Skip to main content

In Vivo Models of Allogeneic Hematopoietic Stem Cell Transplantation

  • Chapter
  • First Online:
Book cover Allogeneic Stem Cell Transplantation

Part of the book series: Contemporary Hematology ((CH))

Abstract

Animal models have been vital to the development of allogeneic hematopoietic stem cell transplantation (AlloHSCT) as well as our understanding of its biology. Rodent models led the way in the demonstration of the whole body radiotherapy for effective anti-tumor responses [1] and the ability to rescue mice from high dose radiation with a transfusion of bone marrow cells [2, 3] in the early 1950s. However, the ability to promote prolonged tumor-free survival in mice using allogeneic bone marrow transplantation after myeloablative doses of radiation was offset by the recognition that allogeneic bone marrow transplant (BMT) could result in a lethal “secondary” disease of wasting, diarrhea and skin lesions [4] now known as graft-versus host disease. Interestingly, graft-versus-tumor (GVT) activity was also recognized in studies during this time period. [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hollcroft J, Lorenz E, Hunstiger H (1950) Effects of ionizing radiations on a transplanted lymphosarcoma. J Natl Cancer Inst 11(1):1-16

    PubMed  CAS  Google Scholar 

  2. Lorenz E, Congdon C, Uphoff D (1952) Modification of acute irradiation injury in mice and guinea-pigs by bone marrow injections. Radiology 58(6):863-877

    PubMed  CAS  Google Scholar 

  3. Congdon CC, Uphoff D, Lorenz E (1952) Modification of acute irradiation injury in mice and guinea pigs by injection of bone marrow; a histopathologic study. J Natl Cancer Inst 13(1):73-107

    PubMed  CAS  Google Scholar 

  4. Billingham RE (1959) Reactions of grafts against their hosts. Science 130:947-953

    PubMed  CAS  Google Scholar 

  5. Reshchikov VP, Khoklova MP, Fertukhova HM (1961) The effect of homologous bone marrow transplantation on the course of the leukaemic process in mice with transplanted leukaemia. Probl Gematol Pereliv Krovi 6:593-599

    PubMed  CAS  Google Scholar 

  6. Davis WE Jr, Cole LJ, Foley WA, Rosen VJ Jr (1963) Leukemia incidence and longevity in radiation-induced homologous mouse chimeras. Radiat Res 20:43-52

    PubMed  Google Scholar 

  7. Storb R, Deeg HJ, Raff R et al (1995) Prevention of graft-versus-host disease. Studies in a canine model. Ann N Y Acad Sci 770:149-164

    PubMed  CAS  Google Scholar 

  8. Epstein RB, Storb R, Clift RA, Thomas ED (1969) Transplantation of stored allogeneic bone marrow in dogs selected by histocompatibility typing. Transplantation 8(4):496-501

    PubMed  CAS  Google Scholar 

  9. Eguchi H, Knosalla C, Lan P et al (2004) T cells from presensitized donors fail to cause graft-versus-host disease in a pig-to-mouse xenotransplantation model. Transplantation 78(11):1609-1617

    PubMed  Google Scholar 

  10. Kozlowski T, Sablinski T, Basker M et al (2000) Decreased graft-versus-host disease after haplotype mismatched bone marrow allografts in miniature swine following interleukin-2 treatment. Bone Marrow Transplant 25(1):47-52

    PubMed  CAS  Google Scholar 

  11. Srour EF, Zanjani ED, Brandt JE et al (1992) Sustained human hematopoiesis in sheep transplanted in utero during early gestation with fractionated adult human bone marrow cells. Blood 79(6):1404-1412

    PubMed  CAS  Google Scholar 

  12. Panoskaltsis-Mortari A, Price A, Hermanson JR et al (2004) In vivo imaging of graft-versus-host-disease in mice. Blood 103(9):3590-3598

    PubMed  CAS  Google Scholar 

  13. Beilhack A, Schulz S, Baker J et al (2005) In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood 106(3):1113-1122

    PubMed  CAS  Google Scholar 

  14. Cao YA, Bachmann MH, Beilhack A et al (2005) Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation. Transplantation 80(1):134-139

    PubMed  Google Scholar 

  15. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731-2738

    PubMed  CAS  Google Scholar 

  16. Hansen S, Leslie RG (2006) TGN1412: scrutinizing preclinical trials of antibody-based medicines. Nature 441(7091):282

    PubMed  CAS  Google Scholar 

  17. Petrus MJ, Williams JF, Eckhaus MA, Gress RE, Fowler DH (2000) An immunoablative regimen of fludarabine and cyclophosphamide prevents fully MHC-mismatched murine marrow graft rejection independent of GVHD. Biol Blood Marrow Transplant 6(2A):182-189

    PubMed  CAS  Google Scholar 

  18. Luznik L, Jalla S, Engstrom LW, Iannone R, Fuchs EJ (2001) Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood 98(12):3456-3464

    PubMed  CAS  Google Scholar 

  19. Plunkett W, Saunders PP (1991) Metabolism and action of purine nucleoside analogs. Pharmacol Ther 49(3):239-268

    PubMed  CAS  Google Scholar 

  20. Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L, Ferrara JL (1997) Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 90(8):3204-3213

    PubMed  CAS  Google Scholar 

  21. Paulos CM, Wrzesinski C, Kaiser A et al (2007) Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 117(8):2197-2204

    PubMed  CAS  Google Scholar 

  22. Claman HN, Jaffee BD, Huff JC, Clark RA (1985) Chronic graft-versus-host disease as a model for scleroderma. II. Mast cell depletion with deposition of immunoglobulins in the skin and fibrosis. Cell Immunol 94(1):73-84

    PubMed  CAS  Google Scholar 

  23. Xun C, Thompson J, Jennings C, Brown S, Widmer M (1994) Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2-incompatible transplanted SCID mice. Blood 83(8):2360-2367

    PubMed  CAS  Google Scholar 

  24. Weiss L, Nusair S, Reich S, Sidi H, Slavin S (1996) Induction of graft versus leukemia effects by cell-mediated lymphokine-activated immunotherapy after syngeneic bone marrow transplantation in murine B cell leukemia. Cancer Immunol Immunother 43(2):103-108

    PubMed  CAS  Google Scholar 

  25. Sykes M, Szot GL, Swenson KA, Pearson DA (1997) Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nat Med 3(7):783-787

    PubMed  CAS  Google Scholar 

  26. Truitt RL, Atasoylu AA (1991) Impact of pretransplant conditioning and donor T cells on chimerism, graft-versus-host disease, graft-versus-leukemia reactivity, and tolerance after bone marrow transplantation. Blood 77(11):2515-2523

    PubMed  CAS  Google Scholar 

  27. Sprent J, Schaefer M, Gao EK, Korngold R (1988) Role of T cell subsets in lethal graft-versus-host disease (GVHD) directed to class I versus class II H-2 differences. I. L3T4+ cells can either augment or retard GVHD elicited by Lyt-2+ cells in class I different hosts. J Exp Med 167(2):556-569

    PubMed  CAS  Google Scholar 

  28. Anderson BE, McNiff J, Yan J et al (2003) Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest 112(1):101-108

    PubMed  CAS  Google Scholar 

  29. Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ (2004) Transfer of allogeneic CD62L- memory T cells without graft-versus-host disease. Blood 103(4):1534-1541

    PubMed  CAS  Google Scholar 

  30. Anderson BE, Taylor PA, McNiff JM et al (2008) Effects of donor T cell trafficking and priming site on GVHD induction by naive and memory phenotype CD4 T cells. Blood 111(10):5242-5251

    PubMed  CAS  Google Scholar 

  31. Dutt S, Ermann J, Tseng D et al (2005) L-selectin and beta7 integrin on donor CD4 T cells are required for the early migration to host mesenteric lymph nodes and acute colitis of graft-versus-host disease. Blood 106(12):4009-4015

    PubMed  CAS  Google Scholar 

  32. Petrovic A, Alpdogan O, Willis LM et al (2004) LPAM (alpha 4 beta 7 integrin) is an important homing integrin on alloreactive T cells in the development of intestinal graft-versus-host disease. Blood 103(4):1542-1547

    PubMed  CAS  Google Scholar 

  33. Beilhack A, Schulz S, Baker J et al (2008) Prevention of acute graft-versus-host disease by blocking T-cell entry to secondary lymphoid organs. Blood 111:2919-2928

    PubMed  CAS  Google Scholar 

  34. Murai M, Yoneyama H, Ezaki T et al (2003) Peyer’s patch is the essential site in initiating murine acute and lethal graft-versus-host reaction. Nat Immunol 4(2):154-160

    PubMed  CAS  Google Scholar 

  35. Welniak LA, Kuprash DV, Tumanov AV et al (2006) Peyer patches are not required for acute graft-versus-host disease after myeloablative conditioning and murine allogeneic bone marrow transplantation. Blood 107(1):410-412

    PubMed  CAS  Google Scholar 

  36. Bennett M, Taylor PA, Austin M et al (1998) Cytokine and cytotoxic pathways of NK cell rejection of class I-deficient bone marrow grafts: influence of mouse colony environment. Int Immunol 10(6):785-790

    PubMed  CAS  Google Scholar 

  37. Holler E, Rogler G, Brenmoehl J et al (2006) Prognostic significance of NOD2/CARD15 variants in HLA-identical sibling hematopoietic stem cell transplantation: effect on long-term outcome is confirmed in 2 independent cohorts and may be modulated by the type of gastrointestinal decontamination. Blood 107(10):4189-4193

    PubMed  CAS  Google Scholar 

  38. Hill GR, Teshima T, Gerbitz A et al (1999) Differential roles of IL-1 and TNF-alpha on graft-versus-host disease and graft versus leukemia. J Clin Invest 104(4):459-467

    PubMed  CAS  Google Scholar 

  39. Cooke KR, Gerbitz A, Crawford JM et al (2001) LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. J Clin Invest 107(12):1581-1589

    PubMed  CAS  Google Scholar 

  40. Fitzgerald PA, Bennett M (1983) Aging of natural and acquired immunity of mice. I. Decreased natural killer cell function and hybrid resistance. Cancer Invest 1(1):15-24

    PubMed  CAS  Google Scholar 

  41. Chen MG, Price GB, Makinodan T (1972) Incidence of delayed mortality (secondary disease) in allogeneic radiation chimeras receiving bone marrow from aged mice. J Immunol 108(5):1370-1378

    PubMed  CAS  Google Scholar 

  42. Gorczynski RM, Kennedy M, MacRae S (1983) Alteration in lymphocyte recognition repertoire during aging. II. Changes in the expressed T-cell receptor repertoire in aged mice and the persistence of that change after transplantation to a new differentiative environment. Cell Immunol 75(2):226-241

    PubMed  CAS  Google Scholar 

  43. Ordemann R, Hutchinson R, Friedman J et al (2002) Enhanced allostimulatory activity of host antigen-presenting cells in old mice intensifies acute graft-versus-host disease. J Clin Invest 109(9):1249-1256

    PubMed  CAS  Google Scholar 

  44. Cudkowicz G, Bennett M (1971) Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F 1 hybrid mice. J Exp Med 134(6):1513-1528

    PubMed  CAS  Google Scholar 

  45. Cudkowicz G, Bennett M (1971) Peculiar immunobiology of bone marrow allografts. I. Graft rejection by irradiated responder mice. J Exp Med 134(1):83-102

    PubMed  CAS  Google Scholar 

  46. Haraguchi K, Takahashi T, Matsumoto A et al (2005) Host-residual invariant NK T cells attenuate graft-versus-host immunity. J Immunol 175(2):1320-1328

    PubMed  CAS  Google Scholar 

  47. Blazar BR, Hirsch R, Gress RE, Carroll SF, Vallera DA (1991) In vivo administration of anti-CD3 monoclonal antibodies or immunotoxins in murine recipients of allogeneic T cell-depleted marrow for the promotion of engraftment. J Immunol 147(5):1492-1503

    PubMed  CAS  Google Scholar 

  48. Slavin S, Reitz B, Bieber CP, Kaplan HS, Strober S (1978) Transplantation tolerance in adult rats using total lymphoid irradiation: permanent survival of skin, heart, and marrow allografts. J Exp Med 147(3):700-707

    PubMed  CAS  Google Scholar 

  49. Soderling CC, Song CW, Blazar BR, Vallera DA (1985) A correlation between conditioning and engraftment in recipients of MHC-mismatched T cell-depleted murine bone marrow transplants. J Immunol 135(2):941-946

    PubMed  CAS  Google Scholar 

  50. Trambley J, Bingaman AW, Lin A et al (1999) Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J Clin Invest 104(12):1715-1722

    PubMed  CAS  Google Scholar 

  51. Aversa F, Tabilio A, Terenzi A et al (1994) Successful engraftment of T-cell-depleted haploidentical 3-loci incompatible transplants in leukemia patients by addition of recombinant human granulocyte-colony-stimulating factor-mobilized peripheral-blood progenitor cells to bone-marrow inoculum. Blood 84(11):3948-3955

    PubMed  CAS  Google Scholar 

  52. Bachar-Lustig E, Rachamim N, Li HW, Lan F, Reisner Y (1995) Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat Med 1(12):1268-1273

    PubMed  CAS  Google Scholar 

  53. Martin PJ, Akatsuka Y, Hahne M, Sale G (1998) Involvement of donor T-cell cytotoxic effector mechanisms in preventing allogeneic marrow graft rejection. Blood 92(6):2177-2181

    PubMed  CAS  Google Scholar 

  54. Graubert TA, Russell JH, Ley TJ (1996) The role of granzyme B in murine models of acute graft-versus-host disease and graft rejection. Blood 87(4):1232-1237

    PubMed  CAS  Google Scholar 

  55. Sprent J, Surh CD, Agus D, Hurd M, Sutton S, Heath WR (1994) Profound atrophy of the bone marrow reflecting major histocompatibility complex class II-restricted destruction of stem cells by CD4+ cells. J Exp Med 180(1):307-317

    PubMed  CAS  Google Scholar 

  56. Welniak LA, Blazar BR, Anver MR, Wiltrout RH, Murphy WJ (2002) Opposing roles of interferon-gamma on CD4+ T cell-mediated graft-versus-host disease: effects of conditioning. Biol Blood Marrow Transplant 6:605-612

    Google Scholar 

  57. Komatsu M, Mammolenti M, Jones M, Jurecic R, Sayers TJ, Levy RB (2003) Antigen-primed CD8+ T cells can mediate resistance, preventing allogeneic marrow engraftment in the simultaneous absence of perforin-, CD95L-, TNFR1-, and TRAIL-dependent killing. Blood 101(10):3991-3999

    PubMed  CAS  Google Scholar 

  58. Taylor PA, Ehrhardt MJ, Roforth MM et al (2006) Mechanisms responsible for and strategies to overcome bone marrow (BM) rejection in allosensitized recipients. Submitted

    Google Scholar 

  59. Dulude G, Roy DC, Perreault C (1999) The effect of graft-versus-host disease on T cell production and homeostasis. J Exp Med 189(8):1329-1342

    PubMed  CAS  Google Scholar 

  60. Weinberg K, Blazar BR, Wagner JE et al (2001) Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood 97(5):1458-1466

    PubMed  CAS  Google Scholar 

  61. van den Brink MR, Moore E, Ferrara JL, Burakoff SJ (2000) Graft-versus-host-disease-associated thymic damage results in the appearance of T cell clones with anti-host reactivity. Transplantation 69(3):446-449

    PubMed  Google Scholar 

  62. Gendelman M, Yassai M, Tivol E, Krueger A, Gorski J, Drobyski WR (2003) Selective elimination of alloreactive donor T cells attenuates graft-versus-host disease and enhances T-cell reconstitution. Biol Blood Marrow Transplant 9(12):742-752

    PubMed  CAS  Google Scholar 

  63. Brochu S, Rioux-Masse B, Roy J, Roy DC, Perreault C (1999) Massive activation-induced cell death of alloreactive T cells with apoptosis of bystander postthymic T cells prevents immune reconstitution in mice with graft-versus-host disease. Blood 94(2):390-400

    PubMed  CAS  Google Scholar 

  64. Chung B, Barbara-Burnham L, Barsky L, Weinberg K (2001) Radiosensitivity of thymic interleukin-7 production and thymopoiesis after bone marrow transplantation. Blood 98(5):1601-1606

    PubMed  CAS  Google Scholar 

  65. Mackall CL, Fleisher TA, Brown MR et al (1995) Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 332(3):143-149

    PubMed  CAS  Google Scholar 

  66. Mackall CL, Fleisher TA, Brown MR et al (1997) Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 89(10):3700-3707

    PubMed  CAS  Google Scholar 

  67. Panoskaltsis-Mortari A, Taylor PA, Rubin JS et al (2000) Keratinocyte growth factor facilitates alloengraftment and ameliorates graft-versus-host disease in mice by a mechanism independent of repair of conditioning-induced tissue injury. Blood 96(13):4350-4356

    PubMed  CAS  Google Scholar 

  68. Min D, Taylor PA, Panoskaltsis-Mortari A et al (2002) Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99(12):4592-4600

    PubMed  CAS  Google Scholar 

  69. Rossi S, Blazar BR, Farrell CL et al (2002) Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood 100(2):682-691

    PubMed  CAS  Google Scholar 

  70. Alpdogan O, Schmaltz C, Muriglan SJ et al (2001) Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating graft-versus-host disease. Blood 98(7):2256-2265

    PubMed  CAS  Google Scholar 

  71. Bolotin E, Smogorzewska M, Smith S, Widmer M, Weinberg K (1996) Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood 88(5):1887-1894

    PubMed  CAS  Google Scholar 

  72. Mackall CL, Fry TJ, Bare C, Morgan P, Galbraith A, Gress RE (2001) IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 97(5):1491-1497

    PubMed  CAS  Google Scholar 

  73. Tan JT, Dudl E, LeRoy E et al (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA 98(15):8732-8737

    PubMed  CAS  Google Scholar 

  74. Alpdogan O, Muriglan SJ, Eng JM et al (2003) IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J Clin Invest 112(7):1095-1107

    PubMed  CAS  Google Scholar 

  75. Greenstein BD, Fitzpatrick FT, Adcock IM, Kendall MD, Wheeler MJ (1986) Reappearance of the thymus in old rats after orchidectomy: inhibition of regeneration by testosterone. J Endocrinol 110(3):417-422

    PubMed  CAS  Google Scholar 

  76. Windmill KF, Meade BJ, Lee VW (1993) Effect of prepubertal gonadectomy and sex steroid treatment on the growth and lymphocyte populations of the rat thymus. Reprod Fertil Dev 5(1):73-81

    PubMed  CAS  Google Scholar 

  77. Sutherland JS, Goldberg GL, Hammett MV et al (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175(4):2741-2753

    PubMed  CAS  Google Scholar 

  78. Chung B, Dudl E, Toyama A, Barsky L, Weinberg KI (2008) Importance of interleukin-7 in the development of experimental graft-versus-host disease. Biol Blood Marrow Transplant 14(1):16-27

    PubMed  CAS  Google Scholar 

  79. Blaser BW, Roychowdhury S, Kim DJ et al (2005) Donor-derived IL-15 is critical for acute allogeneic graft-versus-host disease. Blood 105(2):894-901

    PubMed  CAS  Google Scholar 

  80. Blaser BW, Schwind NR, Karol S et al (2006) Trans-presentation of donor-derived interleukin 15 is necessary for the rapid onset of acute graft versus host disease but not for graft versus tumor activity. Blood 108(7):2463-2469

    PubMed  CAS  Google Scholar 

  81. Billingham RE (1966) The biology of graft-versus-host reactions. Harvey Lect 62:21-78

    PubMed  Google Scholar 

  82. Hess A, Thoburn C (1997) Immunobiology and immunotherapeutic implications of syngeneic/autologous graft-versus-host disease. Immunol Rev 157:111-123

    PubMed  CAS  Google Scholar 

  83. Korngold R, Marini JC, de Baca ME, Murphy GF, Giles-Komar J (2003) Role of tumor necrosis factor-alpha in graft-versus-host disease and graft-versus-leukemia responses. Biol Blood Marrow Transplant 9(5):292-303

    PubMed  CAS  Google Scholar 

  84. Cooke KR, Hill GR, Gerbitz A et al (2000) Tumor necrosis factor-alpha neutralization reduces lung injury after experimental allogeneic bone marrow transplantation. Transplantation 70(2):272-279

    PubMed  CAS  Google Scholar 

  85. Schmaltz C, Alpdogan O, Muriglan SJ et al (2003) Donor T cell-derived TNF is required for graft-versus-host disease and graft-versus-tumor activity after bone marrow transplantation. Blood 101(6):2440-2445

    PubMed  CAS  Google Scholar 

  86. Levine J, Paczesny S, Mineishi S et al (2008) Etanercept plus methylprednisolone as initial therapy for acute graft-versus-host disease. Blood 111(4):2470-2475

    PubMed  CAS  Google Scholar 

  87. Murphy WJ, Welniak LA, Taub DD et al (1998) Differential effects of the absence of interferon-gamma and IL-4 in acute graft-versus-host disease after allogeneic bone marrow transplantation in mice. J Clin Invest 102(9):1742-1748

    PubMed  CAS  Google Scholar 

  88. Yang YG, Qi J, Wang MG, Sykes M (2002) Donor-derived interferon gamma separates graft-versus-leukemia effects and graft-versus-host disease induced by donor CD8 T cells. Blood 99(11):4207-4215

    PubMed  CAS  Google Scholar 

  89. Jaffee BD, Claman HN (1983) Chronic graft-versus-host disease (GVHD) as a model for scleroderma. I. Description of model systems. Cell Immunol 77(1):1-12

    PubMed  CAS  Google Scholar 

  90. DeClerck Y, Draper V, Parkman R (1986) Clonal analysis of murine graft-vs-host disease. II. Leukokines that stimulate fibroblast proliferation and collagen synthesis in graft-vs. host disease. J Immunol 136(10):3549-3552

    PubMed  CAS  Google Scholar 

  91. Martin PJ, Pei J, Gooley T et al (2004) Evaluation of a CD25-specific immunotoxin for prevention of graft-versus-host disease after unrelated marrow transplantation. Biol Blood Marrow Transplant 10(8):552-560

    PubMed  CAS  Google Scholar 

  92. Anderson BE, McNiff JM, Matte C, Athanasiadis I, Shlomchik WD, Shlomchik MJ (2004) Recipient CD4+ T cells that survive irradiation regulate chronic graft-versus-host disease. Blood 104(5):1565-1573

    PubMed  CAS  Google Scholar 

  93. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL (2002) CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med 196(3):401-406

    PubMed  CAS  Google Scholar 

  94. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S (2002) Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 196(3):389-399

    PubMed  CAS  Google Scholar 

  95. Edinger M, Hoffmann P, Ermann J et al (2003) CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 9(9):1144-1150

    PubMed  CAS  Google Scholar 

  96. Taylor PA, Panoskaltsis-Mortari A, Swedin JM et al (2004) L-Selectin(hi) but not the L-selectin(lo) CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 104(12):3804-3812

    PubMed  CAS  Google Scholar 

  97. Hanash AM, Levy RB (2005) Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood 105(4):1828-1836

    PubMed  CAS  Google Scholar 

  98. Ermann J, Hoffmann P, Edinger M et al (2005) Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 105(5):2220-2226

    PubMed  CAS  Google Scholar 

  99. Taylor PA, Noelle RJ, Blazar BR (2001) CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med 193(11):1311-1318

    PubMed  CAS  Google Scholar 

  100. Zeiser RS, Nguyen VH, Beilhack A et al (2006) Inhibition of CD4+CD25+ regulatory T cell function by calcineurin dependent interleukin-2 production. Blood 108(1):390-399

    PubMed  CAS  Google Scholar 

  101. Battaglia M, Stabilini A, Roncarolo MG (2005) Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105(12):4743-4748

    PubMed  CAS  Google Scholar 

  102. Trenado A, Charlotte F, Fisson S et al (2003) Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest 112(11):1688-1696

    PubMed  CAS  Google Scholar 

  103. Barao I, Hanash AM, Hallett W et al (2006) Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+CD25+ regulatory T cells. Proc Natl Acad Sci USA 103(14):5460-5465

    PubMed  CAS  Google Scholar 

  104. Xu H, Exner BG, Cramer DE, Tanner MK, Mueller YM, Ildstad ST (2002) CD8(+), alphabeta-TCR(+), and gammadelta-TCR(+) cells in the recipient hematopoietic environment mediate resistance to engraftment of allogeneic donor bone marrow. J Immunol 168(4):1636-1643

    PubMed  CAS  Google Scholar 

  105. Blazar BR, Taylor PA, Bluestone JA, Vallera DA (1996) Murine gamma/delta-expressing T cells affect alloengraftment via the recognition of nonclassical major histocompatibility complex class Ib antigens. Blood 87(10):4463-4472

    PubMed  CAS  Google Scholar 

  106. Drobyski WR, Majewski D (1997) Donor gamma delta T lymphocytes promote allogeneic engraftment across the major histocompatibility barrier in mice. Blood 89(3):1100-1109

    PubMed  CAS  Google Scholar 

  107. Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Barrett TA, Bluestone JA, Vallera DA (1996) Lethal murine graft-versus-host disease induced by donor gamma/delta expressing T cells with specificity for host nonclassical major histocompatibility complex class Ib antigens. Blood 87(2):827-837

    PubMed  CAS  Google Scholar 

  108. Maeda Y, Reddy P, Lowler KP, Liu C, Bishop DK, Ferrara JL (2005) Critical role of host gammadelta T cells in experimental acute graft-versus-host disease. Blood 106(2):749-755

    PubMed  CAS  Google Scholar 

  109. Barao I, Murphy WJ (2003) The immunobiology of natural killer cells and bone marrow allograft rejection. Biol Blood Marrow Transplant 9(12):727-741

    PubMed  CAS  Google Scholar 

  110. Asai O, Longo DL, Tian ZG et al (1998) Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects by activated natural killer cells after allogeneic bone marrow transplantation. J Clin Invest 101(9):1835-1842

    PubMed  CAS  Google Scholar 

  111. Zeng D, Lewis D, Dejbakhsh-Jones S et al (1999) Bone marrow NK1.1(-) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease. J Exp Med 189(7):1073-1081

    PubMed  CAS  Google Scholar 

  112. Lan F, Zeng D, Higuchi M, Huie P, Higgins JP, Strober S (2001) Predominance of NK1.1+TCR alpha beta+ or DX5+TCR alpha beta+ T cells in mice conditioned with fractionated lymphoid irradiation protects against graft-versus-host disease: “natural suppressor” cells. J Immunol 167(4):2087-2096

    PubMed  CAS  Google Scholar 

  113. Baker J, Verneris MR, Ito M, Shizuru JA, Negrin RS (2001) Expansion of cytolytic CD8(+) natural killer T cells with limited capacity for graft-versus-host disease induction due to interferon gamma production. Blood 97(10):2923-2931

    PubMed  CAS  Google Scholar 

  114. Morris ES, MacDonald KP, Rowe V et al (2005) NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J Clin Invest 115(11):3093-3103

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments.

The work from the authors’ laboratories was supported by NIH R01 CA93527, R01 HL089905, R01 CA102282 and R01 AG022661.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Welniak, L.A., Murphy, W.J. (2010). In Vivo Models of Allogeneic Hematopoietic Stem Cell Transplantation. In: Lazarus, H.M., Laughlin, M.J. (eds) Allogeneic Stem Cell Transplantation. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-478-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-478-0_44

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-33-6

  • Online ISBN: 978-1-59745-478-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics