Skip to main content

Chemistry of GABAB Modulators

  • Chapter
The GABA Receptors

Abstract

Nearly 10 yr have passed since the authors review “Chemistry of GABAB Modulators” appeared in the book “The GABA Receptors,” 2nd edition, edited by S. J. Enna and N. G. Bowery, Humana Press, Totowa, 1997 (1). In this update the authors wish to outline only new developments not covered in the 1997 paper. Baclofen, synthesized for the first time in September 1962, is still the only γ-aminobutyric acid (GABAB)-receptor agonist marketed for the treatment of spasticity and trigeminal neuralgia. It is fascinating to learn how many highly competent chemists devised manifold and elegant synthetic procedures for either racemic or (R)-(−)-baclofen and the structurally closely related potent antidepressant (R)-(−)-Rolipram, a selective phosphodiesterase-4 inhibitor. The new syntheses published after 1996 are listed in alphabetical order (2–16). Very recently a prodrug of (R)-(−)-baclofen (Fig. 1) was described which enhanced the oral bioavailability in Cynomolgus monkeys to more than 80% (17). It is planned to test this prodrug in clinical trials for the treatment of spasticity and gastroesophageal reflux disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Froestl, W. and Mickel, S. J. (1997) Chemistry of GABAB modulators, in The GABA Receptors (Enna, S. J. and Bowery, N. G., eds.) Humana Press, Totowa, NJ, 271–296.

    Google Scholar 

  2. Baldoli, C., Maiorana, S., Licandro, E., Perdicchia, D., and Vandoni, B. (2000) Michael addition of nitromethane to non-racemic chiral Cr(CO)3 complexes of ethyl cinnamate derivatives: stereoselective synthesis of (R)-(−)-baclofen. Tetrahedron Asymmetry 11, 2007–2014.

    Article  CAS  Google Scholar 

  3. Barnes, D. M., Ji, J., Fickes, M. G., et al. (2002) Development of a catalytic enantioselective conjugate addition of 1,3-dicarbonyl compounds to nitroalkenes for the synthesis of endothelin-A antagonist ABT-546. Scope, mechanism, and further application to the synthesis of the antidepressant Rolipram. J. Am. Chem. Soc. 124, 13,097–13,105.

    Article  CAS  Google Scholar 

  4. Brenna, E., Caraccia, N., Fuganti, C., Fuganti, D., and Grasselli, P. (2003) Enantioselective synthesis of β-substituted butyric acid derivatives via orthoester Claisen rearrangement of enzymatically reoslved allylic alcohols: application to the synthesis of (R)-(−)-baclofen. Tetrahedron Asymmetry 8, 3801–3805.

    Article  Google Scholar 

  5. Chang, M. Y., Sun, P. P., Chen, S. T., and Chang, N. C. (2003) Synthesis of (±)-Rolipram. Heterocycles 60, 1865–1872.

    CAS  Google Scholar 

  6. Corey, E. J. and Zhang, F. Y. (2000) Enantioselective Michael addition of nitromethane to α,β-enones catalyzed by chiral quarternary ammonium salts A simple synthesis of (R)-baclofen. Org. Lett. 2, 4257–4259.

    Article  PubMed  CAS  Google Scholar 

  7. Doyle, M. P. and Hu, W. (2002) Enantioselective carbon-hydrogen insertion is an effective and efficient methodology for the synthesis of (R)-(−)-baclofen. Chirality 14, 169–172.

    Article  PubMed  CAS  Google Scholar 

  8. Garcia, A. L., Carpes, M. J., de Oca, A. C., dos Santos, M. A., Santana, C. C., and Correia, C. R. (2005) Synthesis of 4-aryl-2-pyrrolidones and β-aryl-γ-amino-butyric acid (GABA) analogues by Heck arylation of 3-pyrrolines with arenediazonium tetrafluoroborates. Synthesis of (±)-Rolipram on a multigram scale and chromatographic resolution by semipreparative chiral simulated moving bed chromatography. J. Org. Chem. 70, 1050–1053.

    Article  PubMed  CAS  Google Scholar 

  9. Hayashi, M. and Ogasawara, K. A. (2003) diastereocontrolled route to (R-(−)-baclofen using a cyclopentanoid chiral building block. Heterocycles 59, 785–791.

    Article  CAS  Google Scholar 

  10. Langlois, N. and Wang, H. S. (1997) Synthesis of the novel antidepressant (R)-(−)-Rolipram. Synth. Commun. 27, 3133–3144.

    Article  CAS  Google Scholar 

  11. Langlois, N., Dahuron, N., and Wang, H. S. (1996) Enantioselective syntheses of (R)-3-phenyl GABA, (R)-baclofen and 4-arylpyrrolidin-2-ones. Tetrahedron 52, 15,117–15,126.

    Article  CAS  Google Scholar 

  12. Licandro, E., Maiorana, S., Baldoli, C., Capella, L., and Perdicchia, D. (2000) Enantioselective synthesis of (R)-(−)-baclofen using Fischer-type carbene anions. Tetrahedron Asymmetry 11, 975–980.

    Article  CAS  Google Scholar 

  13. Mazzini, C., Lebreton, J., Alphand, V., and Furstoss, R. A chemoselective strategy for the synthesis of enantiopure (R)-(−)-baclofen. Tetrahedron Lett. 38, 1195–1196.

    Google Scholar 

  14. Resende, P., Almeida, W. P., and Coelho, F. (1999) An efficient synthesis of (R)-(−)-baclofen. Tetrahedron Asymmetry 10, 2113–2118.

    Article  CAS  Google Scholar 

  15. Tehrani, M. H. H., Farnia, M., and Nazer, M. S. (2003) Synthesis of baclofen; an alternative approach. Iranian J. Pharm. Res. 2, 1–3.

    CAS  Google Scholar 

  16. Thakur, V. V., Nikalje, M. D., and Sudalai, S. (2003) Enantioselective synthesis of (R)-(−)-baclofen via Ru(II)-BINAP catalyzed asymmetric hydrogenation. Tetrahedron Asymmetry 14, 581–586.

    Article  CAS  Google Scholar 

  17. Gallop, M. A., Yao, F., Ludwikow, M. J., Phan, T., and Peng, G. (2005) New acyloxyalkyl carbamate prodrugs of baclofen—useful for the prevention and treatment of e.g., spasticity, gastro-esophageal reflux disease, drug addiction, alcohol abuse, nicotine addiction, cough and emesis. WO2005/019163-A2, 2005; Publ. date: 20050303, Priority: US-932374, 20040813 for Xenoport Inc.

    Google Scholar 

  18. Patel, S., Naeem, S., Kesingland, A., et al. (2001) The effects of GABAB agonists and gabapentin on mechanical hyperalgesia in models of neuropathic and inflammatory pain in rats. Pain 90, 217–226.

    Article  PubMed  CAS  Google Scholar 

  19. Colombo, G., Serra, S., Brunetti, G., et al. (2002) The GABAB receptor agonists baclofen and CGP 44532 prevent acquisition of alcohol drinking behaviour in alcohol-preferring rats. Alcohol Alcoholism 37, 499–503.

    Article  CAS  Google Scholar 

  20. Brebner, K., Froestl, W., Andrews, M., Phelan, R., and Roberts, D. C. (1999) The GABAB agonist CGP 44532 decreases cocaine self-administration in rats: demonstration using a progressive ratio and a discrete trials procedure. Neuropharmacology 38, 1797–1804.

    Article  PubMed  CAS  Google Scholar 

  21. Dobrovitsky, V., Pimentel, P., Duarte, A., Froestl, W., Stellar, J. R., and Trzcinska, M. (2002) CGP44532, a GABAB receptor agonist, is hedonically neutral and reduces cocaine-induced enhancement of reward. Neuropharmacology 42, 626–632.

    Article  PubMed  CAS  Google Scholar 

  22. Paterson, N. E., Froestl, W., and Markou, A. (2004) The GABAB receptor agonists baclofen and CGP44532 decrease nicotine self-administration in the rat. Psychopharmacology 172, 179–186.

    Article  PubMed  CAS  Google Scholar 

  23. Paterson, N. E., Bruijnzeel, A. W., Kenny, P. J., Wright, C. D., Froestl, W., and Markou, A. (2005a) Prolonged nicotine exposure does not alter GABAB receptor-mediated regulation of brain reward function. Neuropharmacology 49, 953–962.

    Article  PubMed  CAS  Google Scholar 

  24. Paterson, N. E., Froestl, W., and Markou, A. (2005b) Repeated administration of the GABAB receptor agonist CGP44532 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine-seeking in rats. Neuropsychopharmacology 30, 119–128.

    Article  PubMed  CAS  Google Scholar 

  25. Bauser, M., Krueger, J., Meier, H., et al. (2005) 5-substituted 2-(phenylmethyl) thio-4-phenyl-4H-1,2,4-triazole derivatives and related compounds as GABA-agonists for the treatment of urinary incontinence and related diseases. WO2005/039569 Al. 2005; Publ. date: 20050506, Priority: EP-23701, 20031018 for Bayer Healthcare AG.

    Google Scholar 

  26. Gijsen, H. J. M., Berthelot, D., De Cleyn, M., Surkyn, M., De Breucker, S., and Smans, K. (2004) Lessons learned from a HTS campaign on GABAB agonism. Drugs Future 29(Suppl. A), 307.

    Google Scholar 

  27. Urwyler, S., Gjoni, T., Koljatic, J., and Dupuis, D. S. (2005) Mechanisms of allosteric modulation at GABAB receptors by CGP7930 and GS39783: effects on affinities and efficacies or orthosteric ligands with distinct intrinsic properties. Neuropharmacology 48, 343–353.

    Article  PubMed  CAS  Google Scholar 

  28. Marshall, F. H. (2005) Is the GABAB heterodimer a good drug target? J. Mol. Neurosci. 26, 169–176.

    Article  PubMed  CAS  Google Scholar 

  29. Urwyler, S., Mosbacher, J., Lingenhoehl, K., et al. (2001) Positive allosteric modulation of native and recombinant GABAB receptors by 2,6-di-tert.-butyl-4-(3-hydroxy-2,2-di-methyl-propyl)-phenol (CGP7930) and its aldehyde analogue CGP13501. Mol. Pharmacol. 60, 963–971.

    PubMed  CAS  Google Scholar 

  30. Carai, M. A. M., Colombo, G., Froestl, W., and Gessa, G. L. (2004) In vivo effectiveness of CGP7930, a positive allosteric modulator of the GABAB receptor. Eur. J. Pharmacol. 504, 213–216.

    Article  PubMed  CAS  Google Scholar 

  31. Binet, V., Brajon, C., Le Corre, L., Acher, F., Pin, J. P., and Prézeau, L. (2004) The heptahelical domain of GABAB2 is activated directly by CGP7930, a positive allosteric modulator of the GABAB receptor. J. Biol. Chem. 279, 29,085–29,091.

    Article  CAS  Google Scholar 

  32. Urwyler, S., Pozza, M. F., Lingenhoehl, K., et al. (2003) N,N′-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of γ-aminobutyric acidB receptor function. J. Pharmacol. Exp. Ther. 307, 322–330.

    Article  PubMed  CAS  Google Scholar 

  33. Cryan, J. F., Kelly, P. H., Chaperon, F., et al. (2004) Behavioral characterization of the novel GABAB receptor-positive modulator GS39783 (N,N′-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine): anxiolytic-like activity without side effects associated with baclofen or benzodiazepines. J. Pharmacol. Exp. Ther. 310, 952–963.

    Article  PubMed  CAS  Google Scholar 

  34. Mombereau, C., Kaupmann, K., Froestl, W., Sansig, G., van der Putten, H., and Cryan, J. F. (2004) Genetic and pharmacological evidence of a role for GABAB receptors in the modulation of anxiety-and antidepressant-like behavior. Neuropsychopharmacology 29, 1050–1062.

    Article  PubMed  CAS  Google Scholar 

  35. Smith, M. A., Yancey, D. L., Morgan, D., Liu, Y., Froestl, W., and Roberts, D. C. (2004) Effects of positive allosteric modulators of the GABAB receptor on cocaine self-administration in rats. Psychopharmacology 173, 105–111.

    Article  PubMed  CAS  Google Scholar 

  36. Slattery, D. A., Markou, A., Froestl, W., and Cryan, J. F. (2005) The GABAB receptor-positive modulator GS39783 and the GABAB receptor agonist baclofen attenuate the reward-facilitating effects of cocaine: intercranial self-stimulation studies in the rat. Neuropsychopharmacology 30, 2065–2072.

    Article  PubMed  CAS  Google Scholar 

  37. Malherbe, P., Masciadri, R., Prinssen, E., Spooren, W., and Thomas, A. W. (2005) Aminomethylpyrimidines as allosteric enhancers of the GABAB receptors. US 2005/0197337 Al 2005; Publ. date: 20050908, Priority: EP2004-100830, 20040302, for Hoffmann-La Roche Inc.

    Google Scholar 

  38. Guery, S., Floersheim, P., and Froestl, W. (2005) Syntheses and identification of new GS39783 analogs as positive allosteric modulators of GABAB receptors. Second Italian-Swiss Meeting on Medicinal Chemistry, Modena, Poster 104, Sept. 12–16, 2005.

    Google Scholar 

  39. Froestl, W., Mickel, S. J., Cooke, N. G., Bennett, S. N. L., and Williams, A. R. B. (1997) Substituted phosphinic compounds and their use as pharmaceuticals. WO 97/09335 A1 1997; Publ. date: 19970313, Priority: GB-013047, 19960621 for Ciba-Geigy AG.

    Google Scholar 

  40. Ong, J., Kerr, D. I. B., Bittiger, H., et al. (1998) Morpholin-2-yl-phosphinic acids are potent GABAB receptor antagonists in rat brain. Eur. J. Pharmacol. 362, 27–34.

    Article  PubMed  CAS  Google Scholar 

  41. Cooke, N. G., Irving, E., and Froestl, W. (1998) (Thio)morpholine-substituted carboxylic and phosphinic acids. WO 98/28313, 1998; Publ. date: 19980702. Priority: 19961224 for Novartis AG.

    Google Scholar 

  42. Bittiger, H., Reymann, N., Froestl, W., and Mickel, S. J. (1992) 3H-CGP54626: A potent antagonist radioligand for GABAB receptors. Pharmacol. Commun. 2, 23.

    CAS  Google Scholar 

  43. Bittiger, H., Bellouin, C., Froestl, W., Heid, J., Schmutz, M., and Stampf, P. (1996) [3H]CGP 62349: A new potent GABAB receptor antagonist radioligand. Pharmacol. Rev. Commun. 8, 97–98.

    CAS  Google Scholar 

  44. Stampf, P., Froestl, W., Mickel, S. J., and Zimmermann, K. (1997) Novel hydroxylated and alkoxylated N-and/or P-aralkylphosphinic acid derivatives. WO 97/11953 Al 1997; Publ. date: 19970403, Priority: EP96/04062, 19950928 for Ciba-Geigy AG.

    Google Scholar 

  45. Ambardekar, A. V., Ilinsky, I. A., Froestl, W., Bowery, N. G., and Kultas-Ilinsky, K. (1999) Distribution and properties of GABAB antagonist [3H]CGP62349 binding in the Rhesus monkey thalamus and basal ganglia and the influence of lesions in the reticular thalamic nucleus. Neuroscience 93, 1339–1347.

    Article  PubMed  CAS  Google Scholar 

  46. Todde, S., Froestl, W., Stampf, P., et al. (1997) [11C]CGP62349, a GABAB receptor antagonist ligand: radiosynthesis and PET studies in monkeys. J. Labelled Comp. Radiopharm. 40, 651–652.

    Google Scholar 

  47. Todde, S., Moresco, R. M., Froestl, W., et al. (2000) Synthesis and in vivo evaluation of [11C]CGP62349, a new GABAB receptor antagonist. Nucl. Med. Biol. 27, 565–569.

    Article  PubMed  CAS  Google Scholar 

  48. Kaupmann, K., Huggel, K., Heid, J., et al. (1997a) Expression of cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246.

    Article  PubMed  CAS  Google Scholar 

  49. Kaupmann, K., Bettler, B., Bittiger, H., Froestl, W., and Mickel, S. J. (1997b) Metabotropic GABAB receptors, receptor-specific ligands and their uses. WO 97/46675 1997b; Publ. date: 19971211, Priority: 19960530 for Novartis AG.

    Google Scholar 

  50. Belley, M., Sullivan, R., Reeves, A., Evans, J., O’Neill, G., and Ng, G. Y. K. (1999) Synthesis of the nanomolar photoaffinity GABAB receptor ligand CGP71872 reveals diversity in the tissue distribution of GABAB receptor forms. Bioorg. Med. Chem. 7, 2697–2704.

    Article  PubMed  CAS  Google Scholar 

  51. Froestl, W., Bettler, B., Bittiger, H., et al. (1999) Ligands for the isolation of GABAB receptors. Neuropharmacology 38, 1641–1646.

    Article  PubMed  CAS  Google Scholar 

  52. Froestl, W., Bettler, B., Bittiger, H., et al. Ligands for expression cloning and isolation of GABAB receptors. Farmaco 58, 173–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Froestl, W., Cooke, N.G., Mickel, S.J. (2007). Chemistry of GABAB Modulators. In: Enna, S.J., Möhler, H. (eds) The GABA Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-465-0_9

Download citation

Publish with us

Policies and ethics