Skip to main content

The Importance of Non-Human Primate Models for Pre-clinical Studies in Hematopoiesis

  • Chapter
  • First Online:

Part of the book series: Contemporary Hematology ((CH))

Abstract

Of all living experimental models, murine studies of hematopoiesis represent the greatest number. Such models can be undeniably elegant reflecting the extensive technological tools available. While mice can be used to study specific genetic pedigrees, specific physiologic, and gene pathways using knockouts, and a variety of immune responses using immunologically deficient mice, murine models are limited in their applicability for clinical use. Rodents differ from humans in many aspects including their short lifespan, difference in the rate of doubling of hematopoietic stem/progenitor cells, and the responses of blood cells to the hematological stresses of radiation and cytotoxic agents [1-5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mahmud N, Devine SM, Weller KP et al (2001) The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood 97:3061-3068

    Article  PubMed  CAS  Google Scholar 

  2. Schmidt M, Zickler P, Hoffmann G et al (2002) Polyclonal long-term repopulating stem cell clones in a primate model. Blood 100:2737-2743

    Article  PubMed  CAS  Google Scholar 

  3. Horn PA, Thomasson BM, Wood BL, Andrews RG, Morris JC, Kiem HP (2003) Distinct hematopoietic stem/progenitor cell populations are responsible for repopulating NOD/SCID mice compared with nonhuman primates. Blood 102:4329-4335

    Article  PubMed  CAS  Google Scholar 

  4. Mauch P, Constine L, Greenberger J et al (1995) Hematopoietic stem cell compartment: Acute and late effects of radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys 31:1319-1339

    Article  PubMed  CAS  Google Scholar 

  5. Mahmud N, Rose D, Pang W et al (2005) Characterization of primitive marrow CD34+ cells that persist after a sublethal dose of total body irradiation. Exp Hematol 33:1388-1401

    Article  PubMed  CAS  Google Scholar 

  6. Heber-Katz E, Schwartz RH, Matis LA et al (1982) Contribution of antigen-presenting cell major histocompatibility complex gene products to the specificity of antigen-induced T cell activation. J Exp Med 155:1086-1099

    Article  PubMed  CAS  Google Scholar 

  7. Daar AS, Fuggle SV, Fabre JW, Ting A, Morris PJ (1984) The detailed distribution of MHC Class II antigens in normal human organs. Transplantation 38:293-298

    Article  PubMed  CAS  Google Scholar 

  8. Andrews R, Briddell R, Knitter G, Rowley S, Appelbaum F, McNiece I (1995) Rapid engraftment by peripheral blood progenitor cells mobilized by recombinant human stem cell factor and recombinant granulocyte colony-stimulating factor in nonhuman primates. Blood 85:15

    PubMed  CAS  Google Scholar 

  9. Andrews RG, Bryant EM, Bartelmez SH et al (1992) CD34+ Marrow cells, devoid of T and B lymphocytes, reconstitute stable lymphopoiesis and myelopoiesis in lethally irradiated allogeneic baboons. Blood 80:1693-1701

    PubMed  CAS  Google Scholar 

  10. Brandt JE, Bartholomew AM, Fortman JD et al (1999) Ex vivo expansion of autologous bone marrow CD34(+) cells with porcine microvascular endothelial cells results in a graft capable of rescuing lethally irradiated baboons. Blood 94:106-113

    PubMed  CAS  Google Scholar 

  11. Devine SM, Bartholomew AM, Mahmud N et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29:244-255

    Article  PubMed  CAS  Google Scholar 

  12. Bartholomew A, Sturgeon C, Siatskas M et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42-48

    Article  PubMed  Google Scholar 

  13. Mahmud N, Pang W, Cobbs C et al (2004) Studies of the route of administration and role of conditioning with radiation on unrelated allogeneic mismatched mesenchymal stem cell engraftment in a nonhuman primate model. Exp Hematol 32:494-501

    Article  PubMed  CAS  Google Scholar 

  14. Swindle MM (2007) Swine in the laboratory: Surgery, anesthesia, imaging, and experimental techniques. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  15. Gritsch HA, Glaser RM, Emery DW et al (1994) The importance of nonimmune factors in reconstitution by discordant xenogeneic hematopoietic cells. Transplantation 57:906-917

    Article  PubMed  CAS  Google Scholar 

  16. Lunney JK, Sachs DH (1978) Transplantation in minature swine. IV. Chemical characterization of MSLA and Ia-like antigens. J Immunol 120:607-612

    PubMed  CAS  Google Scholar 

  17. Andersen AC, Rosenblatt LS (1969) The effect of whole-body X-irradiation on the median lifespan of female dogs (beagles). Radiat Res 39:177-200

    Article  PubMed  CAS  Google Scholar 

  18. Kauffman HM, Clark RF, Hume DM (1965) Bone marrow and spleen cell homotransplantation in dogs following combination chemotherapy and total body irradiation. J Surg Res 5:2-10

    Article  PubMed  CAS  Google Scholar 

  19. Storb R, Rudolph RH, Kolb HJ et al (1973) Marrow grafts between DL-A-matched canine littermates. Transplantation 15:92-100

    Article  PubMed  CAS  Google Scholar 

  20. Haralambie E, Schmidt-Weinmar A (1988) Infections after experimental cadaver bone marrow transplantation in beagle dogs. Transplantations with and without selective gastrointestinal decontamination. Infection 16:36-41

    Article  PubMed  CAS  Google Scholar 

  21. Schwartz J, Tattersall I, Edlredy N (1978) Phylogeny and classification of primates revisted. Am Assoc Phys Anthropol 21:95-133

    Google Scholar 

  22. Sibley CG, Ahlquist JE (1984) The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. J Mol Evol 20:2-15

    Article  PubMed  CAS  Google Scholar 

  23. Flannery S (2007) Primate taxonomy

    Google Scholar 

  24. Perelygin AA, Kammerer CM, Stowell NC, Rogers J (1996) Conservation of human chromosome 18 in baboons (Papio hamadryas): A linkage map of eight human microsatellites. Cytogenet Cell Genet 75:207-209

    Article  PubMed  CAS  Google Scholar 

  25. Rogers J, Mahaney MC, Witte SM et al (2000) A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics 67:237-247

    Article  PubMed  CAS  Google Scholar 

  26. Williams-Blangero S, Brasky K, Butler T, Dyke B (1993) Genetic analysis of hematological traits in chimpanzees (Pan troglodytes). Hum Biol 65:1013-1024

    PubMed  CAS  Google Scholar 

  27. Comuzzie AG, Cole SA, Martin L et al (2003) The baboon as a nonhuman primate model for the study of the genetics of obesity. Obes Res 11:75-80

    Article  PubMed  Google Scholar 

  28. Williams-Blangero S, Vandeberg JL, Blangero J, Konigsberg L, Dyke B (1990) Genetic differentiation between baboon subspecies: Relevance for biomedical research. Am J Primatol 20:67-81

    Article  Google Scholar 

  29. Foy H, Kondi A, Mbaya V (1965) Hematologic and biochemical indices in the East African baboon. Blood 26:682-686

    PubMed  CAS  Google Scholar 

  30. Hainsey BM, Hubbard GB, Leland MM, Brasky KM (1993) Clinical parameters of the normal baboons (Papio species) and chimpanzees (Pan troglodytes). Lab Anim Sci 43:236-243

    PubMed  CAS  Google Scholar 

  31. Strum S (1991) Weight and age in wild olive baboons. Am J Primatol 25:219-237

    Article  Google Scholar 

  32. Coelho A (1985) Baboon dimorphism: Growth in weight, length and adiposity from birth to 8 years of age. In: Watts E (ed) Non-human primate models for human growth and development. Alan R. Liss, New York, pp 125-159

    Google Scholar 

  33. Roodman GD, Vandeberg JL, Kuehl TJ (1988) In utero bone marrow transplantation of fetal baboons with mismatched adult marrow: Initial observations. Bone Marrow Transplant 3:141-147

    PubMed  CAS  Google Scholar 

  34. Shields LE, Bryant EM, Easterling TR, Andrews RG (1995) Fetal liver cell transplantation for the creation of lymphohematopoietic chimerism in fetal baboons. Am J Obstet Gynecol 173:1157-1160

    Article  PubMed  CAS  Google Scholar 

  35. Michejda M (1996) Quo vadis? Fetal tissue transplantation. J Hematother 5:185-188

    Article  PubMed  CAS  Google Scholar 

  36. Shields LE, Gaur LK, Gough M, Potter J, Sieverkropp A, Andrews RG (2003) In utero hematopoietic stem cell transplantation in nonhuman primates: The role of T cells. Stem Cells 21:304-314

    Article  PubMed  Google Scholar 

  37. Santolaya-Forgas J, Galan I, Deleon-Luis J, Wolf R (2007) A study to determine if human umbilical cord hematopoietic stem cells can survive in baboon extra-embryonic celomic fluid: A prerequisite for determining the feasibility of in-utero stem cell xeno-transplantation via celocentesis. Fetal Diagn Ther 22:131-135

    Article  PubMed  Google Scholar 

  38. Fa J (1989) The genus Macaca: A review of taxonomy and evolution. Mammal Rev 19:45-81

    Article  Google Scholar 

  39. Lang KC (2006) Primate factsheets: Long-tailed macaque (Macaca fascicularis) taxonomy. Morphol Ecol 2007

    Google Scholar 

  40. Lang KC (2005) Primate factsheets: Rhesus macaque (Macaca mulatta) taxonomy, Morphol Ecol 2007

    Google Scholar 

  41. Hernandez RD, Hubisz MJ, Wheeler DA et al (2007) Demographic histories and patterns of linkage disequilibrium in Chinese and Indian rhesus macaques. Science 316:240-243

    Article  PubMed  CAS  Google Scholar 

  42. Smith DG, McDonough JW, George DA (2007) Mitochondrial DNA variation within and among regional populations of longtail macaques (Macaca fascicularis) in relation to other species of the fascicularis group of macaques. Am J Primatol 69:182-198

    Article  PubMed  CAS  Google Scholar 

  43. Kanthaswamy S, Smith DG (2004) Effects of geographic origin on captive Macaca mulatta mitochondrial DNA variation. Comp Med 54:193-201

    PubMed  CAS  Google Scholar 

  44. Gibbs RA, Rogers J, Katze MG et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222-234

    Article  PubMed  CAS  Google Scholar 

  45. Lang KC (2005) Primate factsheets: Common marmoset (Callithrix jacchus) taxonomy. Morphol Ecol 2007

    Google Scholar 

  46. Gengozian N, Batson JS, Eide P (1964) Hematologic and cytogenetic evidence for hematopoietic chimerism in the marmoset, tamarinus nigricollis. Cytogenetics 10:384-393

    Article  PubMed  CAS  Google Scholar 

  47. Haig D (1999) What is a marmoset? Am J Primatol 49:285-296

    Article  PubMed  CAS  Google Scholar 

  48. Watkins DI, Chen ZW, Hughes AL, Hodi FS, Letvin NL (1990) Genetically distinct cell populations in naturally occurring bone marrow-chimeric primates express similar MHC class I gene products. J Immunol 144:3726-3735

    PubMed  CAS  Google Scholar 

  49. Crawford DH, Janossy G, Hetherington CM et al (1981) Immunological characterization of hemopoietic cells in the common marmoset, rhesus monkey, and man. In search of a model for human marrow transplantation. Transplantation 31:245-250

    Article  PubMed  CAS  Google Scholar 

  50. Michalevicz R, Hetherington CM, Hann I, Blacklock HA (1985) Studies of sub-human primate (marmoset) pluripotent hemopoietic stem cells (CFU-GEMM) in vitro. J Med Primatol 14:245-253

    PubMed  CAS  Google Scholar 

  51. Hibino H, Tani K, Ikebuchi K et al (1999) The common marmoset as a target preclinical primate model for cytokine and gene therapy studies. Blood 93:2839-2848

    PubMed  CAS  Google Scholar 

  52. Izawa K, Tani K, Nakazaki Y et al (2004) Hematopoietic activity of common marmoset CD34 cells isolated by a novel monoclonal antibody MA24. Exp Hematol 32:843-851

    Article  PubMed  CAS  Google Scholar 

  53. Ryffel B, Car BD, Woerly G et al (1994) Long-term interleukin-6 administration stimulates sustained thrombopoiesis and acute-phase protein synthesis in a small primate-the marmoset. Blood 83:2093-2102

    PubMed  CAS  Google Scholar 

  54. Hematti P, Tuchman S, Larochelle A, Metzger ME, Donahue RE, Tisdale JF (2004) Comparison of retroviral transduction efficiency in CD34+ cells derived from bone marrow versus G-CSF-mobilized or G-CSF plus stem cell factor-mobilized peripheral blood in nonhuman primates. Stem Cells 22:1062-1069

    Article  PubMed  CAS  Google Scholar 

  55. Rosenzweig M, MacVittie TJ, Harper D et al (1999) Efficient and durable gene marking of hematopoietic progenitor cells in nonhuman primates after nonablative conditioning. Blood 94:2271-2286

    PubMed  CAS  Google Scholar 

  56. Wagemaker G, Neelis KJ, Hartong SC et al (1998) The efficacy of recombinant thrombopoietin in murine and nonhuman primate models for radiation-induced myelosuppression and stem cell transplantation. Stem Cells 16:375-386

    Article  PubMed  CAS  Google Scholar 

  57. Jung CW, Beard BC, Morris JC et al (2007) Hematopoietic stem cell engraftment: A direct comparison between intramarrow and intravenous injection in nonhuman primates. Exp Hematol 35:1132-1139

    Article  PubMed  CAS  Google Scholar 

  58. Ageyama N, Kimikawa M, Eguchi K et al (2003) Modification of the leukapheresis procedure for use in rhesus monkeys (Macaca mulata). J Clin Apher 18:26-31

    Article  PubMed  Google Scholar 

  59. Basser RL, To LB, Begley CG et al (1998) Rapid hematopoietic recovery after multicycle high-dose chemotherapy: Enhancement of filgrastim-induced progenitor-cell mobilization by recombinant human stem-cell factor. J Clin Oncol 16:1899-1908

    PubMed  CAS  Google Scholar 

  60. Kawai T, Cosimi AB, Colvin RB et al (1995) Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. Transplantation 59:256-262

    PubMed  CAS  Google Scholar 

  61. Kawai T, Sogawa H, Boskovic S et al (2004) CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates. Am J Transplant 4:1391-1398

    Article  PubMed  CAS  Google Scholar 

  62. Kimikawa M, Sachs DH, Colvin RB, Bartholomew A, Kawai T, Cosimi AB (1997) Modifications of the conditioning regimen for achieving mixed chimerism and donor-specific tolerance in cynomolgus monkeys. Transplantation 64:709-716

    Article  PubMed  CAS  Google Scholar 

  63. Kawai T, Abrahamian G, Sogawa H et al (2001) Costimulatory blockade for induction of mixed chimerism and renal allograft tolerance in nonhuman primates. Transplant Proc 33:221-222

    Article  PubMed  CAS  Google Scholar 

  64. Kawai T, Poncelet A, Sachs DH et al (1999) Long-term outcome and alloantibody production in a non-myeloablative regimen for induction of renal allograft tolerance. Transplantation 68:1767-1775

    Article  PubMed  CAS  Google Scholar 

  65. Kawai T, Sogawa H, Koulmanda M et al (2001) Long-term islet allograft function in the absence of chronic immunosuppression: A case report of a nonhuman primate previously made tolerant to a renal allograft from the same donor. Transplantation 72:351-354

    Article  PubMed  CAS  Google Scholar 

  66. Kean LS, Adams AB, Strobert E et al (2007) Induction of chimerism in rhesus macaques through stem cell transplant and costimulation blockade-based immunosuppression. Am J Transplant 7:320-335

    Article  PubMed  CAS  Google Scholar 

  67. Kawai T, Cosimi AB, Wee SL et al (2002) Effect of mixed hematopoietic chimerism on cardiac allograft survival in cynomolgus monkeys. Transplantation 73:1757-1764

    Article  PubMed  CAS  Google Scholar 

  68. Preville X, Flacher M, LeMauff B et al (2001) Mechanisms involved in antithymocyte globulin immunosuppressive activity in a nonhuman primate model. Transplantation 71:460-468

    Article  PubMed  CAS  Google Scholar 

  69. Kawai T, Cosimi AB, Colvin RB et al (1995) Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. Transplantation 59:256

    PubMed  CAS  Google Scholar 

  70. Kawai T, Cosimi AB, Spitzer TR et al (2008) HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 358:353-361

    Article  PubMed  CAS  Google Scholar 

  71. Bartholomew A, Sturgeon C, Siatskas M et al (2000) A non-radiation based regimen results in mixed chimerism in MHC-mismatched monkeys. Blood 96

    Google Scholar 

  72. Huhn RD, Tisdale JF, Agricola B, Metzger ME, Donahue RE, Dunbar CE (1999) Retroviral marking and transplantation of rhesus hematopoietic cells by nonmyeloablative conditioning. Hum Gene Ther 10:1783-1790

    Article  PubMed  CAS  Google Scholar 

  73. Hanazono Y, Terao K, Shibata H et al (2002) Introduction of the green fluorescent protein gene into hematopoietic stem cells results in prolonged discrepancy of in vivo transduction levels between bone marrow progenitors and peripheral blood cells in nonhuman primates. J Gene Med 4:470-477

    Article  PubMed  CAS  Google Scholar 

  74. Larochelle A, Krouse A, Metzger M et al (2006) AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 107:3772-3778

    Article  PubMed  CAS  Google Scholar 

  75. MacVittie TJ, Farese AM, Davis TA, Lind LB, McKearn JP (1999) Myelopoietin, a chimeric agonist of human interleukin 3 and granulocyte colony-stimulating factor receptors, mobilizes CD34+ cells that rapidly engraft lethally X-irradiated nonhuman primates. Exp Hematol 27:1557-1568

    Article  PubMed  CAS  Google Scholar 

  76. Miller AR, Skotzko MJ, Rhoades K et al (1992) Simultaneous use of two retroviral vectors in human gene marking trials: Feasibility and potential applications. Hum Gene Ther 3:619-624

    Article  PubMed  CAS  Google Scholar 

  77. Barrette S, Douglas J, Orlic D et al (2000) Superior transduction of mouse hematopoietic stem cells with 10A1 and VSV-G pseudotyped retrovirus vectors. Mol Ther 1:330-338

    Article  PubMed  CAS  Google Scholar 

  78. Barrette S, Douglas JL, Seidel NE, Bodine DM (2000) Lentivirus-based vectors transduce mouse hematopoietic stem cells with similar efficiency to moloney murine leukemia virus-based vectors. Blood 96:3385-3391

    PubMed  CAS  Google Scholar 

  79. Kiem HP, Heyward S, Winkler A et al (1997) Gene transfer into marrow repopulating cells: Comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons. Blood 90:4638-4645

    PubMed  CAS  Google Scholar 

  80. Case SS, Price MA, Jordan CT et al (1999) Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc Natl Acad Sci USA 96:2988-2993

    Article  PubMed  CAS  Google Scholar 

  81. Sutton RE, Reitsma MJ, Uchida N, Brown PO (1999) Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J Virol 73:3649-3660

    PubMed  CAS  Google Scholar 

  82. An DS, Kung SK, Bonifacino A et al (2001) Lentivirus vector-mediated hematopoietic stem cell gene transfer of common gamma-chain cytokine receptor in rhesus macaques. J Virol 75:3547-3555

    Article  PubMed  CAS  Google Scholar 

  83. An DS, Wersto RP, Agricola BA et al (2000) Marking and gene expression by a lentivirus vector in transplanted human and nonhuman primate CD34(+) cells. J Virol 74:1286-1295

    Article  PubMed  CAS  Google Scholar 

  84. Kiem HP, Andrews RG, Morris J et al (1998) Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor. Blood 92:1878-1886

    PubMed  CAS  Google Scholar 

  85. Van Beusechem VW, Bart-Baumeister JA, Bakx TA, Kaptein LC, Levinsky RJ, Valerio D (1994) Gene transfer into nonhuman primate CD34 + CD11b-bone marrow progenitor cells capable of repopulating lymphoid and myeloid lineages. Hum Gene Ther 5:295-305

    Article  PubMed  Google Scholar 

  86. Hanawa H, Hematti P, Keyvanfar K et al (2004) Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood 103:4062-4069

    Article  PubMed  CAS  Google Scholar 

  87. Kiem HP, Sellers S, Thomasson B et al (2004) Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: No progression to clonal hematopoiesis or leukemia. Mol Ther 9:389-395

    Article  PubMed  CAS  Google Scholar 

  88. Seggewiss R, Pittaluga S, Adler RL et al (2006) Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood 107:3865-3867

    Article  PubMed  CAS  Google Scholar 

  89. van Bekkum DW (1994) Biology of acute and chronic graft-versus-host reactions: Predictive value of studies in experimental animals. Bone Marrow Transplant 14(Suppl 4):S51-S55

    PubMed  Google Scholar 

  90. Gyllensten U, Sundvall M, Ezcurra I, Erlich HA (1991) Genetic diversity at class II DRB loci of the primate MHC. J Immunol 146:4368-4376

    PubMed  CAS  Google Scholar 

  91. Otting N, Bontrop RE (1995) Evolution of the major histocompatibility complex DPA1 locus in primates. Hum Immunol 42:184-187

    Article  PubMed  CAS  Google Scholar 

  92. Thiel C, Bontrop RE, Lanchbury JS (1995) Structure and diversity of the T-cell receptor alpha chain in rhesus macaque and chimpanzee. Hum Immunol 43:85-94

    Article  PubMed  CAS  Google Scholar 

  93. Heise ER, Cook DJ, Schepart BS et al (1987) The major histocompatibility complex of primates. Genetica 73:53-68

    PubMed  CAS  Google Scholar 

  94. Otting N, de Vos-Rouweler AJ, Heijmans CM, de Groot NG, Doxiadis GG, Bontrop RE (2007) MHC class I A region diversity and polymorphism in macaque species. Immunogenetics 59:367-375

    Article  PubMed  CAS  Google Scholar 

  95. Kenter M, Otting N, de Weers M et al (1993) Mhc-DRB and -DQA1 nucleotide sequences of three lowland gorillas. Implications for the evolution of primate Mhc class II haplotypes. Hum Immunol 36:205-218

    Article  PubMed  CAS  Google Scholar 

  96. Schonbach C, Vincek V, Mayer WE, Golubic M, O’HUigin C, Klein J (1993) Multiplication of Mhc-DRB5 loci in the orangutan: Implications for the evolution of DRB haplotypes. Mamm Genome 4:159-170

    Article  PubMed  CAS  Google Scholar 

  97. Balner H (1980) The DR system of rhesus monkeys: A brief review of serology, genetics, and relevance to transplantation. Transplant Proc 12:502-508

    PubMed  CAS  Google Scholar 

  98. Prasad S, Humphreys I, Kireta S et al (2007) The common marmoset as a novel preclinical transplant model: Identification of new MHC class II DRB alleles and prediction of in vitro alloreactivity. Tissue Antigens 69(Suppl 1):72-75

    Article  PubMed  CAS  Google Scholar 

  99. Moses RD, Beschorner WE, Singer D et al (1989) Restriction fragment length polymorphism analysis with a cross-reactive HLA class II DR-beta gene probe for the detection of engraftment of MHC-mismatched marrow in the rhesus monkey. Bone Marrow Transplant 4:475-481

    PubMed  CAS  Google Scholar 

  100. Flake AW, Roncarolo MG, Puck JM et al (1996) Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N Engl J Med 335:1806-1810

    Article  PubMed  CAS  Google Scholar 

  101. Brent L, Linch DC, Rodeck CH et al (1989) On the feasibility of inducing tolerance in man: A study in the cynomolgus monkey. Immunol Lett 21:55-61

    Article  PubMed  CAS  Google Scholar 

  102. Zanjani ED, Mackintosh FR, Harrison MR (1991) Hematopoietic chimerism in sheep and nonhuman primates by in utero transplantation of fetal hematopoietic stem cells. Blood Cells 17:349-363 discussion 364-346

    PubMed  CAS  Google Scholar 

  103. Shields LE, Gaur L, Delio P, Potter J, Sieverkropp A, Andrews RG (2004) Fetal immune suppression as adjunctive therapy for in utero hematopoietic stem cell transplantation in nonhuman primates. Stem Cells 22:759-769

    Article  PubMed  Google Scholar 

  104. Shields LE, Gaur L, Delio P et al (2005) The use of CD 34(+) mobilized peripheral blood as a donor cell source does not improve chimerism after in utero hematopoietic stem cell transplantation in non-human primates. J Med Primatol 34:201-208

    Article  PubMed  Google Scholar 

  105. Sablinski T, Emery DW, Monroy R et al (1999) Long-term discordant xenogeneic (porcine-to-primate) bone marrow engraftment in a monkey treated with porcine-specific growth factors. Transplantation 67:972-977

    Article  PubMed  CAS  Google Scholar 

  106. Kozlowski T, Ierino FL, Lambrigts D et al (1998) Depletion of anti-Gal(alpha)1-3Gal antibody in baboons by specific alpha-Gal immunoaffinity columns. Xenotransplantation 5:122-131

    Article  PubMed  CAS  Google Scholar 

  107. Kozlowski T, Monroy R, Xu Y et al (1998) Anti-Gal(alpha)1-3Gal antibody response to porcine bone marrow in unmodified baboons and baboons conditioned for tolerance induction. Transplantation 66:176-182

    Article  PubMed  CAS  Google Scholar 

  108. Kozlowski T, Monroy R, Giovino M et al (1999) Effect of pig-specific cytokines on mobilization of hematopoietic progenitor cells in pigs and on pig bone marrow engraftment in baboons. Xenotransplantation 6:17-27

    Article  PubMed  CAS  Google Scholar 

  109. Buhler L, Awwad M, Treter S et al (2002) Pig hematopoietic cell chimerism in baboons conditioned with a nonmyeloablative regimen and CD154 blockade. Transplantation 73:12-22

    Article  PubMed  CAS  Google Scholar 

  110. Alwayn IP, Buhler L, Appel JZ III et al (2001) Mechanisms of thrombotic microangiopathy following xenogeneic hematopoietic progenitor cell transplantation. Transplantation 71:1601-1609

    Article  PubMed  CAS  Google Scholar 

  111. Alwayn IP, Appel JZ, Goepfert C, Buhler L, Cooper DK, Robson SC (2000) Inhibition of platelet aggregation in baboons: Therapeutic implications for xenotransplantation. Xenotransplantation 7:247-257

    Article  PubMed  CAS  Google Scholar 

  112. Appel JZ III, Alwayn IP, Correa LE, Cooper DK, Robson SC (2001) Modulation of platelet aggregation in baboons: Implications for mixed chimerism in xenotransplantation. II. The effects of cyclophosphamide on pig peripheral blood progenitor cell-induced aggregation. Transplantation 72:1306-1310

    Article  PubMed  CAS  Google Scholar 

  113. Appel JZ III, Alwayn IP, Buhler L, DeAngelis HA, Robson SC, Cooper DK (2001) Modulation of platelet aggregation in baboons: Implications for mixed chimerism in xenotransplantation. I. The roles of individual components of a transplantation conditioning regimen and of pig peripheral blood progenitor cells. Transplantation 72:1299-1305

    Article  PubMed  Google Scholar 

  114. Tseng YL, Dor FJ, Kuwaki K et al (2004) Bone marrow transplantation from alpha1, 3-galactosyltransferase gene-knockout pigs in baboons. Xenotransplantation 11:361-370

    Article  PubMed  Google Scholar 

  115. Dor FJ, Tseng YL, Kuwaki K, Ko DS, Cooper DK (2004) Pig spleen transplantation induces transient hematopoietic cell chimerism in baboons. Xenotransplantation 11:298-300

    Article  PubMed  CAS  Google Scholar 

  116. Shiozawa Y, Havens AM, Pienta KJ, Taichman RS (2008) The bone marrow niche: Habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 22:941-950

    Article  PubMed  CAS  Google Scholar 

  117. Koc ON, Gerson SL, Cooper BW et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307

    PubMed  CAS  Google Scholar 

  118. Angelopoulou M, Novelli E, Grove JE et al (2003) Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 31:413-420

    Article  PubMed  CAS  Google Scholar 

  119. Fibbe WE, Noort WA (2003) Mesenchymal stem cells and hematopoietic stem cell transplantation. Ann NY Acad Sci 996:235-244

    Article  PubMed  Google Scholar 

  120. Le Blanc K, Samuelsson H, Gustafsson B et al (2007) Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21:1733-1738

    Article  PubMed  CAS  Google Scholar 

  121. Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439-1441

    Article  PubMed  Google Scholar 

  122. Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11:389-398

    Article  PubMed  Google Scholar 

  123. Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet 371:1579-1586

    Article  PubMed  CAS  Google Scholar 

  124. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101:2999-3001

    Article  PubMed  CAS  Google Scholar 

  125. Bartholomew A, Patil S, Mackay A et al (2001) Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther 12:1527-1541

    Article  PubMed  CAS  Google Scholar 

  126. Chapel A, Bertho JM, Bensidhoum M et al (2003) Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med 5:1028-1038

    Article  PubMed  Google Scholar 

  127. Lataillade JJ, Doucet C, Bey E et al (2007) New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy. Regen Med 2:785-794

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Szilagyi, E., Mahmud, N., Bartholomew, A. (2010). The Importance of Non-Human Primate Models for Pre-clinical Studies in Hematopoiesis. In: Lazarus, H.M., Laughlin, M.J. (eds) Allogeneic Stem Cell Transplantation. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-478-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-478-0_43

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-33-6

  • Online ISBN: 978-1-59745-478-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics