Skip to main content

Concepts and Controversies in the Use of Novel Preparative Regimens for Allogeneic Stem Cell Transplantation

  • Chapter
  • First Online:
Allogeneic Stem Cell Transplantation

Part of the book series: Contemporary Hematology ((CH))

Abstract

The number of reduced-intensity conditioning (RIC)/nonmyeloablative transplants (NMT) has risen steadily over the last 10 years, now comprising approximately 30% of all allogeneic transplants performed annually [1]. Despite the rapid rise in its application, we have much to learn in terms of optimizing conditioning regimens, GvHD prophylaxis, identifying appropriate patient cohorts, and disease states, thus balancing the critical endpoints of chimerism, GvHD, relapse, and toxicity for the optimal utilization of this strategy.

Building on the landmark work by Storb et al. [2, 3] in the canine model, the paradigm requiring myeloablation of the host immunohematopoietic system for successful long-term donor hematopoietic engraftment, has been replaced by the view that nonmyeloablative allogeneic transplantation is at its essence, the truest form of cellular immunotherapy. At its inception approximately a decade ago, the initial goal was to offer potentially curative treatment to patients previously excluded from consideration for standard allotransplantation secondary to age and/or other comorbid conditions. Early papers in RIC/NMT focused on the critical goals of establishing donor hematopoiesis with low early treatment-related mortality; notably absent was the demonstration of long-term disease control [4]. Whether NMT/RIC can improve on the disease outcomes of standard transplantation as opposed to simply broadening the pool of potential candidates for allotransplantation remains an area of active investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pasquini MC (2006) Current use and outcome of hematopoietic stem cell transplantation: part I - CIBMTR Summary Slides, 2005. CIBMTR Newslett 12(1):5-8

    Google Scholar 

  2. Storb R et al (1997) Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 89(8):3048-3054

    PubMed  CAS  Google Scholar 

  3. Yu C et al (1995) DLA-identical bone marrow grafts after low-dose total body irradiation: effects of high-dose corticosteroids and cyclosporine on engraftment. Blood 86(11):4376-4381

    PubMed  CAS  Google Scholar 

  4. Giralt S et al (1997) Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood 89(12):4531-4536

    PubMed  CAS  Google Scholar 

  5. Hartman AR, Williams S, Dillon JJ (1998) Survival, disease-free survival and adverse effects of conditioning for allogeneic bone marrow transplantation with busulfan/cyclophosphamide vs total body irradiation: a meta-analysis. Bone Marrow Transplant 22:439-443

    Article  PubMed  CAS  Google Scholar 

  6. Socie G et al (2001) Busulfan plus cyclophosphamide compared with total-body irradiation plus cyclophosphamide before marrow transplantation for myeloid leukemia: long-term follow-up of 4 randomized studies. Blood 98(13):3569-3574

    Article  PubMed  CAS  Google Scholar 

  7. Blaise D, Maraninchi D, Archimbaud E (1992) Allogeneic bone marrow transplantation for acute myeloid leukemia in first remission: a randomized trial of a busulfan-cytoxan versus cytoxan-total body irradiation as preparative regimen: a report from the Groupe d’Etudes de la Greffe de M. Blood 79:2578-2582

    PubMed  CAS  Google Scholar 

  8. Ringden O, Ruutu T, Remberger M (1994) A randomized trial of comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia-a report from the Nordic Bone Marrow Transplantation Group. Blood 83:2723-2730

    PubMed  CAS  Google Scholar 

  9. Clift RA et al (1994) Marrow transplantation for chronic myeloid leukemia: a randomized study comparing cyclophosphamide and total body irradiation with busulfan and cyclophosphamide. [comment]. Blood 84(6):2036-2043

    PubMed  CAS  Google Scholar 

  10. Devergie A, Blaise D, Attal M (1995) Allogeneic bone marrow transplantation for chronic myeloid leukemia in first chronic phase: a randomized trial of busulfan-cytoxan versus cytoxan-total body irradiation as preparative regimen: a report from the French Society of Bone Marrow. Blood 85:2263-2268

    PubMed  CAS  Google Scholar 

  11. Litzow MR et al (2002) Comparison of outcome following allogeneic bone marrow transplantation with cyclophosphamide-total body irradiation versus busulphan-cyclophosphamide conditioning regimens for acute myelogenous leukaemia in first remission. Br J Haematol 119(4):1115-1124

    Article  PubMed  CAS  Google Scholar 

  12. Russell J et al (2002) Once-daily intravenous busulfan given with fludarabine as conditioning for allogeneic stem cell transplantation: study of pharmacokinetics and early clinical outcomes. Biol Blood Marrow Transplant 8:468-476

    Article  PubMed  CAS  Google Scholar 

  13. deLima M, Couriel D, Thall PF (2004) Once-daily intravenous busulfan and fludarabine: clinical and pharmacokinetic results of a myeloablative, reduced-toxicity conditioning regimen for allogeneic stem cell transplantation in AML and MDS. Blood 104:857-864

    Article  CAS  Google Scholar 

  14. Bornhauser M et al (2003) Conditioning with fludarabine and targeted busulfan for transplantation of allogeneic hematopoietic stem cells. Blood 102:820-826

    Article  PubMed  Google Scholar 

  15. Field T et al (2006) Busulfan area-under-the-curve finding study within a busulfan/fludarabine (BuFlu) conditioning regimen before allogeneic hematopoietic cell transplantation. Blood 108:832a

    Google Scholar 

  16. Shimoni A et al (2007) Comparison between two fludarabine-based reduced-intensity conditioning regimens before allogeneic hematopoietic stem-cell transplantation: fludarabine/melphalan is associated with higher incidence of acute graft-versus-host disease and non-relapse mortality and lower incidence of relapse than fludarabine/busulfan. Leukemia 21(10):2109-2116

    Article  PubMed  CAS  Google Scholar 

  17. van Besien K et al (2005) Fludarabine, melphalan, and alemtuzumab conditioning in adults with standard-risk advanced acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol 23(24):5728-5738

    Article  PubMed  Google Scholar 

  18. Sayer HG et al (2003) Reduced intensity conditioning for allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia: disease status by marrow blasts is the strongest prognostic factor. Bone Marrow Transplant 31(12):1089-1095

    Article  PubMed  CAS  Google Scholar 

  19. de Lima M et al (2004) Nonablative versus reduced-intensity conditioning regimens in the treatment of acute myeloid leukemia and high-risk myelodysplastic syndrome: dose is relevant for long-term disease control after allogeneic hematopoietic stem cell transplant. Blood 104(3):865-872

    Article  PubMed  Google Scholar 

  20. Kebriaei P et al (2005) Impact of disease burden at time of allogeneic stem cell transplantation in adults with acute myeloid leukemia and myelodysplastic syndromes. Bone Marrow Transplant 35(10):965-970

    Article  PubMed  CAS  Google Scholar 

  21. Shimoni A et al (2006) Allogeneic hematopoietic stem-cell transplantation in AML and MDS using myeloablative versus reduced-intensity conditioning: the role of dose intensity. Leukemia 20(2):322-328

    Article  PubMed  CAS  Google Scholar 

  22. Aoudjhane M et al (2005) Comparative outcome of reduced intensity and myeloablative conditioning regimen in HLA identical sibling allogeneic haematopoietic stem cell transplantation for patients older than 50 years of age with acute myeloblastic leukaemia: a retrospective survey from the Acute Leukemia Working Party (ALWP) of the European group for Blood and Marrow Transplantation (EBMT). Leukemia 19(12):2304-2312

    Article  PubMed  CAS  Google Scholar 

  23. Valcarcel D et al (2005) Conventional versus reduced-intensity conditioning regimen for allogeneic stem cell transplantation in patients with hematological malignancies. Eur J Haematol 74(2):144-151

    Article  PubMed  CAS  Google Scholar 

  24. Massenkeil G et al (2005) Survival after reduced-intensity conditioning is not inferior to standard high-dose conditioning before allogeneic haematopoietic cell transplantation in acute leukaemias. Bone Marrow Transplant 36(8):683-689

    Article  PubMed  CAS  Google Scholar 

  25. Martino R et al (2006) Retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic hematopoietic stem cell transplantation using HLA-identical sibling donors in myelodysplastic syndromes. Blood 108(3):836-846

    Article  PubMed  CAS  Google Scholar 

  26. Maruyama D et al (2007) Comparable antileukemia/lymphoma effects in nonremission patients undergoing allogeneic hematopoietic cell transplantation with a conventional cytoreductive or reduced-intensity regimen. Biol Blood Marrow Transplant 13(8):932-941

    Article  PubMed  Google Scholar 

  27. Scott BL et al (2006) Myeloablative vs nonmyeloablative allogeneic transplantation for patients with myelodysplastic syndrome or acute myelogenous leukemia with multilineage dysplasia: a retrospective analysis. Leukemia 20(1):128-135

    Article  PubMed  CAS  Google Scholar 

  28. Alyea EP et al (2005) Comparative outcome of nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation for patients older than 50 years of age. Blood 105(4):1810-1814

    Article  PubMed  CAS  Google Scholar 

  29. Hari P et al (2008) Allogeneic transplants in follicular lymphoma: higher risk of disease progression after reduced-intensity compared to myeloablative conditioning. Biol Blood Marrow Transplant 14(2):236-245

    Article  PubMed  Google Scholar 

  30. Ferrara J, Deeg H (1991) Graft-versus-host disease. N Engl J Med 324:667-674

    Article  PubMed  CAS  Google Scholar 

  31. Mielcarek M et al (2003) Graft-versus-host disease after nonmyeloablative versus conventional hematopoietic stem cell transplantation. Blood 102(2):756-762

    Article  PubMed  CAS  Google Scholar 

  32. Sorror M et al (2005) Lessened severe graft-versus-host after “minitransplantations”. Blood 105(6):2614

    Article  PubMed  CAS  Google Scholar 

  33. Couriel DR et al (2004) Acute and chronic graft-versus-host disease after ablative and nonmyeloablative conditioning for allogeneic hematopoietic transplantation. Biol Blood Marrow Transplant 10(3):178-185

    Article  PubMed  Google Scholar 

  34. Shlomchik W et al (1999) Prevention of graft-versus-host disease by inactivation of host antigen-presenting cells. Science 285:412-415

    Article  PubMed  CAS  Google Scholar 

  35. Mielcarek M, Storb R (2005) Graft-vs-host disease after non-myeloablative hematopoietic cell transplantation. Leuk Lymphoma 46(9):1251-1260

    Article  PubMed  CAS  Google Scholar 

  36. Mielcarek M et al (2005) Prognostic relevance of “early-onset” graft-versus-host disease following non-myeloablative haematopoietic cell transplantation. Br J Haematol 129(3):381-391

    Article  PubMed  Google Scholar 

  37. Levine J et al (2003) Lowered-intensity preparative regimen for allogeneic stem cell transplantation delays acute graft-versus-host disease but does not improve outcome for advanced hematologic malignancy. Biol Blood Marrow Transplant 9:189-197

    Article  PubMed  Google Scholar 

  38. Couriel D, Giralt S (2005) Graft vs Host Disease in Nonmyeloablative Transplant. In: Ferrara JL, Cooke KR, Deeg HJ (eds) Graft vs Host Disease. Marcel Dekker, New York

    Google Scholar 

  39. Loren A et al (2005) Intensive graft-versus-host disease prophylaxis is required after unrelated donor non-myeloablative stem cell transplantation. Bone Marrow Transplant 35:921-926

    Google Scholar 

  40. Deeg HJ et al (2006) Optimization of allogeneic transplant conditioning: not the time for dogma. Leukemia 20(10):1701-1705

    Article  PubMed  CAS  Google Scholar 

  41. McSweeney PA et al (2001) Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 97(11):3390-3400

    Article  PubMed  CAS  Google Scholar 

  42. Maris MB et al (2003) HLA-matched unrelated donor hematopoietic cell transplantation after nonmyeloablative conditioning for patients with hematologic malignancies. Blood 102(6):2021-2030

    Article  PubMed  CAS  Google Scholar 

  43. Hegenbart U et al (2006) Treatment for acute myelogenous leukemia by low-dose, total-body, irradiation-based conditioning and hematopoietic cell transplantation from related and unrelated donors. J Clin Oncol 24(3):444-453

    Article  PubMed  CAS  Google Scholar 

  44. Hale G et al (1998) Improving the outcome of bone marrow transplantation by using CD52 monoclonal antibodies to prevent graft-versus-host disease and graft rejection. Blood 92(12):4581-4590

    PubMed  CAS  Google Scholar 

  45. Hale G, Cobbold S, Waldmann H (1988) T cell depletion with CAMPATH-1 in allogeneic bone marrow transplantation. Transplant 45(4):753-759

    Article  CAS  Google Scholar 

  46. Kottaridis PD et al (2000) In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood 96(7):2419-2425

    PubMed  CAS  Google Scholar 

  47. Loren AW et al (2005) Intensive graft-versus-host disease prophylaxis is required after unrelated-donor nonmyeloablative stem cell transplantation. Bone Marrow Transplant 35(9):921-926

    Article  PubMed  CAS  Google Scholar 

  48. Perez-Simon JA et al (2002) Nonmyeloablative transplantation with or without alemtuzumab: comparison between 2 prospective studies in patients with lymphoproliferative disorders. Blood 100(9):3121-3127

    Article  PubMed  CAS  Google Scholar 

  49. Morris EC et al (2003) Pharmacokinetics of alemtuzumab used for in vivo and in vitro T-cell depletion in allogeneic transplantations: relevance for early adoptive immunotherapy and infectious complications. Blood 102(1):404-406

    Article  PubMed  CAS  Google Scholar 

  50. Morris E et al (2004) Outcomes after alemtuzumab-containing reduced-intensity allogeneic transplantation regimen for relapsed and refractory non-Hodgkin lymphoma. Blood 104(13):3865-3871

    Article  PubMed  CAS  Google Scholar 

  51. Michaelis L et al (2007) Chimerism does not predict for outcome after alemtuzumab based conditioning. Bone Marrow Transplant 40(2):181

    Article  PubMed  CAS  Google Scholar 

  52. Juliusson G et al (2006) Subcutaneous alemtuzumab vs ATG in adjusted conditioning for allogeneic transplantation: influence of Campath dose on lymphoid recovery, mixed chimerism and survival. Bone Marrow Transplant 37(5):503-510

    Article  PubMed  CAS  Google Scholar 

  53. Hale G et al (2001) CAMPATH-1 antibodies in stem-cell transplantation. Cytotherapy 3(3):145-164

    Article  PubMed  CAS  Google Scholar 

  54. Klangsinsirikul P et al (2002) Campath-1G causes rapid depletion of circulating host dendritic cells (DCs) before allogeneic transplantation but does not delay donor DC reconstitution. Blood 99(7):2586-2591

    Article  PubMed  CAS  Google Scholar 

  55. Ratzinger G et al (2003) Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft-host interactions in transplantation. Blood 101(4):1422-1429 [erratum appears in Blood. 2005 Apr 15;105(8):3018 Note: dosage error in text]

    Article  PubMed  CAS  Google Scholar 

  56. Khouri IF et al (2004) Low-dose alemtuzumab (Campath) in myeloablative allogeneic stem cell transplantation for CD52-positive malignancies: decreased incidence of acute graft-versus-host-disease with unique pharmacokinetics. [see comment]. Bone Marrow Transplant 33(8):833-837

    Article  PubMed  CAS  Google Scholar 

  57. Rebello P et al (2001) Pharmacokinetics of CAMPATH-1H in BMT patients. Cytotherapy 3(4):261-267

    Article  PubMed  CAS  Google Scholar 

  58. Hale G et al (2004) Blood concentrations of alemtuzumab and antiglobulin responses in patients with chronic lymphocytic leukemia following intravenous or subcutaneous routes of administration. Blood 104(4):948-955

    Article  PubMed  CAS  Google Scholar 

  59. Russell NH, Byrne JL (2004) In vivo Campath for the prevention of GvHD following allogeneic HSCT: effects of dose, schedule and antibody type. [comment]. Bone Marrow Transplant 34(12):1101-1102

    Article  PubMed  CAS  Google Scholar 

  60. Chan GW et al (2003) Reduced-intensity transplantation for patients with myelodysplastic syndrome achieves durable remission with less graft-versus-host disease. [see comment]. Biol Blood Marrow Transplant 9(12):753-759

    Article  PubMed  Google Scholar 

  61. Miller KB et al (2004) A novel reduced intensity regimen for allogeneic hematopoietic stem cell transplantation associated with a reduced incidence of graft-versus-host disease. Bone Marrow Transplant 33(9):881-889

    Article  PubMed  CAS  Google Scholar 

  62. Foss FM, Gorgun G, Miller KB (2002) Extracorporeal photopheresis in chronic graft-versus-host disease. Bone Marrow Transplant 29(9):719-725

    Article  PubMed  CAS  Google Scholar 

  63. Lamioni A et al (2005) The immunological effects of extracorporeal photopheresis unraveled: induction of tolerogenic dendritic cells in vitro and regulatory T cells in vivo. Transplantation 79(7):846-850

    Article  PubMed  Google Scholar 

  64. Lan F et al (2003) Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: the role of CD1-reactive natural killer T cells. Biol Blood Marrow Transplant 9(6):355-363

    Article  PubMed  Google Scholar 

  65. Lan F et al (2001) Predominance of NK1.1+TCR alpha beta+ or DX5+TCR alpha beta+ T cells in mice conditioned with fractionated lymphoid irradiation protects against graft-versus-host disease: “natural suppressor” cells. J Immunol 167(4):2087-2096

    PubMed  CAS  Google Scholar 

  66. Lowsky R et al (2005) Protective conditioning for acute graft-versus-host disease. [see comment]. N Engl J Med 353(13):1321-1331 [erratum appears in N Engl J Med. 2006 Feb 23;354(8):884]

    Article  PubMed  CAS  Google Scholar 

  67. Reddy P et al (2005) A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nat Med 11(11):1244-1249

    Article  PubMed  CAS  Google Scholar 

  68. Miller JS et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051-3057

    Article  PubMed  CAS  Google Scholar 

  69. Baron F, Beguin Y (2002) Preemptive cellular immunotherapy after T-cell-depleted allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 8:351-359

    Article  PubMed  CAS  Google Scholar 

  70. Barrett AJ et al (1998) T cell-depleted bone marrow transplantation and delayed T cell add-back to control acute GVHD and conserve a graft-versus-leukemia effect. Bone Marrow Transplant 21(6):543-551

    Article  PubMed  CAS  Google Scholar 

  71. Massenkeil G et al (2003) Reduced intensity conditioning and prophylactic DLI can cure patients with high-risk acute leukaemias if complete donor chimerism can be achieved. Bone Marrow Transplant 31(5):339-345

    Article  PubMed  CAS  Google Scholar 

  72. Montero A et al (2006) T-cell depleted peripheral blood stem cell allotransplantation with T-cell add-back for patients with hematological malignancies: effect of chronic GVHD on outcome. Biol Blood Marrow Transplant 12(12):1318-1325

    Article  PubMed  Google Scholar 

  73. Barrett AJ, Rezvani K (2007) Translational mini-review series on vaccines: Peptide vaccines for myeloid leukaemias. Clin Exp Immunol 148(2):189-198

    Article  PubMed  CAS  Google Scholar 

  74. Rossig C, Brenner MK (2004) Genetic modification of T lymphocytes for adoptive immunotherapy. Mol Ther 10(1):5-18

    Article  PubMed  CAS  Google Scholar 

  75. Martino R et al (2002) Evidence for a graft-versus-leukemia effect after allogeneic peripheral blood stem cell transplantation with reduced-intensity conditioning in acute myelogenous leukemia and myelodysplastic syndromes. Blood 100(6):2243-2245

    Article  PubMed  CAS  Google Scholar 

  76. Giralt S et al (2001) Melphalan and purine analog-containing preparative regimens: reduced-intensity conditioning for patients with hematologic malignancies undergoing allogeneic progenitor cell transplantation. Blood 97(3):631-637

    Article  PubMed  CAS  Google Scholar 

  77. Nakamura R et al (2007) Reduced-intensity conditioning for allogeneic hematopoietic stem cell transplantation with fludarabine and melphalan is associated with durable disease control in myelodysplastic syndrome. Bone Marrow Transplant 40(9):843-850

    Article  PubMed  CAS  Google Scholar 

  78. Chakraverty R et al (2002) Limiting transplantation-related mortality following unrelated donor stem cell transplantation by using a nonmyeloablative conditioning regimen. Blood 99(3):1071-1078

    Article  PubMed  CAS  Google Scholar 

  79. Tauro S et al (2005) Allogeneic stem-cell transplantation using a reduced-intensity conditioning regimen has the capacity to produce durable remissions and long-term disease-free survival in patients with high-risk acute myeloid leukemia and myelodysplasia. J Clin Oncol 23(36):9387-9393

    Article  PubMed  CAS  Google Scholar 

  80. Shimoni A et al (2005) Hematopoietic stem-cell transplantation from unrelated donors in elderly patients (age >55 years) with hematologic malignancies: older age is no longer a contraindication when using reduced intensity conditioning. [see comment]. Leukemia 19(1):7-12

    PubMed  CAS  Google Scholar 

  81. Slavin S et al (1998) Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 91:756-763

    PubMed  CAS  Google Scholar 

  82. Schetelig J et al (2004) Reduced-intensity conditioning with busulfan and fludarabine with or without antithymocyte globulin in HLA-identical sibling transplantation-a retrospective analysis. Bone Marrow Transplant 33(5):483-490

    Article  PubMed  CAS  Google Scholar 

  83. Hamaki T et al (2004) Reduced-intensity stem cell transplantation from an HLA-identical sibling donor in patients with myeloid malignancies. Bone Marrow Transplant 33(9):891-900

    Article  PubMed  CAS  Google Scholar 

  84. Bornhauser M et al (2000) Dose-reduced conditioning for allogeneic blood stem cell transplantation: durable engraftment without antithymocyte globulin. Bone Marrow Transplant 26(2):119-125

    Article  PubMed  CAS  Google Scholar 

  85. Blaise DP et al (2005) Reduced intensity conditioning prior to allogeneic stem cell transplantation for patients with acute myeloblastic leukemia as a first-line treatment. Cancer 104(9):1931-1938

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goldstein, S.C., Luger, S. (2010). Concepts and Controversies in the Use of Novel Preparative Regimens for Allogeneic Stem Cell Transplantation. In: Lazarus, H.M., Laughlin, M.J. (eds) Allogeneic Stem Cell Transplantation. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-478-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-478-0_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-33-6

  • Online ISBN: 978-1-59745-478-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics