Skip to main content

Congenital Adrenal Hyperplasia

  • Chapter

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Congenital adrenal hyperplasia, a family of autosomal recessive diseases of cortisol synthesis, is commonly associated with disordered puberty. Perturbations of pubertal onset and progress are determined by which hormones are overproduced and which are deficient. There may be precocious pubarche or puberty, sexual infantilism and failure to initiate or complete pubertal development, menstrual irregularity, hirsutism and infertility. In addition to glucocorticoid treatment to replace the deficient cortisol and mineralocorticoid if salt-wasting is present, treatment may include sex steroids, LHRH agonists, aromatase inhibitors and genital surgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levine LS. Congenital adrenal hyperplasia. Pediatr Rev 2000;21:159–170.

    Article  PubMed  CAS  Google Scholar 

  2. Grumbach MM, Hughes IA, Conte FA. Disorders of sex differentiation In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS, editors. Williams Textbook of Endocrinology, 10th edition. Philadelphia, PA: Saunders, 2003:842–1002.

    Google Scholar 

  3. Merke D. Congenital adrenal hyperplasia. Lancet 2005;365:2125–2136.

    Google Scholar 

  4. Levine LS. Congenital adrenal hyperplasia. In: Lavin N, editor, Manual of Endocrinology and Metabolism, 3 rd edition. Philadelphia, PA: Lippincott, Williams & Wilkins, 2002.

    Google Scholar 

  5. Miller, W. P450 oxidoreductase deficiency: a new disorder of steroidogenesis with multiple clinical manifestations. Trends Endocrinol Metab 2004;15:311–315.

    Article  PubMed  CAS  Google Scholar 

  6. Pang S. Congenital adrenal hyperplasia. Endocrinol Metab Clin North Am 1997;26:853–891.

    Article  PubMed  CAS  Google Scholar 

  7. Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev 1998;9:295–318.

    Article  Google Scholar 

  8. Bose HS, Sugawara T, Strauss JF, III et al. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med 1996;355:1870–1878.

    Article  Google Scholar 

  9. Pang S. Genetics of 3β-hydroxysteroid dehydrogenase deficiency disorder. Growth Genet Horm 1996;12:5–9.

    Google Scholar 

  10. Yanase T, Simpson ER, Waterman MR. 17α-hydroxylase/17,20-lyase deficiency: from clinical investigation to molecular definition. Endocr Rev 1991;12:91–108.

    Article  PubMed  CAS  Google Scholar 

  11. White PC, Curnow KC, Pascoe L. Disorders of steroid 11β -hydroxylase isozymes. Endocr Rev 1994;15:421–438.

    PubMed  CAS  Google Scholar 

  12. Tajima T, Fujieda K, Kouda N et al. Heterozygous mutation in the cholesterol side chain cleavage enzyme (P450scc) gene in a patient with 46,XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab 2001;86:3820–3825.

    Article  PubMed  CAS  Google Scholar 

  13. Katsumata N, Ohtake M, Hojo T et al. Compound heterozygous mutations in the cholesterol sidechain cleavage enzyme gene (CYP11A) cause congenital adrenal insufficiency in humans. J Clin Endocrinol Metab 2002;87:3808–3813.

    Article  PubMed  CAS  Google Scholar 

  14. Miller WL. Congenital lipoid adrenal hyperplasia: the human gene knockout for the steroidogenic acute regulatory protein. J Mol Endocrinol 1997;19:227–240.

    Article  PubMed  CAS  Google Scholar 

  15. Bose HS, Sato S, Aisenberg J et al. Mutations in the steroidogenic acute regulatory protein (StAR) in six patients with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2000;85:3636–3639.

    Article  PubMed  CAS  Google Scholar 

  16. González A, Loreto RM, Carvajal C et al. Congenital lipoid adrenal hyperplasia caused by a novel splicing mutation in the gene for the steroidogenic acute regulatory acute regulatory protein. J Clin Endocrinol Metab 2004;89:946–951.

    Article  PubMed  Google Scholar 

  17. Lin D, Sugawara T, Strauss JF III et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 1995;267:1828–1830.

    Article  PubMed  CAS  Google Scholar 

  18. Gassner H, Toppari J, Quinteiro GS, Miller WL. Near-miss apparent SIDS from adrenal crisis. J Pediatr 2004;145:178–183.

    Article  PubMed  Google Scholar 

  19. Fujieda K, Tajima T, Nakae J et al. Spontaneous puberty in 46, XX subjects with congenital lipoid adrenal hyperplasia. J Clin Invest 1997;99:1265–1271.

    Article  PubMed  CAS  Google Scholar 

  20. Tanae A, Katsumata N, Sato N, Horikawa R, Tanaka T. Genetic and endocrinological evaluations of three 46,XX patients with congenital adrenal hyperplasia previously reported as having presented spontaneous puberty. Endocr J 2000;47:629–634.

    Article  PubMed  CAS  Google Scholar 

  21. Kirkland RT, Kirkland JL, Johnson CM, Horning MG, Librik L, Clayton GW. Congenital lipoid adrenal hyperplasia in an eight-year-old phenotypic female. J Clin Endocrinol Metab 1973;36:488–496.

    Article  PubMed  CAS  Google Scholar 

  22. Simard J, Rhéaume E, Sanchex R et al. Molecular basis of congenital adrenal hyperplasia due to 3_-hydroxysteroid deficiency. Mol Endocrinol 1993;7:716–728.

    Article  PubMed  CAS  Google Scholar 

  23. Mason JI. The 3β-hydroxysteroid dehydrogenase gene family of enzymes. Trends Endocrinol Metab 1993;6:199.

    Article  Google Scholar 

  24. Moison AM, Ricketts ML, Tardy V et al. New insight into the molecular basis of 3β -hydroxysteroid dehydrogenase deficiency: identification of eight mutations in the HSD3B2 gene in eleven patients from seven new families and comparison of the functional properties of twenty-five mutant enzymes. J Clin Endocrinol Metab 1999;84:4410–4425.

    Article  Google Scholar 

  25. Marui S, Castro M, Latronico AC et al. Mutations in the type II 3β-hydroxysteroid dehydrogenase (HSD3B2) gene can cause premature pubarche in girls. Clin Endocrinol 2000;52:67–75.

    Article  CAS  Google Scholar 

  26. Chang YT, Zhang L, Alkaddour HS et al. Absence of molecular defect in the type II 3β -hydroxysteroid dehydrogenase (3β-HSD) gene in premature pubarche children and hirsute female patients with moderately decreased adrenal 3β-HSD activity. Pediatr Res 1995;37:820–824.

    Article  PubMed  CAS  Google Scholar 

  27. Carbunaru G, Prasad P, Scoccia S et al. The hormonal phenotype of nonclassic 3β -hydroxysteroid dehydrogenase (HSD3B) deficiency in hyperandrogenic females is associated with insulin-resistance polycystic ovary syndrome and is not a variant of inherited HSD3B2 deficiency. J Clin Endocrinol Metab 2004;89:783–794.

    Article  PubMed  CAS  Google Scholar 

  28. Zachmann M, Prismatic cases: 17,20-desmolase (17,20-lyase) deficiency. Clin Endocrinol 1996;81: 457–459.

    Article  CAS  Google Scholar 

  29. Costa-Santos M, Kater C, Auchus R et al. Two prevalent CYP17 mutations and genotype-phenotype correlations in 24 Brazilian patients with 17-hydroxylase deficiency. J Clin Endocrinol Metab 2004;89:49–60.

    Article  PubMed  CAS  Google Scholar 

  30. Martin R, Lin C, Costa E et al. P450c17 deficiency in Brazilian patients: biochemical diagnosis through progesterone levels confirmed by CYP17 genotyping. J Clin Endocrinol Metab 2003;88: 5739–5746.

    Article  PubMed  CAS  Google Scholar 

  31. Auchus RJ. The genetics, pathophysiology, and management of human deficiencies of P450c17. Endocrinol Metab Clin North Am 2001;30:101–119.

    Article  PubMed  CAS  Google Scholar 

  32. Geller DH, Auchus RJ, Mendonca BB et al. The genetic and functional basis of isolated 17,20-lyase deficiency. Nat Genet 1997;17:201–205.

    Article  PubMed  CAS  Google Scholar 

  33. White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev 2000;21:245–291.

    Article  PubMed  CAS  Google Scholar 

  34. New MI. Diagnosis and management of congenital adrenal hyperplasia. Ann Rev Med 1998;49: 311–328.

    Article  PubMed  CAS  Google Scholar 

  35. Lee H. Diversity of the CYP21P-like gene in CYP21 deficiency. DNA Cell Biol 2005;24:1–9.

    Article  PubMed  Google Scholar 

  36. Speiser P, White P. Congenital adrenal hyperplasia. N Engl J Med 2003;349:776–788.

    Article  PubMed  CAS  Google Scholar 

  37. Forest M. Recent advances in the diagnosis and management of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum Reprod Update 2004;10:469–485.

    Article  PubMed  CAS  Google Scholar 

  38. Hughes I. Congenital adrenal hyperplasia: transitional care. Growth Horm IGF Res 2004;14:S60–S66.

    Article  PubMed  Google Scholar 

  39. Charmandari E, Brook C, Hindmarsh P. Classical congenital adrenal hyperplasia and puberty. Eur J Endocrinol 2004;151:U77–U82.

    Article  PubMed  CAS  Google Scholar 

  40. Stikkelbroeck N, Hermus A, Braat D et al. Fertility in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Obstet Gynecol Surv 2003;58:275–284.

    PubMed  Google Scholar 

  41. Speiser PW. Congenital adrenal hyperplasia: transition from childhood to adulthood. J Endocrinol Invest 2001;24:681–691.

    PubMed  CAS  Google Scholar 

  42. Moran C, Azziz R. 21-Hydroxylase-deficient nonclassic adrenal hyperplasia: the great pretender. Semin Reprod Med 2003;21:295–300.

    Article  PubMed  CAS  Google Scholar 

  43. Geley S, Kapelari K, Johrer K et al. CYP11B1 mutations causing congenital adrenal hyperplasia due to 11β -hydroxylase deficiency. J Clin Endocrinol Metab 1996;81:2896–2901.

    Article  PubMed  CAS  Google Scholar 

  44. Merke DP, Tajima T, Chhabra A et al. Novel CYP11B1 mutations in congenital adrenal hyperplasia due to steroid 11β -hydroxylase deficiency. J Clin Endocrinol Metab 1998;83:270–273.

    Article  PubMed  CAS  Google Scholar 

  45. Zachmann M, Tassinari D, Prader A. Clinical and biochemical variability of congenital adrenal hyperplasia due to 11β -hydroxylase deficiency: a study of 25 patients. J Clin Endocrinol Metab 1983;56:222–229.

    Article  PubMed  CAS  Google Scholar 

  46. Huang N, Pandey A, Agarwal V et al. Diversity and function of mutations in P450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis. Am J Hum Genet 2005;76:729–749.

    Article  PubMed  CAS  Google Scholar 

  47. Arlt W, Walker E, Draper N et al. Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet 2004;363:2128–2135.

    Article  PubMed  CAS  Google Scholar 

  48. Flück C, Tajima T, Pandey V. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet 2004;36:228–230.

    Article  PubMed  Google Scholar 

  49. Krege S, Walz KH, Hauffa BP et al. Long-term follow-up of female patients with congenital adrenal hyperplasia from 21-hydroxylase deficiency, with special emphasis on the results of vaginoplasty. BJU Int 2000;86:253–259.

    Article  PubMed  CAS  Google Scholar 

  50. Soliman AT, AlLamki M, AlSalmi I et al. Congenital adrenal hyperplasia complicated by central precocious puberty: linear growth during infancy and treatment with gonadotropin-releasing hormone analog. Metabolism 1997;46:513–517.

    Article  PubMed  CAS  Google Scholar 

  51. Laue L, Merke SP, Jones JV et al. A preliminary study of flutamide, testolactone, and reduced hydrocortisone dose in the treatment of congenital adrenal hyperplasia. J Clin Endocrinol Metab 1996;81:3535–3539.

    Article  PubMed  CAS  Google Scholar 

  52. Merke DP, Keil MF, Jones JV et al. Flutamide, testolactone, and reduced hydrocortisone dose maintain normal growth velocity and bone maturation despite elevated androgen levels in children with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2000;85:1114–1120.

    Article  PubMed  CAS  Google Scholar 

  53. Alvi S, Shaw NJ, Rayner PHW et al. Growth hormone and goserelin in congenital adrenal hyperplasia. Horm Res 1997;48 (Suppl 2):194.

    Google Scholar 

  54. Quintos JB, Vogiatzi MG, Harbison MD et al. Growth hormone therapy alone or in combination with gonadotropin-releasing hormone analog therapy to improve the height deficit in children with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2001;86:1511–1517.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Levine, L.S., Oberfield, S.E., Antler, L. (2007). Congenital Adrenal Hyperplasia. In: Pescovitz, O.H., Walvoord, E.C. (eds) When Puberty is Precocious. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-499-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-499-5_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-742-6

  • Online ISBN: 978-1-59745-499-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics