

    CAS  PubMed  Google Scholar 

  136. Kirkham TC. Endocannabinoids in the regulation of appetite and body weight. Behav Pharmacol. 2005;16:297–313.

    CAS  PubMed  Google Scholar 

  137. Anderson-Baker WC, McLaughlin CL, Baile CA. Oral and hypothalamic injections of barbiturates, benzodiazepines and cannabinoids and food intake in rats. Pharmacol Biochem Behav. 1979;11:487–91.

    CAS  PubMed  Google Scholar 

  138. Avraham Y, Ben Menachem A, Okun A, et al. Effects of the endocannabinoid noladin ether on body weight, food consumption, locomotor activity, and cognitive index in mice. Brain Res Bull. 2005;65:117–23.

    Google Scholar 

  139. Avraham Y, Ben-Shushan D, Breuer A, et al. Very low doses of delta-8-THC increase food consumption and alter neurotransmitter levels following weight loss. Pharmacol Biochem Behav. 2004;77:675–84.

    CAS  PubMed  Google Scholar 

  140. Brown JE, Kassouny M, Cross JK. Kinetic studies of food intake and sucrose solution preference by rats treated with low doses of delta-9-tetrahydrocannabinol. Behav Biol. 1977;20:104–10.

    CAS  PubMed  Google Scholar 

  141. Gómez R, Navarro M, Ferrer B, et al. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci. 2002;22:9612–7.

    PubMed  Google Scholar 

  142. Hao S, Avraham Y, Mechoulam R, Berry EM. Low dose anandamide affects food intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. Eur J Pharmacol. 2000;392:147–56.

    CAS  PubMed  Google Scholar 

  143. Jamshidi N, Taylor DA. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol. 2001;134:1151–4.

    CAS  PubMed  Google Scholar 

  144. Kirkham TC, Williams CM, Fezza F, Di Marzo V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol. 2002;136:550–7.

    CAS  PubMed  Google Scholar 

  145. Verty ANA, McGregor IS, Mallet PE. Paraventricular hypothalamic CB1 cannabinoid receptors are involved in the feeding stimulatory effects of delta-9-tetrahydrocannabinol. Neuropharmacology. 2005;49:1101–9.

    CAS  PubMed  Google Scholar 

  146. Wiley JL, Burston JJ, Leggett DC, et al. CB1 cannabinoid receptor-mediated modulation of food intake in mice. Br J Pharmacol. 2005;145:293–300.

    CAS  PubMed  Google Scholar 

  147. Williams CM, Kirkham TC. Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology. 1999;143:315–7.

    CAS  PubMed  Google Scholar 

  148. Williams CM, Kirkham TC. Reversal of delta-9-THC hyperphagia by SR141716 and naloxone but not dexfenfluramine. Pharmacol Biochem Behav. 2002;71:341–8.

    Google Scholar 

  149. Williams CM, Rogers PJ, Kirkham TC. Hyperphagia in pre-fed rats following oral delta-9-THC. Physiol Behav. 1998;65:343–6.

    CAS  PubMed  Google Scholar 

  150. Jarrett MM, Limebeer CL, Parker LA. Effect of delta-9-tetrahydrocannabinol on sucrose palatability as measured by the taste reactivity test. Physiol Behav. 2005;86:475–9.

    CAS  PubMed  Google Scholar 

  151. Gardner EL. Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav. 2005;81:263–84.

    CAS  PubMed  Google Scholar 

  152. Hernandez L, Hoebel BG. Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol Behav. 1988;44:599–606.

    CAS  PubMed  Google Scholar 

  153. Trojniar W, Wise RA. Facilitory effect of delta-9-tetrahydrocannabinol on hypothalamically induced feeding. Psychopharmacology. 1991;103:172–6.

    CAS  PubMed  Google Scholar 

  154. Di Marzo V, Matias I. Endocannabinoid control of food intake and energy balance. Nat Neurosci. 2005;8:585–9.

    PubMed  Google Scholar 

  155. Verty ANA, McFarlane JR, McGregor IS, Mallet PE. Evidence for an interaction between CB1 cannabinoid and oxytocin receptors in food and water intake. Neuropharmacology. 2004;47:593–603.

    CAS  PubMed  Google Scholar 

  156. Regelson W, Butler JR, Schultz J, et al. Delta-9-tetrahydrocannabinol as an effective antidepressant and appetite-stimulating agent in advanced cancer patients. In: Braude MC, Szara S, editors. Pharmacology of marihuana. New York: Raven Press; 1976. pp. 763–776.

    Google Scholar 

  157. Plasse TF, Gorter RW, Krasnow SH, Lane M, Shepard KV, Wadleigh RG. Recent clinical experience with dronabinol. Pharmacol Biochem Behav. 1991;40:695–700.

    CAS  PubMed  Google Scholar 

  158. Struwe M, Kaempfer SH, Geiger CJ, et al. Effect of dronabinol on nutritional-status in HIV infection. Ann Pharmacother. 1993;27:827–31.

    CAS  PubMed  Google Scholar 

  159. Beal JE, Olson R, Laubenstein L, et al. Dronabinol as a treatment for anorexia associated with weight loss in patients with AIDS. J Pain Symptom Manage. 1995;10:89–97.

    CAS  PubMed  Google Scholar 

  160. Haney M, Rabkin J, Gunderson E, Foltin RW. Dronabinol and marijuana in HIV+ marijuana smokers: acute effects on caloric intake and mood. Psychopharmacology. 2005;181:170–8.

    CAS  PubMed  Google Scholar 

  161. Cota D, Marsicano G, Tschöp M, et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest. 2003;112:423–31.

    CAS  PubMed  Google Scholar 

  162. Osei-Hyiaman D, DePetrillo M, Pacher P, et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest. 2005;115:1298–305.

    CAS  PubMed  Google Scholar 

  163. Black SC. Cannabinoid receptor antagonists and obesity. Curr Opin Investig Drugs. 2004;5:389–94.

    CAS  PubMed  Google Scholar 

  164. Arnone M, Maruani J, Chaperon F, et al. Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology. 1997;132:104–6.

    CAS  PubMed  Google Scholar 

  165. Chambers AP, Sharkey KA, Koopmans HS. Cannabinoid (CB)1 receptor antagonist, AM 251, causes a sustained reduction of daily food intake in the rat. Physiol Behav. 2004;82:863–9.

    CAS  PubMed  Google Scholar 

  166. Chambers AP, Koopmans HS, Pittman QJ, Sharkey KA. AM 251 produces sustained reductions in food intake and body weight that are resistant to tolerance and conditioned taste aversion. Br J Pharmacol. 2006;147:109–16.

    CAS  PubMed  Google Scholar 

  167. Chen RZ, Huang RR, Shen CP, MacNeil DJ, Fong TM. Synergistic effects of cannabinoid inverse agonist AM251 and opioid antagonist nalmefene on food intake in mice. Brain Res. 2004;999:227–30.

    CAS  PubMed  Google Scholar 

  168. Colombo G, Agabio R, Diaz G, Lobina C, Reali R, Gessa GL. Appetite suppression and weight loss after the cannabinoid antagonist SR 141716. Life Sci. 1998;63:PL113–7.

    Google Scholar 

  169. Di Marzo V, Goparaju SK, Wang L, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001;410:822–5.

    PubMed  Google Scholar 

  170. McLaughlin PJ, Winston K, Swezey L, et al. The cannabinoid CB1 antagonists SR 141716A and AM 251 suppress food intake and food-reinforced behavior in a variety of tasks in rats. Behav Pharmacol. 2003;14:583–8.

    CAS  PubMed  Google Scholar 

  171. McLaughlin PJ, Winston KM, Limebeer CL, Parker LA, Makriyannis A, Salamone JD. The cannabinoid CB1 antagonist AM 251 produces food avoidance and behaviors associated with nausea but does not impair feeding efficiency in rats. Psychopharmacology. 2005;180:286–93.

    CAS  PubMed  Google Scholar 

  172. Rowland NE, Mukherjee M, Robertson K. Effects of the cannabinoid receptor antagonist SR 141716, alone and in combination with dexfenfluramine or naloxone, on food intake in rats. Psychopharmacology. 2001;159:111–6.

    CAS  PubMed  Google Scholar 

  173. Rutkowska M. The effect of AM 251, a cannabinoid CB1 receptor antagonist, on food intake in rats. Acta Pol Pharm. 2004;61:401–3.

    CAS  PubMed  Google Scholar 

  174. Shearman LP, Rosko KM, Fleischer R, et al. Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav Pharmacol. 2003;14:573–82.

    CAS  PubMed  Google Scholar 

  175. Simiand J, Keane M, Keane PE, Soubrié P. SR 141716, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmoset. Behav Pharmacol. 1998;9:179–81.

    CAS  PubMed  Google Scholar 

  176. Thornton-Jones ZD, Vickers SP, Clifton PG. The cannabinoid CB1 receptor antagonist SR141716A reduces appetitive and consummatory responses for food. Psychopharmacology. 2005;179:452–60.

    CAS  PubMed  Google Scholar 

  177. Verty ANA, McGregor IS, Mallet PE. Consumption of high carbohydrate, high fat, and normal chow is equally suppressed by a cannabinoid receptor antagonist in non-deprived rats. Neurosci Lett. 2004;354:217–20.

    CAS  PubMed  Google Scholar 

  178. Vickers SP, Webster LJ, Wyatt A, Dourish CT, Kennett GA. Preferential effects of the cannabinoid CB1 receptor antagonist, SR 141716, on food intake and body weight gain of obese (fa/fa) compared to lean zucker rats. Psychopharmacology. 2003;167:103–11.

    CAS  PubMed  Google Scholar 

  179. Werner NA, Koch JE. Effects of the cannabinoid antagonists AM281 and AM630 on deprivation-induced intake in lewis rats. Brain Res. 2003;967:290–2.

    CAS  PubMed  Google Scholar 

  180. De Vry J, Schreiber R, Eckel G, Jentzsch KR. Behavioral mechanisms underlying inhibition of food-maintained responding by the cannabinoid receptor antagonist/inverse agonist SR141716A. Eur J Pharmacol. 2004;483:55–63.

    PubMed  Google Scholar 

  181. Ravinet Trillou C, Arnone M, Delgorge C, et al. Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am J Physiol Regul Integr Comp Physiol. 2003;284:R345–53.

    PubMed  Google Scholar 

  182. Ravinet Trillou C, Delgorge C, Menet C, Arnone M, Soubrié P. CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes. 2004;28:640–8.

    CAS  Google Scholar 

  183. Varvel SA, Lichtman AH. Evaluation of CB1 receptor knockout mice in the Morris Water maze. J Pharmacol Exp Ther. 2002;301:915–24.

    CAS  PubMed  Google Scholar 

  184. Poncelet M, Maruani J, Calassi R, Soubrié P. Overeating, alcohol and sucrose consumption decrease in CB1 receptor deleted mice. Neurosci Lett. 2003;343:216–8.

    CAS  PubMed  Google Scholar 

  185. Ledent C, Valverde O, Cossu G, et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science. 1999;283:401–4.

    CAS  PubMed  Google Scholar 

  186. Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA. 1999;96:5780–5.

    CAS  PubMed  Google Scholar 

  187. Bensaid M, Gary-Bobo M, Esclangon A, et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol Pharmacol. 2003;63:908–14.

    CAS  PubMed  Google Scholar 

  188. Liu YL, Connoley IP, Wilson CA, Stock MJ. Effects of the cannabinoid CB1 receptor antagonist SR141716 on oxygen consumption and soleus muscle glucose uptake in Lep ob /Lep ob mice. Int J Obes. 2005;29:183–7.

    CAS  Google Scholar 

  189. Zhou D, Shearman LP. Voluntary exercise augments acute effects of CB1-receptor inverse agonist on body weight loss in obese and lean mice. Pharmacol Biochem Behav. 2004;77:117–25.

    CAS  PubMed  Google Scholar 

  190. Hildebrandt AL, Kelly-Sullivan DM, Black SC. Antiobesity effects of chronic cannabinoid CB1 receptor antagonist treatment in diet-induced obese mice. Eur J Pharmacol. 2003;462:125–32.

    CAS  PubMed  Google Scholar 

  191. Poirier B, Bidouard JP, Cadrouvele C, et al. The anti-obesity effect of rimonabant is associated with an improved serum lipid profile. Diabetes Obes Metab. 2005;7:65–72.

    CAS  PubMed  Google Scholar 

  192. Maccarrone M, Fride E, Bisogno T, et al. Up-regulation of the endocannabinoid system in the uterus of leptin knockout (ob/ob) mice and implications for fertility. Mol Hum Reprod. 2005;11:21–8.

    CAS  PubMed  Google Scholar 

  193. Engeli S, Böhnke J, Feldpausch M, et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes. 2005;54:2838–43.

    CAS  PubMed  Google Scholar 

  194. Harrold JA, Elliott JC, King PJ, Widdowson PS, Williams G. Down-regulation of cannabinoid-1 (CB-1) receptors in specific extrahypothalamic regions of rats with dietary obesity: a role for endogenous cannabinoids in driving appetite for palatable food? Brain Res. 2002;952:232–8.

    CAS  PubMed  Google Scholar 

  195. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rössner S. Effects of the cannabinoid-1 receptor blocker Rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet. 2005;365:1389–97.

    PubMed  Google Scholar 

  196. Després JP, Golay A, Sjöström L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med. 2005;353:2121–34.

    PubMed  Google Scholar 

  197. Barth F, Rinaldi-Carmona M. Cannabinoids in appetite and obesity. In: Mechoulam R, editor. Cannabinoids as therapeutics. Basel: Birkhaüser Verlag; 2005. pp. 219–230.

    Google Scholar 

  198. Monteleone P, Matias I, Martiadis V, De Petrocellis L, Maj M, Di Marzo V. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge-eating disorder, but not in bulimia nervosa. Neuropsychopharmacology. 2005;30:1216–21.

    CAS  PubMed  Google Scholar 

  199. Sipe JC, Waalen J, Gerber A, Beutler E. Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int J Obes. 2005;29:755–79.

    CAS  Google Scholar 

  200. van Oosten BW, Killestein J, Mathus-Vliegen EMH, Polman CH. Multiple sclerosis following treatment with a cannabinoid receptor-1 antagonist. Mult Scler. 2004;10:330–1.

    PubMed  Google Scholar 

  201. Costa B, Trovato AE, Colleoni M, Giagnoni G, Zarini E, Croci T. Effect of the cannabinoid CB1 receptor antagonist, SR141716, on nociceptive response and nerve demyelination in rodents with chronic constriction injury of the sciatic nerve. Pain. 2005;116:52–61.

    CAS  PubMed  Google Scholar 

  202. Cichewicz DL. Synergistic interactions between cannabinoid and opioid analgesics. Life Sci. 2004;74:1317–24.

    CAS  PubMed  Google Scholar 

  203. Kwiatkowska M, Parker LA, Burton P, Mechoulam R. A comparative analysis of the potential of cannabinoids and ondansetron to suppress cisplatin-induced emesis in the Suncus murinus (house musk shrew). Psychopharmacology. 2004;174:254–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger G. Pertwee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pertwee, R.G., Thomas, A. (2009). Therapeutic Applications for Agents that Act at CB1 and CB2 Receptors. In: Reggio, P.H. (eds) The Cannabinoid Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-503-9_13

Download citation

Publish with us

Policies and ethics