Skip to main content

Connexins and Secretion

  • Chapter
Connexins

Abstract

Four decades ago, a serendipitous finding revealed that a membrane-impermeable tracer could be rapidly exchanged between salivary gland cells. Since this first demonstration of direct cell–cell communication in a secretory system, gap junctions, connexins, and coupling have been shown to be obligatory attributes of all multicellular glands. The distribution of various connexin isoforms has now been mapped in most of these organs and shown to differ in endocrine and exocrine systems, because of a specific transcriptional control of the connexin genes. Many studies have provided further circumstantial evidence of a role for connexin-dependent signaling in the secretory function of a variety of glands. This function has been directly demonstrated in vivo in only a few systems, in which the mechanism linking connexin signaling to secretion has started to be elucidated. However, this mechanism, and implications for the physiological and pathophysiological function of secretory cells remains to be unraveled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. LeRoith D. Are all cells “endocrine”? In: Becker KL, editor. Principles and practice of endocrinology and metabolism. Philadelphia: JB Lippincott; 1990. pp. 10–3.

    Google Scholar 

  2. Meda P. Intercellular communication and insulin secretion. In: Zahnd GR, Wollheim CB, editors. Contributions of physiology to the understanding of diabetes. Berlin: Springer; 1997:24–42.

    Google Scholar 

  3. Michon L, Nlend R, Bavamian S, Bischoff L, Boucard N, Caille D, Cancela J, Charollais A, Charpantier E, Klee P, Peyrou M, Populaire C, Zulianello L, Meda P. Involvement of gap junctional communication in secretion. Biochim Biophys Acta. 2005;1719:82–101.

    Article  CAS  PubMed  Google Scholar 

  4. Serre-Beinier V, Mas C, Calabrese A, Caton D, Bauquis J, Caille D, Charollais A, Cirulli V, Meda P. Connexins and secretion. Biol Cell. 2002;94:477–92.

    Article  CAS  PubMed  Google Scholar 

  5. Meda P. The role of gap junction membrane channels in secretion and hormonal action. J Bioenerg Biomembr. 1996;28:369–77.

    Article  CAS  PubMed  Google Scholar 

  6. Petersen OH. The electrophysiology of gland cells. London: Academic Press; 1980.

    Google Scholar 

  7. Kanno Y, Loewenstein WR. Low-resistance coupling between gland cells. Some observations on intercellular contact membranes and intercellular space. Nature. 1964;201:194–5.

    Article  CAS  PubMed  Google Scholar 

  8. Meda P, Pepper MS, Traub O, Willecke K, Gros D, Beyer EC, Nicholson B, Paul D, Orci L. Differential expression of gap junction connexins in endocrine and exocrine glands. Endocrinology. 1993;133:2371–8.

    Article  CAS  PubMed  Google Scholar 

  9. Martin D, Tawadros T, Meylan L, Abderrahmani A, Condorelli DF, Waeber G, Haefliger JA. Critical role of the transcriptional repressor neuron-restrictive silencer factor in the specific control of connexin36 in insulin-producing cell lines. J Biol Chem. 2003;278:53082–9.

    Google Scholar 

  10. Rukstalis JM, Kowalic A, Zhu L, Lidington D, Pin CL, Konieczny SF. Exocrine specific expression of Connexin32 is dependent on the basic helix-loop-helix transcription factor Mist1. J Cell Sci. 2003;116:3315–25.

    Article  CAS  PubMed  Google Scholar 

  11. Plum A, Hallas G, Magnin T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim J, Lamers WH, Evert M, Meda P, Traub O, Willecke K. Unique and shared functions of different connexins in mice. Curr Biol. 2000;10:1083–1091.

    Article  CAS  PubMed  Google Scholar 

  12. Charollais A, Gjinovci A, Huarte J, Bauquis J, Nadal A, Martin F, Andreu E, Sanchez-Andres JV, Calabrese A, Bosco D, Soria B, Wollheim CB, Herrera PL, Meda P. Junctional communication of pancreatic β cells contributes to the control of insulin secretion and glucose tolerance. J Clin Invest. 2000;106:235–43.

    Article  CAS  PubMed  Google Scholar 

  13. Locke D, Stein D, Davies C, Morris G, Harris AL, Evans WH, Monaghan P, Gusterson B. Altered permeability and modulatory character of connexin channels during mammary gland development. Exp Cell Res. 2004;298:643–60.

    Article  CAS  PubMed  Google Scholar 

  14. Allagnat F, Martin D, Condorelli DF, Haefliger JA. Glucose represses connexin36 in insulin-secreting cells. J Cell Sci. 2005;118:5335–44.

    Article  CAS  PubMed  Google Scholar 

  15. Serre-Beinier V, LeGurun S, Belluardo N, Serre-Beinier V, LeGurun S, Belluardo N, Trovato-Salinaro A, Charollias A, Haefliger JA, Condorelli DF, Meda P. Cx36 preferentially connects β-cells within pancreatic islets. Diabetes. 2000;49:727–34.

    Article  CAS  PubMed  Google Scholar 

  16. Vozzi C, Ullrich S, Charollais A, Philippe J, Orci L, Meda P. Adequate connexin-mediated coupling is required for proper insulin production. J Cell Biol. 1995;131:1561–72.

    Article  CAS  PubMed  Google Scholar 

  17. Vinken M, Henkens T, Vanhaecke T, Papeleu T, Geerts A, Van Rossen E, Chipman JK, Meda P and Rogiers V. Trichostatin a enhances gap junctional intercellular communication in primary cultures of adult rat hepatocytes. Toxicol Sci. 2006;91:484–92.

    Article  CAS  PubMed  Google Scholar 

  18. Stutenkemper R, Geisse S, Schwarz HJ, Look J, Traub O, Nicholson BJ, Willecke K. The hepatocyte-specific phenotype of murine liver cells correlates with high expression of connexin32 and connexin26 but very low expression of connexin43. Exp Cell Res. 1992;201:43–54.

    Article  CAS  PubMed  Google Scholar 

  19. Haefliger JA, Demotz S, Braissant O, Haefliger JA, Demotz S, Braissant O, Suter E, Waeber G, Nicod B. Meda, P. Connexins 40 and 43 are differentially regulated within the kidneys of rats with renovascular hypertension. Kidney Int. 2001;60:190–201.

    Article  CAS  PubMed  Google Scholar 

  20. Ryan MJ, Liu B, Herbowy MT, Gross KW, Hajduczok J. Intercellular communication between renin expressing As4.1 cells, endothelial cells and smooth muscle cells. Life Sci. 2003;72:1289–301.

    Article  CAS  PubMed  Google Scholar 

  21. Friend DS, Gilula NB. Variations in tight and gap junctions in mammalian tissues. J Cell Biol. 1972;53:758–76.

    Article  CAS  PubMed  Google Scholar 

  22. Meda P, Halban P, Perrelet A, Renold AE, Orci L. Gap junction development is correlated with insulin content in the pancreatic β cell. Science. 1980;209:1026–28.

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Olson C, Lu S, Nagy JI. Association of connexin36 with zonula occludens-1 in HeLa cells, βTC-3 cells, pancreas, and adrenal gland. Histochem Cell Biol. 2004;122: 485–98.

    CAS  PubMed  Google Scholar 

  24. Meda P, Amherdt M, Perrelet A, Orci L. Metabolic coupling between cultured pancreatic β-cells. Exp Cell Res. 1981;133:421–30.

    Article  CAS  PubMed  Google Scholar 

  25. Kohen E, Kohen C, Thorell B, Mintz DH, Rabinovitch A. Intercellular communication in pancreatic islet monolayer cultures: a microfluorometric study. Science. 1979;204:862–5.

    Article  CAS  PubMed  Google Scholar 

  26. Moreno AP, Berthoud VM, Perez-Palacios G, Perez-Armendarig EM. Biophysical evidence that connexin-36 forms functional gap junction channels between pancreatic mouse β-cells. Am J Physiol Endocrinol Metab. 2005;288:E948–56.

    Article  CAS  PubMed  Google Scholar 

  27. Chanson M, Orci L, Meda P. Extent and modulation of junctional communication between pancreatic acinar cells in vivo. Am J Physiol. 1991;261:G28–36.

    CAS  PubMed  Google Scholar 

  28. Meda P, Michaels RL, Halban PA, Orci L, Sheridan JD. In vivo modulation of gap junctions and dye coupling between β-cells of the intact pancreatic islet. Diabetes 1983;32:858–68.

    Article  CAS  PubMed  Google Scholar 

  29. Ravier MA, Guldenagel M, Charollais A, Gjinovci A, Caille D, Söhl G, Wollheim CB, Willecke K, Henquin JC, Meda P. Loss of connexin36 channels alters β-cell Coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 2005;54:1798–807.

    Article  CAS  PubMed  Google Scholar 

  30. Le Gurun S, Martin D, Formenton A, Le Gurun S, Martin D, Formenton A, Maechler P, Caille D, Waeber G, Meda P, Haefliger JA. Connexin-36 contributes to control function of insulin-producing cells. J Biol Chem. 2003;278:37690–7.

    Google Scholar 

  31. Harris AL. Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 2001;34:325–472.

    CAS  PubMed  Google Scholar 

  32. Chanson M, Fanjul M, Bosco D, Nelles E, Suter S, Willecke K, Meda P. Enhanced secretion of amylase from exocrine pancreas of connexin32-deficient mice. J Cell Biol. 1998;141:1267–75.

    Article  CAS  PubMed  Google Scholar 

  33. Meda P, Bruzzone R, Chanson M, Bosco D, Orci L. Gap junctional coupling modulates secretion of exocrine pancreas. Proc Natl Acad Sci USA. 1987;84:4901–4.

    Google Scholar 

  34. Chanson M, Molard P, Meda S, Sutter S, Jongsma JH. Modulation of pancreatic acinar cell to cell coupling during ACh-evoked changes in cytosolic Ca2+. J Biol Chem. 1999;274:282–7.

    Article  CAS  PubMed  Google Scholar 

  35. Bosco D, Chanson M, Bruzzone R, Meda P. Visualization of amylase secretion from individual pancreatic acini. Am J Physiol. 1988;254:G664–70.

    CAS  PubMed  Google Scholar 

  36. Bosco D, Soriano JV, Chanson M, Meda P. Heterogeneity and contact-dependent regulation of amylase release from individual acinar cells. J Cell Sci. 1994;160:378–388.

    CAS  Google Scholar 

  37. Speier S, Gjinovci A, Charollais A, Meda P, Rupnik M. Cx36-mediated coupling reduces β-cell heterogeneity, confines the stimulating glucose concentration range and affects insulin release kinetics. Diabetes 2007;56:1078–86.

    Article  CAS  PubMed  Google Scholar 

  38. Atwater I, Rojas E, Scott A. Simultaneous measurements of insulin release and electrical activity from single microdissected mouse Islets of Langerhans. J Physiol. 1979;291:57P.

    CAS  PubMed  Google Scholar 

  39. Valdeolmillos M, Gomis A, Sanchez-Andres JV. In vivo synchronous membrane potential oscillations in mouse pancreatic β-cells: lack of coordination between islets. J Physiol. 1996;493:9–18.

    CAS  PubMed  Google Scholar 

  40. O'Rahilly S, Turner RC, Matthews DR. Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N Engl J Med. 1988;318:1225–30.

    Article  PubMed  Google Scholar 

  41. Calabrese A, Zhang M, Serre-Beinier V, Caton D, Mas C, Satin LS, Meda P. Connexin 36 controls synchronization of Ca2+ oscillations and insulin secretion of MIN6 cells. Diabetes 2003;52:417–24.

    Article  CAS  PubMed  Google Scholar 

  42. Meda P, Bosco D, Chanosmn M, Giordano E, Vallar L, Wollheim CB, Orci L. Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J. Clin Invest. 1990;86:759–68.

    Article  CAS  PubMed  Google Scholar 

  43. Salomon D, Meda P. Heterogeneity and contact-dependent regulation of hormone secretion by individual β cells. Exp Cell Res. 1986;162:507–20.

    Article  CAS  PubMed  Google Scholar 

  44. Bosco D, Meda P. Actively synthesizing β-cells secrete preferentially after glucose stimulation. Endocrinology. 1991;129:3157–66.

    Article  CAS  PubMed  Google Scholar 

  45. Schuster S, Mahrl M, Hofer T. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signaling. Eur J Biochem. 2002;269:1333–55.

    Article  CAS  PubMed  Google Scholar 

  46. Spray DC, Ye ZC, Ransom BR. Functional connexin “hemichannels”: a critical appraisal. Glia. 2006;54:758–73.

    Article  PubMed  Google Scholar 

  47. Iacobas DA, Iacobas S, Spray DC. Connexin43 and the brain transcriptome of newborn mice. Genomics. 2007;89:113–23.

    Article  CAS  PubMed  Google Scholar 

  48. Rocheleau JV, Remedi MS, Granada B, Rocheleau JV, Remedi MS, Granada B, Haed WS, Koster JC, Nichols CG, Piston DW. Critical role of gap junction coupled KATP channel activity for regulated insulin secretion. PLoS Biol. 2006;4:e26.

    Article  PubMed  Google Scholar 

  49. Konstantionova I, Nikolova G, Ohara-Imaizumi M, Meda P, Kucera T, Zarbalis K, Wurst W, Nakamatsu S, Lammert E. EphA-ephrin-A mediated β cell communication regulates insulin secretion from pancreatic islets. Cell. 2007;129: 359–70.

    Article  Google Scholar 

  50. Harris AL. Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol. 2007;94:120–43.

    Article  CAS  PubMed  Google Scholar 

  51. Breitwieser GE. Calcium sensing receptors and calcium oscillations: calcium as a first messenger. Curr Top Dev Biol. 2006;73:85–114.

    Article  CAS  PubMed  Google Scholar 

  52. Phelan P. Innexins: members of an evolutionarily-conserved gap-junction proteins. Biochim Biophys Acta. 2005;1711:225–45.

    Article  CAS  PubMed  Google Scholar 

  53. Panchin YV. Evolution of gap junction proteins-the pannexin alternative. J Exp Biol. 2005;208:1415–19.

    Article  CAS  PubMed  Google Scholar 

  54. Haefliger JA, Krattinger N, Martin D, Pedrazzini T, Capponi A, Doring B, Plum A, Charollais A, Willecke K, Meda P. Connexin43-dependent mechanism modulates renin secretion and hypertension. J Clin Invest. 2006;116:405–13.

    Article  CAS  PubMed  Google Scholar 

  55. Krattinger N, Capponi A, Mazzolai L, Aubert JF, Caille D, Nicod P, Waeber G, Meda P, Haefliger JA. Loss of Connexin40 alters renin production, causing hypertension. Kidney Int. 2007;72:814–22.

    Article  CAS  PubMed  Google Scholar 

  56. Wagner C, de Wit C, Kurtz L, Grunberger C, Kurtz A, Schweda F. Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ Res. 2007;100:556–63.

    Article  CAS  PubMed  Google Scholar 

  57. Cohen-Salmon M, Regnault B, Cayet N, Caille D, Demuth K, Hardelin JP, Janel N, Meda P, Petit C. Connexin30 deficiency causes intrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci USA. 2007;104:6229–34.

    Google Scholar 

  58. Oyamada M, Oyamada Y, Kaneko T, Takamatsu T. Regulation of gap junction protein (connexin) genes and functions in differentiating ES cells. Meth Mol Biol. 2002;185:63–9.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Swiss National Science Foundation (310000-109402), the Juvenile Diabetes Research Foundation (1-2005-46 and 1-2007-158), Novo Nordisk, and the Geneva Program for Metabolic Disorders (GeMet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Meda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bavamian, S., Klee, P., Allagnat, F., Haefliger, JA., Meda, P. (2009). Connexins and Secretion. In: Harris, A.L., Locke, D. (eds) Connexins. Humana Press. https://doi.org/10.1007/978-1-59745-489-6_26

Download citation

Publish with us

Policies and ethics