Skip to main content

Control of Puberty in Humans

  • Chapter
When Puberty is Precocious

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Puberty is a developmental milestone that involves the disinhibition or reaugmentation of the hypothalamic GnRH pulse generator and gonadotropin secretion. The hypothalamic GnRH pulse generator pituitary system in the human function during fetal life and early infancy is suppressed to a low level of activity during childhood (the juvenile pause) and is derepressed or reactivated during puberty. In this light, puberty does not represent the initiation or first occurrence of pulsatile secretion of GnRH or pituitary gonadotropins but the reactivation or disinhibition of GnRH neurosecretory neurons in the medial basal hypothalamus and the endogenous, apparently self sustaining, oscillatory secretion of GnRH after the period of quiescent activity during childhood. An increase in the pulsatile release of GnRH heralds the onset of puberty in the primate as well as other mammals The CNS, and not the hypothalamic GnRH pulse generator, pituitary gland, gonads, or gonadal steroid target tissues, restrains activation of the hypothalamic pituitary gonadal system during the prepubertal years according to a large body of evidence. This inhibitory effect of the CNS appears to be mediated through the hypothalamus on the neurosecretory neurons that synthesize and secrete GnRH in a pulsatile manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. King JC, Anthony ELP, Fitzgerald DM et al. Luteinizing hormone-releasing hormone neurons in human preoptic/hypothalamus: differential intraneuronal localization of immunoreactive forms. J Clin Endocrinol Metab 1985;60:88–97.

    PubMed  CAS  Google Scholar 

  2. Knobil E. The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res 1980;36:53–88.

    PubMed  CAS  Google Scholar 

  3. Knobil E. The GnRH pulse generator. Am J Obstet Gynecol 1990;163:1721–1727.

    PubMed  CAS  Google Scholar 

  4. Mellon PL, Windle JJ, Goldsmith PC et al. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 1990;5:1–10.

    PubMed  CAS  Google Scholar 

  5. Martinez de la Escalera G, Choi ALH, Weiner RI. Generation and synchronization of gonadotropinreleasing hormone (GnRH) pulses: intrinsic properties of the GT1-1 gonadotropin-releasing hormone (GnRH) neuronal cell line. Proc Natl Acad Sci USA 1992;89:1852–1855.

    PubMed  CAS  Google Scholar 

  6. Adelman JP, Mason AJ, Hayflick JS et al. Isolation of the gene and hypothalamic cDNA for the common precursor of gonadotropin-releasing hormone and prolactin release-inhibiting factor in human and rat. Proc Natl Acad Sci USA 1986;83:179–183.

    PubMed  CAS  Google Scholar 

  7. Terasawa E. Postnatal remodeling of gonadotropin-releasing hormone I neurons: toward understanding the mechanism of the onset of puberty. Endocrinology 2006;147(8):3650–3651.

    PubMed  CAS  Google Scholar 

  8. Wierman ME, Pawlowski JE, Allen MP, Xu M, Linseman DA, Nielsen-Preiss S. Molecular mechanisms of gonadotropin-releasing hormone neuronal migration. Trends Endocrinol Metab 2004;15(3):96–102.

    PubMed  CAS  Google Scholar 

  9. Dode C, Levilliers J, Dupont JM, De Paepe A, Le Du N, Soussi-Yanicostas N et al. Lossof-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 2003;33(4):463–465.

    PubMed  CAS  Google Scholar 

  10. Parhar IS, Ogawa S, Sakuma Y. Laser-captured single digoxigenin-labeled neurons of gonadotropinreleasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish. Endocrinology 2004;145(8):3613–3618.

    PubMed  CAS  Google Scholar 

  11. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 2005;102(5):1761–1766.

    PubMed  CAS  Google Scholar 

  12. Kaplan SL, Grumbach MM, Aubert ML. The ontogenesis of pituitary hormones and hypothalamic factors in the human fetus: maturation of central nervous system regulation of anterior pituitary function. Recent Prog Horm Res 1976;32:161–243.

    PubMed  CAS  Google Scholar 

  13. Gluckman PD, Grumbach MM, Kaplan SL. The neuroendocrine regulation and function of growth hormone and prolactin in the mammalian fetus. Endocr Rev 1981;2:363–395.

    PubMed  CAS  Google Scholar 

  14. Thliveris JA, Currie RW. Observations on the hypothalamo-hypophyseal portal vasculature in the developing human fetus. Am J Anat 1980;157:441–444.

    PubMed  CAS  Google Scholar 

  15. Grumbach MM, Kaplan SL. The neuroendocrinology of human puberty: an ontogenetic perspective. In: Grumbach MM, Sizonenko PC, Aubert ML, editors. Control of the Onset of Puberty. Baltimore, MD: Williams & Wilkins, 1990:1–68.

    Google Scholar 

  16. Grumbach MM, Gluckman PD. The human fetal hypothalamus and pituitary gland; the maturation of neuroendocrine mechanisms controlling the secretion of fetal pituitary growth hormone, prolactin, gonadotropin, and adrenocorticotropin-related peptides and thyrotropin. In: Tulchinsky D, Little AB, editors. Maternal-Fetal Endocrinology. Philadelphia, PA: W.B. Saunders, 1994: 193–261.

    Google Scholar 

  17. Wetsel W, ValenHa MM, Merchenthaler I. Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons. Proc Natl Acad Sci USA 1992; 89:4149–4153.

    PubMed  CAS  Google Scholar 

  18. Kusano K, Frushko S, Gainer H, Wray S. Electrical and synaptic properties of embryonic luteinizing hormone-releasing hormone neurons in explant cultures. Proc Natl Acad Sci USA 1995; 92:3918–3922.

    PubMed  CAS  Google Scholar 

  19. Grumbach MM. The neuroendocrinology of human puberty revisited. Horm Res. 2002;57 Suppl 2:274.

    PubMed  CAS  Google Scholar 

  20. Marshall PE, Goldsmith PC. Neuroregulatory and neuroendocrine GnRH pathways in the hypothalamus and forebrain of the baboon. Brain Res 1980;193:353–372.

    PubMed  CAS  Google Scholar 

  21. Witkin JW, Silverman AJ. Synaptology of LHRH neurons in rat preoptic area. Peptides 1985; 6:263–271.

    PubMed  CAS  Google Scholar 

  22. Hu L, Olson AJ, Weiner RI, Goldsmith PC. Connexin 26 expression and extensive gap junctional coupling in cultures of GT1-7 cells secreting gonadotropin-releasing hormone. Neuroendocrinology 1999;70(4):221–227.

    PubMed  Google Scholar 

  23. Wetsel WC. Immortalized hypothalamic luteinizing hormone-releasing hormone (LHRH) neurons: a new tool for dissecting the molecular and cellular basis of LHRH physiology. Cell Mol Neurobiol 1995;15:43–78.

    PubMed  CAS  Google Scholar 

  24. Martinez de la Escalera G, Choi ALH, Weiner RI. Signaling pathways involved in GnRH secretion in GT1 cells. Neuroendocrinology 1995;61:310–317.

    PubMed  CAS  Google Scholar 

  25. Krsmanovic LZ, Stojilkovic SS, Catt KJ. Pulsatile gonadotropin-releasing hormone release and its regulation. Trends Endocrinol Metab 1996;7:56–59.

    PubMed  CAS  Google Scholar 

  26. Abe H, Terasawa E. Firing pattern and rapid modulation of activity by estrogen in primate luteinizing hormone releasing hormone-1 neurons. Endocrinology 2005;146(10):4312–4320.

    PubMed  CAS  Google Scholar 

  27. Mahachoklertwattana P, Black SM, Kaplan SL et al. Nitric oxide synthesized by gonadotropinreleasing hormone neurons is a mediator of N-methyl-D-aspartate (NMDA)-induced GnRH secretion. Endocrinology 1994;135:1709–1712.

    PubMed  CAS  Google Scholar 

  28. Morreto M, Lopez FJ, Negro-Villar A. Nitric oxide regulates luteinizing hormone-releasing hormone secretion. Endocrinology 1993;133:2399–2402.

    Google Scholar 

  29. Reichlin S. Neuroendocrinology. In: Wilson JD, Foster DW, editors. Williams Textbook of Endocrinology. Philadelphia, PA: W.B. Saunders, 1992:135–219.

    Google Scholar 

  30. Gorski RA. Extrahypothalamic influences on gonadotropin secretion. In: Grumbach MM, Grave GD, Mayer FE, editors. Control of the Onset of Puberty. New York: John Wiley & Sons, 1974:182.

    Google Scholar 

  31. Gorski RA. Maturation of neural mechanisms and the pubertal process. In: Grumbach MM, Sizonenko PC, Aubert ML, editors. Control of the Onset of Puberty. Baltimore, MD: Williams & Wilkins, 1990:259–281.

    Google Scholar 

  32. Gallo RV. Neuroendocrine regulation of pulsatile luteinizing hormone in the rat. Neuroendocrinology 1980;20:122–131.

    Google Scholar 

  33. Ojeda SR, Andrews WW, Advis JP. Recent advances in the endocrinology of puberty. Endocr Rev 1980;1:228–257.

    PubMed  CAS  Google Scholar 

  34. Thind KK, Goldsmith PC. Infundibular gonadotropin-releasing hormone neurons are inhibited by direct opioid and autoregulatory synapses in juvenile monkeys. Neuroendocrinology 1988; 47:203–216.

    PubMed  CAS  Google Scholar 

  35. Goldsmith PC, Thind KK, Perera AD, Plant TM. Glutamate-immunoreactive neurons and their gonadotropin-releasing hormone-neuronal interactions in the monkey hypothalamus. Endocrinology 1994;134(2):858–868.

    PubMed  CAS  Google Scholar 

  36. De Jong FH. Inhibin. Physiol Rev 1988;68:555–607.

    PubMed  Google Scholar 

  37. Ying S-Y. Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of folliclestimulating hormone. Endocr Rev 1988;9:267–293.

    PubMed  CAS  Google Scholar 

  38. Cottrell EC, Campbell RE, Han SK, Herbison AE. Postnatal remodeling of dendritic structure and spine density in gonadotropin-releasing hormone neurons. Endocrinology 2006;147(8):3652–3661.

    PubMed  CAS  Google Scholar 

  39. Clarkson J, Herbison AE. Development of GABA and glutamate signaling at the GnRH neuron in relation to puberty. Mol Cell Endocrinol 2006;254–255:32–38.

    PubMed  Google Scholar 

  40. Muir AI, Chamberlain L, Elshourbagy NA et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 2001;276(31):28969–28975.

    PubMed  CAS  Google Scholar 

  41. Ohtaki T, Shintani Y, Honda S et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001;411(6837):613–617.

    PubMed  CAS  Google Scholar 

  42. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003;100(19):10972–10976.

    PubMed  Google Scholar 

  43. Seminara SB, Messager S, Chatzidaki EE et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003;349(17):1614–1627.

    PubMed  CAS  Google Scholar 

  44. Semple RK, Achermann JC, Ellery J et al. Two novel missense mutations in g protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism 3962. J Clin Endocrinol Metab 2005;90(3):1849–1855.

    PubMed  CAS  Google Scholar 

  45. Kaiser UB, Kuohung W. KiSS-1 and GPR54 as new players in gonadotropin regulation and puberty. Endocrine 2005;26(3):277–284.

    PubMed  CAS  Google Scholar 

  46. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA 2005;102(6):2129–2134.

    PubMed  CAS  Google Scholar 

  47. Gottsch ML, Cunningham MJ, Smith JT et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 2004;145(9):4073–4077.

    PubMed  CAS  Google Scholar 

  48. Han SK, Gottsch ML, Lee KJ et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 2005;25(49):11349–11356.

    PubMed  CAS  Google Scholar 

  49. Patterson M, Murphy KG, Thompson EL, Patel S, Ghatei MA, Bloom SR. Administration of kisspeptin-54 into discrete regions of the hypothalamus potently increases plasma luteinizing hormone and testosterone in male adult rats. J Neuroendocrinol 2006;18(5):349–354.

    PubMed  CAS  Google Scholar 

  50. Navarro VM, Castellano JM, Fernandez-Fernandez R et al. Effects of KiSS-1 peptide, the natural ligand of GPR54, on follicle-stimulating hormone secretion in the rat. Endocrinology 2005;146(4):1689–1697.

    PubMed  CAS  Google Scholar 

  51. Navarro VM, Castellano JM, Fernandez-Fernandez R et al. Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 2004;145(10):4565–4574.

    PubMed  CAS  Google Scholar 

  52. Navarro VM, Fernandez-Fernandez R, Castellano JM et al. Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. J Physiol 2004;561(Pt 2):379–386.

    PubMed  CAS  Google Scholar 

  53. Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 2004;320(2):383–388.

    PubMed  CAS  Google Scholar 

  54. Seminara SB, Dipietro MJ, Ramaswamy S, Crowley WF Jr, Plant TM. Continuous human metastin 45–54 infusion desensitizes G protein-coupled receptor 54-induced gonadotropin-releasing hormone release monitored indirectly in the juvenile male Rhesus monkey (Macaca mulatta): a finding with therapeutic implications. Endocrinology 2006;147(5):2122–2126.

    PubMed  CAS  Google Scholar 

  55. Colledge WH. GPR54 and puberty. Trends Endocrinol Metab 2004;15(9):448–453.

    PubMed  CAS  Google Scholar 

  56. Navarro VM, Castellano JM, Fernandez-Fernandez R et al. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 2005;146(1):156–163.

    PubMed  CAS  Google Scholar 

  57. Pompolo S, Pereira A, Estrada KM, Clarke IJ. Colocalization of kisspeptin and gonadotropinreleasing hormone in the ovine brain. Endocrinology 2006;147(2):804–810.

    PubMed  CAS  Google Scholar 

  58. Styne DM, Grumbach MM. Puberty in boys and girls. In: Pfaff DW, editor. The Brain, Hormones and Behaviors. New York: Academic Press, 2002.

    Google Scholar 

  59. Ropelato MG, Escobar ME, Gottlieb S, Bergada C. Gonadotropin secretion in prepubertal normal and agonadal children evaluated by ultrasensitive time-resolved immunofluorometric assays. Horm Res 1997;48(4):164–172.

    PubMed  CAS  Google Scholar 

  60. Wu FC, Butler GE, Kelnar CJ, Huhtaniemi I, Veldhuis JD. Ontogeny of pulsatile gonadotropin releasing hormone secretion from midchildhood, through puberty, to adulthood in the human male: a study using deconvolution analysis and an ultrasensitive immunofluorometric assay. J Clin Endocrinol Metab 1996;81(5):1798–1805.

    PubMed  CAS  Google Scholar 

  61. Brown DC, Stirling HF, Butler GE, Kelnar CJ, Wu FC. Differentiation of normal male prepuberty and hypogonadotrophic hypogonadism using an ultrasensitive luteinizing hormone assay. Horm Res 1996;46(2):83–87.

    PubMed  CAS  Google Scholar 

  62. Manasco PK, Umbach DM, Muly SM et al. Ontogeny of gonadotropin, testosterone, and inhibin secretion in normal boys through puberty based on overnight serial sampling. J Clin Endocrinol Metab 1995;80(7):2046–2052.

    PubMed  CAS  Google Scholar 

  63. Apter D. Ultrasensitive new immunoassays for gonadotropins in the evaluation of puberty. Curr Opin Pediatr 1993;5(4):481–487.

    PubMed  CAS  Google Scholar 

  64. Wildt L, Hausler A, Marshall G et al. Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 1981;109:376–385.

    PubMed  CAS  Google Scholar 

  65. Gross KM, Matsumoto AM, Brenner WJ. Differential control of luteinizing hormone and folliclestimulating hormone secretion by luteinizing hormone-releasing hormone pulse frequency in man. J Clin Endocrinol Metab 1987;64:675–680.

    PubMed  CAS  Google Scholar 

  66. Germak JA, Knobil E. Control of puberty in the rhesus monkey. In: Grumbach MM, Sizonenko PC, Aubert ML, editors. Control of the Onset of Puberty. Baltimore, MD: Williams & Wilkins, 1990:69–81.

    Google Scholar 

  67. Pohl GR, Knobil E. The role of the central nervous system in the control of ovarian function in higher primates. Annu Rev Physiol 1982;44:583–593.

    PubMed  CAS  Google Scholar 

  68. Finkelstein JS, Budger TM, O’Dea LS, Spratt DI, Crowley WF. Effects of decreasing the frequency of gonadotropin-releasing hormone stimulation on gonadotropin secretion in gonadotropin-releasing hormone-deficient men and perifused rat pituitary cells. J Clin Invest 1988;81:1725–1733.

    PubMed  CAS  Google Scholar 

  69. Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E. Hypophyseal responses to continuous and intermittent delivery of hypothalamic gonadotropin-releasing hormone. Science 1978;202:631–633.

    PubMed  CAS  Google Scholar 

  70. Huckle W, Conn PM. Molecular mechanisms of gonadotropin releasing hormone action. II. The effector system. Endocr Rev 1988;9:387–395.

    CAS  Google Scholar 

  71. Hazum E, Conn PM. Molecular mechanism of gonadotropin releasing hormone (GnRH) action. I. The GnRH receptor. Endocr Rev 1988;9:379–386.

    CAS  Google Scholar 

  72. Nett TM, Crowder ME, Moss GE et al. GnRH-receptor interaction. V. Down-regulation of pituitary receptors for GnRH in ovariectomized ewes by infusion of homologous hormone. Biol Reprod 1981;24:1145–1155.

    PubMed  CAS  Google Scholar 

  73. Delemarre-van de Waal HA. Application of gonadotropin releasing hormone in hypogonadotropic hypogonadism–diagnostic and therapeutic aspects 4000. Eur J Endocrinol 2004;151(Suppl 3):U89–U94.

    PubMed  CAS  Google Scholar 

  74. Huhtaniemi I, Pelliniemi J. Fetal Leydig cells:cellular origin, morphology, life span and special functional feature. Proc Soc Exp Biol Med 1992;201:125–140.

    PubMed  CAS  Google Scholar 

  75. Huhtaniemi I. Ontogeny of luteinizing hormone action in the male. In: Payne AH, Jardy MP, Russel LD, editors. The Leydig Cell. Vienna, IL: Cache River Press, 1996:366–382.

    Google Scholar 

  76. Saez JM. Leydig cells: endocrine, paracrine and autocrine regulation. Endocr Rev 1994;15:574–626.

    PubMed  CAS  Google Scholar 

  77. Habert R, Lejeune H, Saez JM. Origin, differentiation and regulation of fetal and adult Leydig cells. Mol Cell Endocrinol 2001;179(1–2):47–74.

    PubMed  CAS  Google Scholar 

  78. Grumbach MM, Kaplan SL. Fetal pituitary hormones and the maturation of central nervous system regulation of anterior pituitary function. In: Gluck L, editor. Modern Perinatal Medicine. Chicago, IL: Year Book Medical, 1974:247–271.

    Google Scholar 

  79. Kaplan SL, Grumbach MM. Pituitary and placental gonadotropins and sex steroids in the human and sub-human primate fetus. Clin Endocrinol Metab 1978;7:487–511.

    PubMed  CAS  Google Scholar 

  80. Clark SJ, Ellis N, Styne DM et al. Hormone ontogeny in the ovine fetus. XVII. Demonstration of pulsatile luteinizing hormone secretion by the fetal pituitary gland. Endocrinology 1984; 115:1774–1779.

    PubMed  CAS  Google Scholar 

  81. Clark SJ, Hauffa BP, Rodens KP et al. Hormone ontogeny in the ovine fetus. XIX. The effect of a potent luteinizing hormone-releasing factor agonist on gonadotropin and testosterone release in the fetus and neonate. Pediatr Res 1989;25:347–352.

    PubMed  CAS  Google Scholar 

  82. Groom GV, Boyns AR. Effect of hypothalamic releasing factor and steroids on release of gonadotrophins by organ culture of human fetal pituitary glands. J Endocrinol 1973;59: 511–522.

    PubMed  CAS  Google Scholar 

  83. Jaffe AB, Mulcahey JJ, DiBabio AM et al. Peptide regulation of pituitary and target tissue function and growth in the primate fetus. Recent Prog Horm Res 1988;44:431–544.

    PubMed  CAS  Google Scholar 

  84. Takagi ST, Yoshida T, Tsubata K et al. Sex differences in fetal gonadotropins and androgens. J Steroid Biochem 1977;8:609–620.

    PubMed  CAS  Google Scholar 

  85. Gluckman PD, Marti Henneberg C, Kaplan SL et al. Hormone ontogeny in the ovine fetus. XIV. The effect of 17{beta}-estradiol infusion on fetal plasma gonadotropins and prolactin and the maturation of sex steroid-dependent negative feedback. Endocrinology 1983;112:1618–1623.

    PubMed  CAS  Google Scholar 

  86. Grumbach MM. A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant 3858. J Clin Endocrinol Metab 2005;90(5):3122–3127.

    PubMed  CAS  Google Scholar 

  87. Davies JL, Naftolin F, Ryan KJ, Siu J. A specific high affinity limited capacity estrogen binding component in the cytosol of human fetal pituitary and brain tissues. J Clin Endocrinol Metab 1975;40:909.

    PubMed  CAS  Google Scholar 

  88. Corbier P, Dehenin L, Castanier M et al. Sex differences in serum luteinizing hormone and testosterone in the human neonate during the first few hours after birth. J Clin Endocrinol Metab 1990;71:1347–1348.

    Google Scholar 

  89. Lustig RH, Conte FA, Kogan BA et al. Ontogeny of gonadotropin secretion in congenital anorchism: sexual dimorphism versus syndrome of gonadal dysgenesis and diagnostic considerations. J Urol 1987;138:587–591.

    PubMed  CAS  Google Scholar 

  90. Plant TM. The effects of neonatal orchidectomy on the developmental pattern of gonadotropin secretion in the male rhesus monkey (Macaca mulatta). Endocrinology 1980;106:1451–1454.

    PubMed  CAS  Google Scholar 

  91. Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 2001;22(1):111–151.

    PubMed  CAS  Google Scholar 

  92. Muller J, Skakkebaek NE. Fluctuations in the number of germ cells during the late foetal and early postnatal periods in boys. Acta Endocrinol (Copenh) 1984;105(2):271–274.

    CAS  Google Scholar 

  93. Winter JSD, Faiman C, Hobson WC et al. Pituitary-gonadal regulations in infancy. I. Patterns of serum gonadotropin concentrations from birth to four years of age in man and chimpanzee. J Clin Endocrinol Metab 1975;40:545–551.

    PubMed  CAS  Google Scholar 

  94. Forest MG. Pituitary gonadotropin and sex steroid secretion during the first two years of life. In: Grumbach MM, Sizonenko PC, Aubert AU, editors. Control of the Onset of Puberty. Baltimore, MD: Williams & Wilkins, 1990:451–478.

    Google Scholar 

  95. Grumbach MM. The central nervous system and the onset of puberty. In: Falkner F, Tanner JM, editors. Human Growth. New York: Plenum, 1978:215–238.

    Google Scholar 

  96. Giedd JN, Blumenthal J, Jeffries NO et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 1999;2(10):861–863.

    PubMed  CAS  Google Scholar 

  97. Gogtay N, Giedd JN, Lusk L et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 2004;101(21):8174–8179.

    PubMed  CAS  Google Scholar 

  98. Thompson PM, Sowell ER, Gogtay N et al. Structural MRI and brain development. Int Rev Neurobiol 2005;67:285–323.

    PubMed  Google Scholar 

  99. Schulz KM, Sisk CL. Pubertal hormones, the adolescent brain, and the maturation of social behaviors: lessons from the Syrian hamster. Mol Cell Endocrinol 2006;254–255:120–126.

    PubMed  Google Scholar 

  100. Giedd JN, Clasen LS, Lenroot R et al. Puberty-related influences on brain development. Mol Cell Endocrinol 2006;254–255:154–162.

    PubMed  Google Scholar 

  101. Guo Y, Shen H, Xiao P et al. Genomewide linkage scan for quantitative trait loci underlying variation in age at menarche. J Clin Endocrinol Metab 2006;91(3):1009–1014.

    PubMed  CAS  Google Scholar 

  102. Sedlmeyer IL, Pearce CL, Trueman JA et al. Determination of sequence variation and haplotype structure for the gonadotropin-releasing hormone (GnRH) and GnRH receptor genes: investigation of role in pubertal timing. J Clin Endocrinol Metab 2005;90(2):1091–1099.

    PubMed  CAS  Google Scholar 

  103. Sedlmeyer IL, Hirschhorn JN, Palmert MR. Pedigree analysis of constitutional delay of growth and maturation: determination of familial aggregation and inheritance patterns 5083. J Clin Endocrinol Metab 2002;87(12):5581–5586.

    PubMed  CAS  Google Scholar 

  104. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994;265(5181):2037–2048.

    PubMed  CAS  Google Scholar 

  105. Frankel WN, Schork N. Who’s afraid of epistasis? Nat Genet 1996;14:371–373.

    PubMed  CAS  Google Scholar 

  106. Loesch DZ, Huggins R, Rogucka E, Hoang NH, Hopper JL. Genetic correlates of menarcheal age: a multivariate twin study. Ann Hum Biol 1995;22(6):470–490.

    PubMed  CAS  Google Scholar 

  107. Paterson AH. Molecular dissection of quantitative traits: progress and prospects. Genome Res 1995;5:321–333.

    PubMed  CAS  Google Scholar 

  108. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273:1516–1517.

    PubMed  CAS  Google Scholar 

  109. Mackay TF. The genetic architecture of quantitative traits. Annu Rev Genet 2001;35:303–339.

    PubMed  CAS  Google Scholar 

  110. Brookes AJ. Rethinking genetic strategies to study complex diseases. Trends Mol Med 2001;7(11):512–516.

    PubMed  CAS  Google Scholar 

  111. Hartz AJ, Barboriak PN, Wong A. The association of obesity with infertility and related menstrual abnormalities in women. Int J Obes 1979;3:57–73.

    PubMed  CAS  Google Scholar 

  112. Boyar RM, Katz J, Finkelstein JW et al. Anorexia nervosa. Immaturity of the 24-hour luteinizing hormone secretory pattern. N Engl J Med 1974;291:861–865.

    PubMed  CAS  Google Scholar 

  113. Frisch RE. Pubertal adipose tissue: is it necessary for normal sexual maturation? Evidence from the rat and human female. Fed Proc 1980;39:2395–2400.

    PubMed  CAS  Google Scholar 

  114. de Souza MJ, Metzger DA. Reproductive dysfunction in amenorrheic athletes and anorexic patients: a review. Med Sci Sports Exerc 1991;23:995–1007.

    PubMed  Google Scholar 

  115. Gluckman PD, Hanson MA, Spencer Predictive adaptive responses and human evolution. Trends Ecol Evol. 2005 Oct;20(10):527–33.

    PubMed  Google Scholar 

  116. de Ridder CM, Thijssen JH, Bruning PF, Van den Brande JL, Zonderland ML, Erich WB. Body fat mass, body fat distribution, and pubertal development: a longitudinal study of physical and hormonal sexual maturation of girls. J Clin Endocrinol Metab 1992;75:442–446.

    PubMed  Google Scholar 

  117. Legro RS, Lin HM, Demers LM, Lloyd T. Rapid maturation of the reproductive axis during perimenarche independent of body composition. J Clin Endocrinol Metab 2000;85(3):1021–1025.

    PubMed  CAS  Google Scholar 

  118. Frisch RE, Revelle R. Height and weight at menarche and a hypothesis of critical body weights and adolescent events. Science 1970;169:397–399.

    PubMed  CAS  Google Scholar 

  119. Garn SM, LaVelle M. Reproductive histories of low weight girls and women. Am J Clin Nutr 1983;37(5):862–866.

    PubMed  CAS  Google Scholar 

  120. Garn SM, LaVelle M, Pilkington JJ. Comparison of fatness in premenarchial and postmenarchial girls of the same age. J Pediatr 1983;103:328–331.

    PubMed  CAS  Google Scholar 

  121. Forbes GB. Body size and composition of perimenarchial girls. Am J Dis Child 1992;146:63–66.

    PubMed  CAS  Google Scholar 

  122. Bronson FH, Manning JM. Minireview: the energetic regulation of ovulation; a realistic role of body fat. Biol Reprod 1991;44:945–950.

    PubMed  CAS  Google Scholar 

  123. Wellens R, Malina RM., Roche AF et al. Body size and fatness in young adults in relation to age of menarche. Am J Hum Biol 1992;4:783–787.

    Google Scholar 

  124. Johnston FE, Roche AF, SchellLMet al. Critical weight at menarche.AmJ Dis Child 1975;129:19–23.

    PubMed  CAS  Google Scholar 

  125. Cameron N. Weight and skinfold variation at menarche and the critical body weight hypothesis. Ann Hum Biol 1976;3:279–282.

    PubMed  CAS  Google Scholar 

  126. Billewicz WS, Fellowes HM, Hytten CA. Comments on the critical metabolic mass and the enage of menarche. Ann Hum Biol 1976;3:51–59.

    PubMed  CAS  Google Scholar 

  127. Vizmanos B, Marti-Henneberg C. Puberty begins with a characteristic subcutaneous body fat mass in each sex. Eur J Clin Nutr 2000;54(3):203–208.

    PubMed  CAS  Google Scholar 

  128. Kennedy GC, Mitra J. Body weight and food intake as initiating factors for puberty in the rat. J Physiol 1963;166:408–418.

    PubMed  CAS  Google Scholar 

  129. Bronson FH, Rissman EF. The biology of puberty. Biol Rev 1986;61:157–195.

    PubMed  CAS  Google Scholar 

  130. Frisch RE. Body fat, puberty and fertility. Biol Rev Camb Philos Soc 1984;59:161–188.

    PubMed  CAS  Google Scholar 

  131. Ahima RS, Saper CB, Flier JS, Elmquist JK. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 2000;21(3):263–307.

    PubMed  CAS  Google Scholar 

  132. Zhang Y, Proenca R, Maffel M et al. Positional cloning of the mouse obese gene and its human analogue. Nature 1994;372:425–432.

    PubMed  CAS  Google Scholar 

  133. Campfield LA, Smith FJ, Guisez Y et al. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 1995;269:546–549.

    PubMed  CAS  Google Scholar 

  134. Halaas JL, Gajiwala KS, Maffei M et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543–549.

    PubMed  CAS  Google Scholar 

  135. Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture. Cell 1996; 87:377–389.

    PubMed  CAS  Google Scholar 

  136. Pelleymounter MA, Cullen MJ, Baker MB et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995;269:540–543.

    PubMed  CAS  Google Scholar 

  137. Caro JF, Sinha MK, Kolacznski JW et al. Leptin: the tale of an obesity gene. Diabetes 1996; 45:1455–1462.

    PubMed  CAS  Google Scholar 

  138. Tartaglia LA, Dembski M, Weng X et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995;83:1263–1271.

    PubMed  CAS  Google Scholar 

  139. Sinha MK, Opentanova I, Ohannesian JP et al. Evidence of free and bound leptin in human circulation. Studies in lean and obese subjects and during short-term fasting. J Clin Invest 1996;98(6):1277–1282.

    CAS  Google Scholar 

  140. Licinio J, Mantzoros C, Negrno AB et al. Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat Med 1997;3:575–579.

    PubMed  CAS  Google Scholar 

  141. Wauters M, Considine RV, Van Gaal LF. Human leptin: from an adipocyte hormone to an endocrine mediator. Eur J Endocrinol 2000;143(3):293–311.

    PubMed  CAS  Google Scholar 

  142. Klein KO, Larmore KA, de Lancey E, Brown JM, Considine RV, Hassink SG. Effect of obesity on estradiol level, and its relationship to leptin, bone maturation, and bone mineral density in children. J Clin Endocrinol Metab 1998;83(10):3469–3475.

    PubMed  CAS  Google Scholar 

  143. Cheung CC, Thornton JE, Nurani SD, Clifton DK, Steiner RA. A reassessment of leptin’s role in triggering the onset of puberty in the rat and mouse. Neuroendocrinology 2001;74(1):12–21.

    PubMed  CAS  Google Scholar 

  144. Plant TM, Durrant AR. Circulating leptin does not appear to provide a signal for triggering the initiation of puberty in the male Rhesus monkey (Macaca Mulatta). Endocrinology. 1997 Oct;138(10):4505–4508.

    PubMed  CAS  Google Scholar 

  145. Urbanski HF, Pau KY. A biphasic developmental pattern of circulating leptin in the male rhesus macaque Macaca mulatta. Endocrinology 1998;139(5):2284–2286.

    PubMed  CAS  Google Scholar 

  146. Finn PD, Cunningham MJ, Pau KY, Spies HG, Clifton DK, Steiner RA. The stimulatory effect of leptin on the neuroendocrine reproductive axis of the monkey. Endocrinology 1998; 139(11):4652–4662.

    PubMed  CAS  Google Scholar 

  147. Mantzoros CS, Flier JS, Rogol AD. A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty. J Clin Endocrinol Metab 1997;82:1066–1070.

    PubMed  CAS  Google Scholar 

  148. Clayton PE, Gill MS, Hall CM, Tillmann V, Whatmore AJ, Price DA. Serum leptin through childhood and adolescence. Clin Endocrinol 1997;46(6):727–733.

    CAS  Google Scholar 

  149. Blum WF, Englaro P, Hanitsch S et al. Plasma leptin levels in healthy children and adolescents: dependence on body mass index, body fat mass, gender, pubertal stage, and testosterone. J Clin Endocrinol Metab 1997;82(9):2904–2910.

    PubMed  CAS  Google Scholar 

  150. Ahmed ML, Ong KK, Morrell DJ et al. Longitudinal study of leptin concentrations during puberty: sex differences and relationship to changes in body composition. J Clin Endocrinol Metab 1999;84(3):899–905.

    PubMed  CAS  Google Scholar 

  151. Horlick MB, Rosenbaum M, Nicolson M et al. Effect of puberty on the relationship between circulating leptin and body composition. J Clin Endocrinol Metabol 2000;85(7):2509–2518.

    CAS  Google Scholar 

  152. Palmert MR, Radovick S, Boepple PA. The impact of reversible gonadal sex steroid suppression on serum leptin concentrations in children with central precocious puberty [see comments]. J Clin Endocrinol Metabol 1998;83(4):1091–1096.

    CAS  Google Scholar 

  153. Andreelli F, Hanaire-Broutin H, Laville M, Tauber JP, Riou JP, Thivolet C. Normal reproductive function in leptin-deficient patients with lipoatropic diabetes. J Clin Endocrinol Metabol 2000;85(2):715–719.

    CAS  Google Scholar 

  154. Quinton ND, Smith RF, Clayton PE et al. Leptin binding activity changes with age: the link between leptin and puberty. J Clin Endocrinol Metabol 1999;84(7):2336–2341.

    CAS  Google Scholar 

  155. Li HJ, Ji CY, Wang W, Hu YH. A twin study for serum leptin, soluble leptin receptor, and free insulin-like growth factor-I in pubertal females 3816. J Clin Endocrinol Metab 2005; 90(6):3659–3664.

    PubMed  CAS  Google Scholar 

  156. Mann DR, Johnson AO, Gimpel T, Castracane VD. Changes in circulating leptin, leptin receptor, and gonadal hormones from infancy until advanced age in humans 4758. J Clin Endocrinol Metab 2003;88(7):3339–3345.

    PubMed  CAS  Google Scholar 

  157. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 1999;84(10):3686–3695.

    PubMed  CAS  Google Scholar 

  158. Clement K, Vaisse C, Lahlou N et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392(6674):398–401.

    PubMed  CAS  Google Scholar 

  159. Farooqi IS, Jebb SA, Langmack G et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999;341(12):879–884.

    PubMed  CAS  Google Scholar 

  160. Plant TM. Neurobiological bases underlying the control of the onset of puberty in the rhesus monkey: a representative higher primate. Front Neuroendocrinol 2001;22(2):107–139.

    PubMed  CAS  Google Scholar 

  161. Grasemann C, Wessels HT, Knauer-Fischer S, Richter-Unruh A, Hauffa BP. Increase of serum leptin after short-term pulsatile GnRH administration in children with delayed puberty 4311. Eur J Endocrinol 2004;150(5):691–698.

    PubMed  CAS  Google Scholar 

  162. Clayton PE, Trueman JA. Leptin and puberty. Arch Dis Child 2000;83(1):1–4.

    PubMed  CAS  Google Scholar 

  163. Comuzzie AG, Hixson JE, Almasy L et al. A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nat Genet 1997;15(3):273–276.

    PubMed  CAS  Google Scholar 

  164. Brown DC, Kelnar CJ, Wu FC. Energy metabolism during male human puberty. I. Changes in energy expenditure during the onset of puberty in boys. Ann Hum Biol 1996;23:273–279.

    PubMed  CAS  Google Scholar 

  165. Brown DC, Kelnar CJ, Wu FC. Energy metabolism during male human puberty. II. Use of testicular size in predictive equations for basal metabolic rate. Ann Hum Biol 1996;23:281–284.

    PubMed  CAS  Google Scholar 

  166. Banerjee I, Trueman JA, Hall CM et al. Phenotypic variation in constitutional delay of growth and puberty: relationship to specific leptin and leptin receptor gene polymorphisms. Eur J Endocrinol 2006;155(1):121–126.

    PubMed  CAS  Google Scholar 

  167. Abrams SA. Normal acquisition and loss of bone mass 4523. Horm Res 2003;60 (Suppl 3):71–6.

    PubMed  CAS  Google Scholar 

  168. Apter D. The role of leptin in female adolescence 4544. Ann N Y Acad Sci 2003;997:64–76.

    PubMed  CAS  Google Scholar 

  169. Korbonits M, Grossman AB. Ghrelin: update on a novel hormonal system. Eur J Endocrinol 2004;151 (Suppl 1):S67–S70.

    PubMed  CAS  Google Scholar 

  170. Fernandez-Fernandez R, Martini AC, Navarro VM et al. Novel signals for the integration of energy balance and reproduction. Mol Cell Endocrinol 2006;254–255:127–132.

    PubMed  Google Scholar 

  171. El Majdoubi M, Sahu A, Ramaswamy S, Plant TM. Neuropeptide Y: a hypothalamic brake restraining the onset of puberty in primates. Proc Natl Acad Sci USA 2000;97(11):6179–6184.

    PubMed  Google Scholar 

  172. Woller MJ, McDonald JK, Reboussin DM, Terasawa E. Neuropeptide Y is a neuromodulator of pulsatile luteinizing hormone-releasing hormone release in the gonadectomized rhesus monkey. Endocrinology 1992;130(4):2333–2342.

    PubMed  CAS  Google Scholar 

  173. Dunger DB, Ahmed ML, Ong KK. Early and late weight gain and the timing of puberty. Mol Cell Endocrinol 2006;254–255:140–145.

    PubMed  Google Scholar 

  174. Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 2001;22(1):111–151.

    PubMed  CAS  Google Scholar 

  175. Himes JH. Examining the evidence for recent secular changes in the timing of puberty in US children in light of increases in the prevalence of obesity. Mol Cell Endocrinol 2006;254–255:13–21.

    PubMed  Google Scholar 

  176. Styne DM. Puberty, obesity and ethnicity 4011. Trends Endocrinol Metab 2004;15(10):472–478.

    PubMed  CAS  Google Scholar 

  177. Juul A, Teilmann G, Scheike T et al. Pubertal development in Danish children: comparison of recent European and US data. Int J Androl 2006;29(1):247–255.

    PubMed  CAS  Google Scholar 

  178. Ong KK, Ahmed ML, Dunger DB. Lessons from large population studies on timing and tempo of puberty (secular trends and relation to body size): the European trend. Mol Cell Endocrinol 2006;254–255:8–12.

    PubMed  Google Scholar 

  179. Conte FA, Grumbach MM, Kaplan SL, Reiter EO. Correlation of luteinizing hormone-releasing factor-induced luteinizing hormone and follicle-stimulating hormone release from infancy to 19 years with the changing pattern of gonadotropin secretion in agonadal patients: relation to the restraint of puberty. J Clin Endocrinol Metab 1980;50:163–168.

    PubMed  CAS  Google Scholar 

  180. Grumbach MM, Roth JC, Kaplan SL et al. Hypothalamic-pituitary regulation of puberty in man: evidence and concepts derived from clinical research. In: Grumbach MM, Grave GD, Mayer FE, editors. Control of the Onset of Puberty. New York: John Wiley & Sons, 1974:115–166.

    Google Scholar 

  181. Conte FA, Grumbach MM, Kaplan SL. A diphasic pattern of gonadotropin secretion in patients with the syndrome of gonadal dysgenesis. J Clin Endocrinol Metab 1975;40:670–674.

    PubMed  CAS  Google Scholar 

  182. Kelch RP, Kaplan SL, Grumbach MM. Suppression of urinary and plasma follicle-stimulating hormone by exogenous estrogens in prepubertal and pubertal children. J Clin Invest 1973; 52:1122–1128.

    PubMed  CAS  Google Scholar 

  183. Grumbach MM, Kaplan SL. Recent advances in the diagnosis and management of sexual precocity. Acta Paediatr Jpn 1988;30:155–175.

    PubMed  Google Scholar 

  184. Voigt P, Ma YJ, Gonazalez D et al. Neural and glial mediated effects of growth factors acting via tyrosine kinase receptors on luteinizing hormone-releasing hormone neurons. Endocrinology 1997;137:2593–2605.

    Google Scholar 

  185. Wetsel WC, Hill DF, Ojeda SR. Basic fibroblast growth factor regulates the conversion of roluteinizing hormone releasing hormone (pro-LHRH) to LHRH in immortalized hypothalamic neurons. Endocrinology 1997;137:2606–2616.

    Google Scholar 

  186. Junier MP, Ma YJ, Costa ME, Hoffman G, Hill DF, Ojeda SR. Transforming growth factor alpha contributes to the mechanism by which hypothalamic injury induces precocious puberty. Proc Natl Acad Sci USA 1991;88:9743–9747.

    PubMed  CAS  Google Scholar 

  187. Olson BR, Scott DC, Wetsel WC et al. Effects of insulin-like growth factors I and II and insulin on the immortalized hypthalamic GTI-7 cell line. Neuroendocrinology 1995;62:155–165.

    PubMed  CAS  Google Scholar 

  188. Ojeda SR, Dissen GA, Junier M-P. Neutrophilic factors and female sexual development. Frontiers in Neuroendocrinology. New York: Raven Press, 1992:120–162.

    Google Scholar 

  189. Hiney JK, Srivastava V, Nyberg CL, Ojeda SR, Dees WL. Insulin-like growth factor I of peripheral origin acts centrally to accelerate the initiation of female puberty. Endocrinology 1996; 137:3717–3728.

    PubMed  CAS  Google Scholar 

  190. Gallo F, Morale MC, Avola R, Marchetti B. Cross-talk between luteinizing hormone-releasing hormone (LHRH) neurons and astroglia cells: developing glia release factors that accelerate neuronal differentiation and stimulate LHRH release from GT neuronal cell line and LHRH neurons induce astroglia proliferation. Endocrine 1995;3:863–874.

    PubMed  CAS  Google Scholar 

  191. Watanabe G, Terasawa E. In vivo luteinizing hormone releasing hormone increases with puberty in the female rhesus monkey. Endocrinology 1989;125:92–99.

    PubMed  CAS  Google Scholar 

  192. Mitsushima D, Hei DL, Terasawa E. Gamma-aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proc Natl Acad Sci USA 1994;91:395–399.

    PubMed  CAS  Google Scholar 

  193. Mitsushima D, Marzban F, Luchansky LL et al. Role of glutamic acid decarboxylase in the prepubertal inhibition of the luteinizing hormone releasing hormone release in female rhesus monkeys. J Neurosci 1996;16:2563–2573.

    PubMed  CAS  Google Scholar 

  194. Albertsson-Wikland K, Rosberg S, Lannering B, Dunkel L, Selstam G, Norjavaara E. Twentyfour-hour profiles of luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol levels: a semilongitudinal study throughout puberty in healthy boys. J Clin Endocrinol Metab 1997; 82:541–549.

    PubMed  CAS  Google Scholar 

  195. Wu FC, Butler GE, Kelnar CJ, Huhtaniemi I, Veldhuis JD. Ontogeny of pulsatile gonadotropin releasing hormone secretion from midchildhood, through puberty, to adulthood in the human male: a study using deconvolution analysis and an ultrasensitive immunofluorometric assay. J Clin Endocrinol Metab 1996;81:1798–1805.

    PubMed  CAS  Google Scholar 

  196. Yen SS, Apter D, Butzow T, Laughlin GA. Gonadotrophin releasing hormone pulse generator activity before and during sexual maturation in girls: new insights. Hum Reprod 1993;8 (Suppl 2):66–71.

    PubMed  CAS  Google Scholar 

  197. Apter D, Butzow TL, Laughlin GA, Yen SS. Gonadotropin-releasing hormone pulse generator activity during pubertal transition in girls: pulsatile and diurnal patterns of circulating gonadotropins. J Clin Endocrinol Metab 1993;76:940–949.

    PubMed  CAS  Google Scholar 

  198. Terasawa E, Noonan JJ, Nass TE, Loose MD. Posterior hypothalamic lesions advance the onset of puberty in the female rhesus monkey. Endocrinology 1984;115:2241–2250.

    PubMed  CAS  Google Scholar 

  199. Schultz NJ, Terasawa E. Posterior hypothalamic lesions advance the time of the pubertal changes in luteinizing hormone release in ovariectomized female rhesus monkeys. Endocrinology 1988;123:445.

    PubMed  CAS  Google Scholar 

  200. Pohl CR, deRidder CM, Plant TM. Gonadal and nongonadal mechanisms contribute to the prepubertal hiatus in gonadotropin secretion in the female rhesus monkey (Macaca mulatta). J Clin Endocrinol Metab 1995;80:2094–2101.

    PubMed  CAS  Google Scholar 

  201. Plant TM. Puberty in primates. In: Knobil E, Neill JD, editors. The Physiology of Reproduction. New York: Raven, 1994:1763–1788.

    Google Scholar 

  202. Hochman HI, Judge DM, Reichlin S. Precocious puberty and hypothalamic hamartoma. Pediatrics 1981;67:236–244.

    PubMed  CAS  Google Scholar 

  203. Judge DM, Kulin HE, Page R, Santen R, Trapukdi S. Hypothalamic hamartoma: a source of luteinizing-hormone-releasing factor in precocious puberty. N Engl J Med 1977;296:7–10.

    PubMed  CAS  Google Scholar 

  204. Mahachoklertwattana P, Kaplan SL, Grumbach MM. The luteinizing hormone-releasing hormonesecreting hypothalamic hamartoma is a congenital malformation: natural history. J Clin Endocrinol Metab 1993;77:118–124.

    PubMed  CAS  Google Scholar 

  205. Ojeda SR, Smith-White S, Advis JP et al. First preovulatory gonadotropin surge in the rodent. In: Grumbach MM, Sizonenko PC, Aubert ML, editors. Control of the Onset of Puberty. Baltimore, MD: Williams & Wilkins, 1990:156–182.

    Google Scholar 

  206. Arslan M, Pohl CR, Plant TM. DL-2-Amino-5-phosphonopentanoic acid, a specific N-methyl-Daspartic acid receptor antagonist, suppresses pulsatile LH release in the rat. Neuroendocrinology 1988;47:465–468.

    PubMed  CAS  Google Scholar 

  207. Bettendorf M, Albers N, de Zegher F et al. A neuroexcitatory amino acid analogue, N-methyl-D,L-aspartate (NMDA), elicits LH and FSH release in the ovine fetus by a central mechanism. Endocr Soc Abstr 1988:288.

    Google Scholar 

  208. Bettendorf M, de Zegher F, Albers N, Hart CS, Kaplan SL, Grumbach MM. Acute N-methyl-D, L-aspartate administration stimulates the luteinizing hormone releasing hormone pulse generator in the ovine fetus. Horm Res 1999;51(1):25–30.

    PubMed  CAS  Google Scholar 

  209. Gambacciani M, Yen SS, Rasmussen D. GnRH release from the mediobasal hypothalamus: in vitro inhibition by corticotropin releasing factor. Neuroendocrinology 1986;43:533–536.

    PubMed  CAS  Google Scholar 

  210. Kuljis RO, Advis JP. Immunocytochemical and physiological evidence of a synapse between dopamine- and luteinizing hormone releasing hormone-containing neurons in the ewe median eminence. Endocrinology 1989;124:1579-1581.

    Google Scholar 

  211. MacLusky NJ, Naftolin F, Leranth C. Immunocytochemical evidence for direct synaptic connections between corticotrophin-releasing factor (CRF) and gonadotrophin-releasing hormone (GnRH)-containing neurons in the preoptic area of the rat. Brain Res 1988;439:391-395.

    PubMed  CAS  Google Scholar 

  212. Plant TM, Gay VL, Marshall GR, Arslan M. Puberty in monkeys is triggered by chemical stimulation of the hypothalamus. Proc Natl Acad Sci USA 1989;86:2506-2510.

    PubMed  CAS  Google Scholar 

  213. Wilson RC, Kesner JS, Kaufman JM et al. Central electrophysiologic correlates of pulsatile luteinizing hormone secretion in the rhesus monkey. Neuroendocrinology 1984;39:256-260.

    PubMed  CAS  Google Scholar 

  214. Mitsushima D, Marzban F, Luchansky LL et al. Role of glutamic acid decarboxylase in the prepubertal inhibition of the luteinizing hormone releasing hormone release in female rhesus monkeys. J Neuroscience 1996;16:2563-2573.

    CAS  Google Scholar 

  215. Terasawa E. Control of luteinizing hormone-releasing hormone pulse generation in nonhuman primates. Cell Mol Neurobiol 1995;15:141-164.

    PubMed  CAS  Google Scholar 

  216. Kasuya E, Nyberg CL, Mogi K, Terasawa E. A role of gamma-amino butyric acid (GABA) and glutamate in control of puberty in female rhesus monkeys: effect of an antisense oligodeoxynucleotide for GAD67 messenger ribonucleic acid and MK801 on luteinizing hormone-releasing hormone release. Endocrinology 1999;140(2):705-712.

    PubMed  CAS  Google Scholar 

  217. Keen KL, Burich AJ, Mitsushima D, Kasuya E, Terasawa E. Effects of pulsatile infusion of the GABA(A) receptor blocker bicuculline on the onset of puberty in female rhesus monkeys. Endocrinology 1999;140(11):5257-5266.

    Google Scholar 

  218. Martinez de la Escalera, Choi ALH, Weinter RI. Biphasic gabaergic regulation of GnRH secretion in GT1 cell lines. Neuroendocrinology 1994;59:420-425.

    PubMed  CAS  Google Scholar 

  219. Hales TG, Sanderson MJ, Charles AC. GABA has excitatory actions on GnRH-secreting immortalized hypothalamic (GT1-7) neurons. Neuroendocrinology 1994;59(3):297–308.

    PubMed  CAS  Google Scholar 

  220. El Etr M, Akwa Y, Fiddes RJ, Robel P, Baulieu EE. A progesterone metabolite stimulates the release of gonadotropin-releasing hormone from GT1-1 hypothalamic neurons via the gamma-aminobutyric acid type A receptor. Proc Natl Acad Sci USA 1995;92(9):3769–3773.

    PubMed  Google Scholar 

  221. Cherubini E, Gaiarsa JL, Ben Ari Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 1991;14(12):515–519.

    CAS  Google Scholar 

  222. Ganguly K, Schinder AF, Wong ST, Poo M. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 2001;105(4):521–532.

    PubMed  CAS  Google Scholar 

  223. Ottem EN, Godwin JG, Krishnan S, Petersen SL. Dual-phenotype GABA/glutamate neurons in adult preoptic area: sexual dimorphism and function. J Neurosci 2004;24(37):8097–8105.

    PubMed  CAS  Google Scholar 

  224. Ma YJ, Costa ME, Ojeda SR. Developmental expression of the genes encoding transforming growth factor alpha and its receptor in the hypothalamus of female rhesus macaques. J Clin Endocrin Metab. First published ahead of print December 12, 2006 as doi: 10.1210/jc.2006–2147.

  225. Plant TM. Neurobiological bases underlying the control of the onset of puberty in the rhesus monkey: a representative higher primate. J Clin Endocrin Metab. First published ahead of print December 12, 2006 as doi: 10.1210/jc.2006–2147.

  226. Van den Pol AN, Wuarin JP, Dudek FE. Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. Science 1990;250(4985):1276–1278.

    PubMed  Google Scholar 

  227. Urbanski HF, Ojeda SR. Activation of luteinizing hormone-releasing hormone release advances the onset of female puberty. Neuroendocrinology 1987;46:273–276.

    PubMed  CAS  Google Scholar 

  228. Price MT, Olney JW, Cicero TJ. Acute elevations of serum luteinizing hormone induced by kainic acid, N-methyl aspartic acid or homocystic acid. Neuroendocrinology 1978;26:352–358.

    PubMed  CAS  Google Scholar 

  229. Gay VL, Plant TM. N-methyl-D,L-aspartate elicits hypothalamic gonadotropin-releasing hormone release in prepubertal male rhesus monkeys (Macaca mulatta). Endocrinology 1987;120:2289–2296.

    PubMed  CAS  Google Scholar 

  230. Wilson RC, Knobil E. Acute effects of N-methyl-D,L-aspartate on the release of pituitary gonadotropins and prolactin in the adult female rhesus monkey. Brain Res 1982;248:177–179.

    PubMed  CAS  Google Scholar 

  231. Bourguignon JP, Gerard A, Mathieu J et al. Pulsatile release of gonadotropin-releasing hormone from hypothalamic explants is restrained by blockade of N-methyl-D,L-aspartate receptors. Endocrinology 1989;125:1090–1096.

    PubMed  CAS  Google Scholar 

  232. Hardelin JP, Levilliers J, Young J et al. Xp22.3 deletions in isolated familial Kallmann’s syndrome. J Clin Endocrinol Metab 1993;76:827–831.

    PubMed  CAS  Google Scholar 

  233. Terasawa E, Luchansky LL, Kasuya E, Nyberg CL. An increase in glutamate release follows a decrease in gamma aminobutyric acid and the pubertal increase in luteinizing hormone releasing hormone release in the female rhesus monkeys. J Neuroendocrinol 1999;11(4):275–282.

    PubMed  CAS  Google Scholar 

  234. Van den Pol AN, Trombley PQ. Glutamate neurons in hypothalamus regulate excitatory transmission. J Neurosci 1993;13(7):2829–2836.

    PubMed  Google Scholar 

  235. Claypool LE, Kasuya E, Saitoh Y, Marzban F, Terasawa E. N-methyl D,L-aspartate induces the release of luteinizing hormone-releasing hormone in the prepubertal and pubertal female rhesus monkey as measured by in vivo push-pull perfusion in the stalk-median eminence. Endocrinology 2000;141(1):219–228.

    PubMed  CAS  Google Scholar 

  236. Terasawa E. Hypothalamic control of the onset of puberty. Curr Opin Endocrinol Diabet 1999; 6:44–49.

    Google Scholar 

  237. Mahachoklertwattana P, Sanchez J, Kaplan SL et al. N-methyl-D-aspartate (NMDA) receptors mediate the release of hormone (GnRH) by NMDA in a hypothalamic neuronal cell line (GT1-1). Endocrinology 1994;134:1023–1030.

    PubMed  CAS  Google Scholar 

  238. Ojeda SR, Ma YJ. Glial-neuronal interactions in the neuroendocrine control of mammalian puberty: facilitatory effects of gonadal steroids. J Neurobiol 1999;40(4):528–540.

    PubMed  CAS  Google Scholar 

  239. Ma YJ, Hill DF, Creswick KE et al. Neuregulins signaling via a glial erbB-2-erbB-4 receptor complex contribute to the neuroendocrine control of mammalian sexual development. J Neurosci 1999;19(22):9913–9927.

    PubMed  CAS  Google Scholar 

  240. Ojeda SR, Ma YJ, Lee BJ, Prevot V. Glia-to-neuron signaling and the neuroendocrine control of female puberty. Recent Prog Horm Res 2000;55:197–223.

    PubMed  CAS  Google Scholar 

  241. Jung H, Carmel P, Schwartz MS et al. Some hypothalamic hamartomas contain transforming growth factor a, a puberty-inducing growth factor, not luteinizing hormone releasing hormone neurons. J Clin Endocrinol Metab 1999;84:4695–4701.

    PubMed  CAS  Google Scholar 

  242. Ojeda SR, Lomniczi A, Mastronardi C et al. Minireview: the neuroendocrine regulation of puberty: is the time ripe for a systems biology approach? Endocrinology 2006;147(3):1166–1174.

    PubMed  CAS  Google Scholar 

  243. Boyar RM, Finkelstein JW, Roffwarg H et al. Twenty-four patterns of luteinizing hormone and follicle-stimulating hormone secretory patterns in gonadal dysgenesis. J Clin Endocrinol Metab 1973;37:521–525.

    PubMed  CAS  Google Scholar 

  244. Kulin HE, Moore RGJ, Santner SJ. Circadian rhythms in gonadotropin excretion in prepubertal and pubertal children. J Clin Endocrinol Metab 1976;42:770–773.

    PubMed  CAS  Google Scholar 

  245. Boyar RM, Rosenfeld RS, Kapen S et al. Simultaneous augmented secretion of luteinizing hormone and testosterone during sleep. J Clin Invest 1974;54:609–618.

    PubMed  CAS  Google Scholar 

  246. Boyar R, Finkelstein JW, David R et al. Twenty-four hour patterns of plasma luteinizing hormone and follicle-stimulating hormone in sexual precocity. N Engl J Med 1973;289:282–286.

    PubMed  CAS  Google Scholar 

  247. Yen SS, Lasley BL, Wang CF, Leblanc H, Siler TM. The operating characteristics of the hypothalamic-pituitary system during the menstrual cycle and observations of biological action of somatostatin. Recent Prog Horm Res 1975;31:321–363.

    PubMed  CAS  Google Scholar 

  248. Keye WR, Jaffe RB. Strength-duration characteristics of estrogen effects on gonadotropin response to gonadotropin-releasing hormone in women. I. Effects of varying duration of estradiol administration. J Clin Endocrinol Metab 1975;41:1003–1008.

    PubMed  CAS  Google Scholar 

  249. Reiter EO, Kaplan SL, Conte FA, Grumbach MM. Responsivity of pituitary gonadotropes to luteinizing hormone-releasing factor in idiopathic precocious puberty, precocious thelarche, precocious adrenarche, and in patients treated with medroxyprogesterone acetate. Pediatr Res 1975; 9:111–116.

    PubMed  CAS  Google Scholar 

  250. Winter JS, Taraska S, Faiman C. The hormonal response to HCG stimulation in male children and adolescents. J Clin Endocrinol Metab 1972;34:348–353.

    PubMed  CAS  Google Scholar 

  251. Sizonenko PC, Cuendet A, Paunier L. FSH. 1. Evidence for its mediating role on testosterone secretion in cryptorchidism. J Clin Endocrinol Metab 1973;37:68–73.

    PubMed  CAS  Google Scholar 

  252. Ross GT, Cargille CM, Lipsett MB et al. Pituitary and gonadal hormones in women during spontaneous and induced ovulatory cycles. Recent Prog Horm Res 1970;26:1–62.

    PubMed  CAS  Google Scholar 

  253. Reiter EO, Kulin HE, Hamwood SM. The absence of positive feedback between estrogen and luteinizing hormone in sexually immature girls. Pediatr Res 1974;8:740–745.

    PubMed  CAS  Google Scholar 

  254. Presl J, Horejsi J, Strouflova A et al. Sexual maturation in girls and the development of estrogeninduced gonadotropic hormone release. Ann Biol Anim Biochim Biophys 1976;16:377–383.

    CAS  Google Scholar 

  255. Hayes FJ, Seminara SB, DeCruz S, Boepple PA, Crowley WF Jr. Aromatase inhibition in the human male reveals a hypothalamic site of estrogen feedback. J Clin Endocrinol Metab 2000; 85(9):3027–3035.

    PubMed  CAS  Google Scholar 

  256. Doring GK. Uber die relativ Sterilitat in den Jahren nach der Menarche. Geburtsh Frauenheilkd 1963;23:30–36.

    Google Scholar 

  257. Apter D, Vihko R. Serum pregnenolone, progesterone, 17-hydroxyprogesterone, testosterone and 5 alpha-dihydrotestosterone during female puberty. J Clin Endocrinol Metab 1977;45:1039–1048.

    PubMed  CAS  Google Scholar 

  258. Winter JSD, Faiman C. Pituitary-gonadal relations in female children and adolescents. Pediatr Res 1973;7:948–953.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Styne, D.M., Grumbach, M.M. (2007). Control of Puberty in Humans. In: Pescovitz, O.H., Walvoord, E.C. (eds) When Puberty is Precocious. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-499-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-499-5_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-742-6

  • Online ISBN: 978-1-59745-499-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics