Skip to main content

Therapeutic Potential of Mesenchymal Stem Cells in Hematopoietic Stem Cell Transplantation

  • Chapter
  • First Online:
Allogeneic Stem Cell Transplantation

Part of the book series: Contemporary Hematology ((CH))

  • 1460 Accesses

Abstract

Mesenchymal Stem Cells (MSCs) are non-hematopoietic multipotent cells residing in the stroma of the bone marrow that are capable of differentiating into both mesenchymal and non-mesenchymal lineages [1]. In fact, in addition to bone, cartilage, fat, and myoblasts, it has been demonstrated that MSCs are capable of differentiating into neurons and astrocytes in vitro and in vivo [2, 3]. Multipotent Adult Progenitor Cells (MAPCs) are also multipotent cells that can be isolated from the bone marrow. Although these cells share some features with MSCs, they differ from MSCs at several levels; MAPCs are expanded at low densities under low oxygen tension; they are CD90+, CD49C+, CD10+, CD45− and class II HLA−; they have active telomerase, are genetically stable and exhibit greater neurologic and hematopoietic potential than MSCs [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human bone marrow. Bone 13:81-88

    Article  PubMed  CAS  Google Scholar 

  2. Black IB, Woodbury D (2001) Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cells Mol Dis 27(3):632-636

    Article  PubMed  CAS  Google Scholar 

  3. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364-370

    Article  PubMed  CAS  Google Scholar 

  4. Breyer A, Estharabadi N, Oki M et al (2006) Multipotent adult progenitor cell isolation and culture procedures. Exp Hematol 34(11):1596-1601

    Article  PubMed  CAS  Google Scholar 

  5. Ball LM, Bernardo ME, Roelofs H et al (2007) Co-transplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem cell transplantation. Blood 110(7):2764-2767

    Article  PubMed  CAS  Google Scholar 

  6. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226(6):507-520

    CAS  Google Scholar 

  7. Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327-359

    Article  PubMed  CAS  Google Scholar 

  8. Owen M (1988) Marrow stromal stem cells. J Cell Sci Suppl 10:63-76

    PubMed  CAS  Google Scholar 

  9. Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42-60

    PubMed  CAS  Google Scholar 

  10. Caplan AI (1994) The mesengenic process. Clin Plast Surg 21(3):429-435

    PubMed  CAS  Google Scholar 

  11. Lennon DP, Haynesworth SE, Bruder SP, Jaiswal N, Caplan AI (1996) Human and animal mesenchymal progenitor cells from bone marrow: identification of serum for optimal selection and proliferation. In Vitro Cell Dev Biol 32(10):602-611

    Article  Google Scholar 

  12. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64(2):278-294

    Article  PubMed  CAS  Google Scholar 

  13. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107(2):275-281

    Article  PubMed  CAS  Google Scholar 

  14. Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75(3):424-436

    Article  PubMed  CAS  Google Scholar 

  15. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315-317

    Article  PubMed  CAS  Google Scholar 

  16. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143-147

    Article  PubMed  CAS  Google Scholar 

  17. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295-312

    Article  PubMed  CAS  Google Scholar 

  18. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265-272

    Article  PubMed  CAS  Google Scholar 

  19. Yoo JU, Barthel TS, Nishimura K et al (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80(12):1745-1757

    PubMed  CAS  Google Scholar 

  20. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18(6):675-679

    Article  PubMed  CAS  Google Scholar 

  21. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4(4):415-428

    Article  PubMed  CAS  Google Scholar 

  22. Kuznetsov SA, Friedenstein AJ, Robey PG (1997) Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol 97(3):561-570

    Article  PubMed  CAS  Google Scholar 

  23. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71-74

    Article  PubMed  CAS  Google Scholar 

  24. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641-650

    Article  PubMed  CAS  Google Scholar 

  25. Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181(1):67-73

    Article  PubMed  CAS  Google Scholar 

  26. Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18(12):1417-1426

    Article  PubMed  CAS  Google Scholar 

  27. Tomita S, Li RK, Weisel RD et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(19 Suppl):II247-II256

    Google Scholar 

  28. Koc ON, Gerson SL, Cooper BW et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18(2):307-316

    PubMed  CAS  Google Scholar 

  29. Tomita M, Adachi Y, Yamada H et al (2002) Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem Cells 20(4):279-283

    Article  PubMed  CAS  Google Scholar 

  30. Pittenger MF, Mbalaviele G, Black M, Mosca JD, Marshak DR (2001) Mesenchymal stem cells. In: Koller MR, Palsson BO, Masters JRW (eds) Primary mesenchymal cells. Kluwer, Dordrecht, pp 189-207

    Google Scholar 

  31. Banfi A, Bianchi G, Notaro R, Luzzatto L, Cancedda R, Quarto R (2002) Replicative aging and gene expression in long-term cultures of human bone marrow stromal cells. Tissue Eng 8(6):901-910

    Article  PubMed  CAS  Google Scholar 

  32. Blazsek I, Delmas Marsalet B, Legras S, Marion S, Machover D, Misset JL (1999) Large scale recovery and characterization of stromal cell-associated primitive haemopoietic progenitor cells from filter-retained human bone marrow. Bone Marrow Transplant 23(7):647-657

    Article  PubMed  CAS  Google Scholar 

  33. Galotto M, Berisso G, Delfino L et al (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27(9):1460-1466

    Article  PubMed  CAS  Google Scholar 

  34. Meisel R, Zibert A, Taskaya D, Daeubener W, Dilloo D (2003) Bone marrow stromal cells inhibit allogeneic T-cell responses by indolamine 2;3-dioxygenase mediated tryptophan depletion. Blood 102:19a

    Google Scholar 

  35. Aggarwal S, Pittenger M (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815

    Article  PubMed  CAS  Google Scholar 

  36. McIntosh K, Klyushnenkova E, Shustova V, Moseley A, Deans R (1999) Suppression of alloreactive T cell response by human mesenchymal stem cells involves CD+ cells. Blood 94:133a

    Google Scholar 

  37. DiNicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838

    Article  CAS  Google Scholar 

  38. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11-20

    Article  PubMed  Google Scholar 

  39. Tse W, Pendleton J, Beyer W, Egalka M, Guinan E (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389

    Article  PubMed  CAS  Google Scholar 

  40. Maitra B, Szekely E, Gjini K et al (2004) Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant 33(6):597-604

    Article  PubMed  CAS  Google Scholar 

  41. Krampera M, Glennie S, Dyson J et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722

    Article  PubMed  CAS  Google Scholar 

  42. Beyth S, Borovsky Z, Mevorach D et al (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214

    Article  PubMed  CAS  Google Scholar 

  43. El-Badri N, Wang B, Cherry, Good R (1998) Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exp Hematol 29:110

    Google Scholar 

  44. Ishida T, Inaba M, Hisha H et al (1994) Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation: complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor. J Immunol 152:3119

    PubMed  CAS  Google Scholar 

  45. Kaufman C, Colson Y, Wren S, Watkins S, Simmons R, Ildstad S (1994) Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of allogeneic bone marrow stem cells. Blood 84:2436

    PubMed  CAS  Google Scholar 

  46. Bartholomew A, Sturgeon C, Siatskas M et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30(1):42-48

    Article  PubMed  Google Scholar 

  47. Djouad F, Plence P, Bony C et al (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837

    Article  PubMed  CAS  Google Scholar 

  48. Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439-1441

    Article  PubMed  Google Scholar 

  49. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant 16(4):557-564

    PubMed  CAS  Google Scholar 

  50. Koç O, Day J, Nieder M, Gerson S, Lazarus H, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplantation 30:215

    Article  PubMed  Google Scholar 

  51. Lazarus H, Curtin P, Devine S, McCarthy P, Holland K, Moseley A (2000) Role of mesenchymal stem cells in allogeneic transplantation: early phase I clinical results. Blood 96:392a

    Google Scholar 

  52. Lazarus HM, Koc ON, Devine SM et al (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11(5):389-398

    Article  PubMed  Google Scholar 

  53. Bensinger W, Martin P, Storer B et al (2001) Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 344:175-181

    Article  PubMed  CAS  Google Scholar 

  54. Couban S, Simpson D, Barnett M et al (2002) A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood 100:1525

    Article  PubMed  CAS  Google Scholar 

  55. Le Blanc K, Samuelsson H, Gustafsson B et al (2007) Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 21(8):1733-1738

    Article  PubMed  Google Scholar 

  56. Fouillard L, Chapel A, Bories D et al (2007) Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation. Leukemia 21(3):568-570

    Article  PubMed  CAS  Google Scholar 

  57. Ringden O, Uzunel M, Sundberg B et al (2007) Tissue repair using allogeneic mesenchymal stem cells for hemorrhagic cystitis, pneumomediastinum and perforated colon. Leukemia 21:2271-2276

    Article  PubMed  CAS  Google Scholar 

  58. Le Blanc K, Ringden O (2005) Use of mesenchymal stem cells for the prevention of immune complications of hematopoietic stem cell transplantation. Haematologica 90(4):438

    PubMed  Google Scholar 

  59. Francois S, Mouiseddine M, Mathieu N et al (2007) Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model. Ann Hematol 86(1):1-8

    Article  PubMed  Google Scholar 

  60. Rasulov MF, Vasilchenkov AV, Onishchenko NA et al (2005) First experience of the use bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull Exp Biol Med 139(1):141-144

    Article  PubMed  CAS  Google Scholar 

  61. Bystrov AV, Polyaev YA, Pogodina MA, Rasulov MF, Krasheninnikov ME, Onishchenko NA (2006) Use of autologous bone marrow mesenchymal stem cells for healing of free full-thickness skin graft in a zone with pronounced hypoperfusion of soft tissues caused by arteriovenous shunting. Bull Exp Biol Med 142(1):123-128

    Article  PubMed  CAS  Google Scholar 

  62. Vojtassak J, Danisovic L, Kubes M et al (2006) Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett 27(Suppl 2):134-137

    PubMed  Google Scholar 

  63. Barry FP (2003) Mesenchymal stem cell therapy in joint disease. Novartis Found Symp 249:86-96 discussion 96-102, 170-174, 239-241

    Article  PubMed  Google Scholar 

  64. Moviglia GA, Fernandez Vina R, Brizuela JA et al (2006) Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy 8(3):202-209

    Article  PubMed  CAS  Google Scholar 

  65. Arguero R, Careaga-Reyna G, Castano-Guerra R, Garrido-Garduno MH, Magana-Serrano JA, de Jesus Nambo-Lucio M (2006) Cellular autotransplantation for ischemic and idiopathic dilated cardiomyopathy. Preliminary report. Arch Med Res 37(8):1010-1014

    Article  PubMed  Google Scholar 

  66. Assmus B, Honold J, Schachinger V et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355(12):1222-1232

    Article  PubMed  CAS  Google Scholar 

  67. Klein HM, Ghodsizad A, Marktanner R et al (2007) Intramyocardial implantation of CD133+ stem cells improved cardiac function without bypass surgery. Heart Surg Forum 10(1):E66-E69

    Article  Google Scholar 

  68. Opie LH (2006) Controversies in cardiology. Lancet 367(9504):13-14

    Article  PubMed  Google Scholar 

  69. Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57(6):874-882

    Article  PubMed  Google Scholar 

  70. Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA (2005) A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 48(7):1416-1423

    Article  PubMed  Google Scholar 

  71. Filho Cerruti H, Kerkis I, Kerkis A et al (2007) Allogenous bone grafts improved by bone marrow stem cells and platelet growth factors: clinical case reports. Artif Organs 31(4):268-273

    Article  PubMed  Google Scholar 

  72. Mazzini L, Mareschi K, Ferrero I et al (2006) Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol Res 28(5):523-526

    Article  PubMed  Google Scholar 

  73. Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J et al (2007) Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 4(1):50-57

    PubMed  Google Scholar 

  74. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol 203(2):398-409

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Solchaga, L.A., Lazarus, H.M. (2010). Therapeutic Potential of Mesenchymal Stem Cells in Hematopoietic Stem Cell Transplantation. In: Lazarus, H.M., Laughlin, M.J. (eds) Allogeneic Stem Cell Transplantation. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-478-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-478-0_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-33-6

  • Online ISBN: 978-1-59745-478-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics