Skip to main content

The GABA Receptors

  • Chapter
Book cover The GABA Receptors

Part of the book series: The Receptors ((REC))

Abstract

γ-Aminobutyric acid (GABA), an amino acid neurotransmitter, is widely distributed throughout the neuraxis. Two pharmacologically and molecularly distinct GABA receptors have been identified, GABAA and GABAB. GABAA receptors are pentameric ligand-gated chloride-ion channels, whereas GABAB receptors are heterodimeric G protein-coupled sites. Although GABAA receptor subtypes can display pharmacological differences, the two molecularly distinct GABAB receptors have similar substrate specificities, limiting the ability to selectively manipulate this site. Gene deletion and point mutation studies have revealed the importance of GABA receptors in neural development and function, with subtle modifications in subunit amino acid composition having profound effects on behavioral phenotype and responses to drugs. The characterization of GABAA receptors has contributed substantially to the knowledge about allosteric regulation of ligand-gated ion channels. Such information is invaluable in defining precisely the mechanisms of action of numerous drugs, such as the benzodiazepines, and toxic agents. Research on GABAB receptors has proven the existence of dimeric metabotropic receptors and has provided the chemical tools necessary for defining such systems. The characterization of the pentameric GABAA and dimeric GABAB receptors has been crucial for understanding the neurobiological basis of some nervous system disorders. Given the importance of GABA in central nervous system function, further work on its receptors is likely to yield novel therapeutics for treating a host of neurological and psychiatric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The GABA Receptors (1983) (Enna, S. J., ed.), Humana Press, Clifton, New Jersey, pp. 341.

    Google Scholar 

  2. Bowery, N. G., Doble, A., Hill, D. R., et al. (1981) Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur. J. Pharmacol. 71, 53–70.

    Article  PubMed  CAS  Google Scholar 

  3. The GABA Receptors (1996) (Bowery, N. G. and Enna, S. J., eds.), 2nd Ed., Humana Press, Clifton, New Jersey, pp. 332.

    Google Scholar 

  4. Kaupmann, K., Huggel, K., Heid, J., et al. (1997) Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246.

    Article  PubMed  CAS  Google Scholar 

  5. Jones, K. A., Borowsky, B., Tamm, J. A., et al. (1998) GABAB receptor function as a heteromeric assembly of the subunits of GABABR1 and GABABR2. Nature 396, 674–679.

    Article  PubMed  CAS  Google Scholar 

  6. Kaupmann, K., Malitschek, B., Schuler, V., et al. (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687.

    Article  PubMed  CAS  Google Scholar 

  7. Angers, S., Salapour, A., and Bouvier, M. (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435.

    Article  PubMed  CAS  Google Scholar 

  8. Möhler, H., Fritschy, J. M., Crestani, F., Hensch, T., and Rudolph, U. (2004) Specific GABAA circuits in brain development and therapy. Biochem. Pharmacol. 68, 1685–1690.

    Article  PubMed  Google Scholar 

  9. Urwyler, S., Mosbacher, J., Lingenhoehl, K., et al. (2001) Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Mol. Pharmacol. 60, 881–884.

    Google Scholar 

  10. Barnard, E. A. (1996) The transmitter-gated channels: a range of receptor types and structures. Trends Pharmacol. Sci. 17, 305–308.

    Article  PubMed  CAS  Google Scholar 

  11. Benke, D. and Möhler, H. (2006) GABA-A receptors, in xPharm (Enna, S. J., Bylund, D. B., eds.), Elsevier, New York, http://www.xpharm.com/citation?article_ID=532. Last accessed on Jan. 3, 2007.

    Google Scholar 

  12. Payne, J. A., Rivera, C., Voipio, J., and Kaila, K. (2003) Catioin-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26, 199–206.

    Article  PubMed  CAS  Google Scholar 

  13. Rivera, C., Voipio, J., and Kaila, K. (2005) Two developmental switches in GABAergic signaling: the K+-Cl cotransporter KCC2 and carbonic anhydrase CAVII. J. Physiol. 562, 27–36.

    Article  PubMed  CAS  Google Scholar 

  14. Krnjevic, K. (2004) How does a little acronym become a big transmitter? Biochem. Pharmacol. 68, 1549–1555.

    Article  PubMed  CAS  Google Scholar 

  15. Cherubini, E., Giairsa, J. L., and Ben-Ari, Y. (1992) GABA, an excitatory transmitter in early postnatal life. Trends Neurosci. 14, 515–519.

    Article  Google Scholar 

  16. Semyanov, A., Walker, M. C., Kullmann, D. M., and Silver, R. A. (2004) Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends Neurosci. 27, 262–269.

    Article  PubMed  CAS  Google Scholar 

  17. Scimemi, A., Semyanov, A., Sperk, G., Kullmann, D. M., and Walker, M. C. (2005) Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus. J. Neurosci. 25, 10,016–10,024.

    Article  CAS  Google Scholar 

  18. Adkins, C. E., Pillai, G. V., Kerby, J., et al. (2001) Alpha4beta3delta GABA(A) receptors characterized by fluorescence resonance energy transfer-derived measurements of membrane potential. J. Biol. Chem. 276, 38,934–38,939.

    Article  CAS  Google Scholar 

  19. Möhler, H., Benke, J., Benson, B., Lüscher, B., Rudolph, U., Fritschy, J. M. (1997) Diversity in structure, pharmacology, and regulation of GABAA receptors in The GABA Receptors, (Enna, S. J., and Bowery, N. G., eds.), 2nd Ed., Humana Press, Totowa, New Jersey, pp. 11–36.

    Google Scholar 

  20. Simon, J., Wakimoto, H., Fujita, N., Lalande, M., and Barnard, E. A. (2004) Analysis of the set of GABAA receptor genes in the human genome. J. Biol. Chem. 279, 41,422–41,435.

    Article  CAS  Google Scholar 

  21. Kittler, J. T., McAinsh, K., and Moss, S. J. (2002) Mechanisms of GABAA receptor assembly and trafficking-Implications for the modulation of inhibitory neurotransmission. Mol. Neurobiol. 26, 251–268.

    Article  PubMed  CAS  Google Scholar 

  22. Lüscher, B. and Keller, C. A. (2004) Regulation of GABAA receptor trafficking, channel activity, and functional plasticity at inhibitory synapses. Pharmacol. Therap. 102, 195–221.

    Article  Google Scholar 

  23. Nusser, Z., Sieghart, W., and Somogyi, P. (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703.

    PubMed  CAS  Google Scholar 

  24. Wei, W., Zhang, N., Peng, Z., Houser, C. R., and Mody, I. (2003) Perisynaptic localization of d subunit-containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus. J. Neurosci. 23, 10,650–10,661.

    CAS  Google Scholar 

  25. Barnard, E. A., Skolnick, P., Olsen, R. W., et al. (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291–313.

    PubMed  CAS  Google Scholar 

  26. Johnston, G. A. (2002) Medicinal chemistry and molecular pharmacology of GABAc receptors. Curr. Top. Med. Chem. 2, 903–913.

    Article  PubMed  CAS  Google Scholar 

  27. Bormann, J. (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci. 21, 16–19.

    Article  PubMed  CAS  Google Scholar 

  28. Wafford, K. A. and Ebert, B. (2006) Gaboxadol—a new awakening in sleep. Curr. Opin. Pharmacol. 6, 30–36.

    Article  PubMed  CAS  Google Scholar 

  29. Krogsgaard-Larsen, P., Frolund, B., Liljefors, T., and Ebert, B. (2004) GABAA agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem. Pharmacol. 68, 1573–1580.

    Article  PubMed  CAS  Google Scholar 

  30. Ebert, B., Wafford, K. A., and Deacon, S. Treating insomnia: current and investigational pharmacological approaches. Pharmacol. Therap. 12, 612–629.

    Google Scholar 

  31. Fisher, R. S. (1998) Epilepsy, in Pharmacological Management of Neurological and Psychiatric Disorders, (Enna, S. J. and Coyle, J. T., eds.), McGraw-Hill, New York, pp. 459–503.

    Google Scholar 

  32. Honmou, O., Kocsis, J. D., and Richardson, G. B. (1995) Gabapentin potentiates the conductance increase induced by nipecotic acid in CA1 pyramidal neurons in vitro. Epilepsy Res. 20, 193–202.

    Article  PubMed  CAS  Google Scholar 

  33. Bertrand, S., Ng, G. Y., Purisai, M. G., et al. (2001) The anticonvulsant, antihyperalgesic agent gabapentin is an agonist at brain gamma-aminobutyric acid type B receptors negatively coupled to voltage-dependent calcium channels. J. Pharmacol. Exp. Ther. 298, 15–24.

    PubMed  CAS  Google Scholar 

  34. Mortell, K. H., Anderson, D. J., Lynch, J. J. 3rd, et al. (2006) Structure-activity relationships of alpha-amino acid ligands for the alpha2delta subunit of voltage-gated calcium channels. Bioorg. Med. Chem. Lett. 16, 1138–1141.

    Article  PubMed  CAS  Google Scholar 

  35. Winokur, A. (1998) Sleep disorders, in Pharmacological Management of Neurological and Psychiatric Disorders, (Enna, S. J., and Coyle, J. T., eds.), McGraw-Hill, New York, pp. 213–235.

    Google Scholar 

  36. Zorn, S. H. and Enna, S. J. (1985) The effect of mouse spinal cord transaction on the antinociceptive response to the GABA agonists THIP and baclofen. Brain Res. 338, 380–383.

    Article  PubMed  CAS  Google Scholar 

  37. Zorn, S. H. and Enna, S. J. (1985) Uptake inhibitors produce a greater antinociceptive response in the mouse tail immersion assay than other types of GABAergic drugs. Life Sci. 37, 1901–1912.

    Article  PubMed  CAS  Google Scholar 

  38. Enna, S. J. and McCarson, K. M. (2006) The role of GABA in the mediation and perception of pain. in Advances in Pharmacology, (Enna, S. J., ed.), Academic Press New York, Vol. 54, pp. 1–28.

    Google Scholar 

  39. Bowery, N. G. (1993) GABAB receptor pharmacology. Annu. Rev. Pharmacol. Toxicol. 33, 109–147.

    PubMed  CAS  Google Scholar 

  40. Enna, S. J. (2001) GABA-B receptor signaling pathways, in Pharmacology of GABA and Glycine Transmission, (Möhler, H., ed.) Springer, Heidelberg, pp. 329–342.

    Google Scholar 

  41. Enna, S. J. (2001) GABA-B mystery. The search for pharmacologically distinct GABAB receptors. Mol. Interven. 1, 208–218.

    CAS  Google Scholar 

  42. Crunelli, V. and Leresche, N. (1991) A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends Neurosci. 14, 16–21.

    Article  PubMed  CAS  Google Scholar 

  43. Wall, M. J. and Dale, N. (1994) GABAB receptors modulate an omega-conotoxin-sensitive calcium current that is required for synaptic transmission in the Xenopus embryo spinal cord. J. Neurosci. 14, 6248–6255.

    PubMed  CAS  Google Scholar 

  44. Ong, J. and Kerr, D. I. (1990) GABA receptors in peripheral tissues. Life Sci. 46, 1489–1501.

    Article  PubMed  CAS  Google Scholar 

  45. Chapman, R. W., Hey, J. A., Rizzo, C. A., and Bolser, D. C. (1993) GABAB receptors in the lung. Trends Pharmacol. Sci. 14, 26–29.

    Article  PubMed  CAS  Google Scholar 

  46. Kubo, Y. and Tateyama, M. (2005) Towards a view of functioning dimeric metabotropic receptors. Curr. Opin. Neurobiol. 15, 289–295.

    Article  PubMed  CAS  Google Scholar 

  47. Margeta-Mitrovic, M., Jan, Y. N., and Jan, L. Y. (2000) A trafficking checkpoint controls GABAB receptor dimerization. Neuron 27, 97–106.

    Article  PubMed  CAS  Google Scholar 

  48. Robbins, M. J., Calver, A. R., Fillipov, A. K., Couve, A., Moss, S. J., and Pangalos, M. N. (2001) The GABAB2 subunit is essential for G protein coupling of the GABAB receptor heterodimer. J. Neurosci. 21, 8043–8052.

    PubMed  CAS  Google Scholar 

  49. Gassmann, M., Shaban, H., Vigot, R., et al. (2004) Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. J. Neurosci. 24, 6086–6097.

    Article  PubMed  CAS  Google Scholar 

  50. Bowery, N. G., Bettler, B., Froestl, W., et al. (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid (B) receptors: structure and function. Pharmacol. Res. 54, 247–264.

    Article  CAS  Google Scholar 

  51. Möhler, H. and Fritschy, J. M. (1999) GABAB receptors make it to the top as dimmers. Trends Pharmacol. Sci. 20, 87–89.

    Article  PubMed  Google Scholar 

  52. Bonanno, G. and Raiteri, M. (1993) Multiple GABAB receptors. Trends Pharmacol. Sci. 14, 259–261.

    Article  PubMed  CAS  Google Scholar 

  53. Cunningham, M. D. and Enna, S. J. (1996) Evidence for pharmacologically distinct GABAB receptors associated with cAMP production in rat brain. Brain Res. 720, 220–224.

    Article  PubMed  CAS  Google Scholar 

  54. Yamada, K., Yu, B., and Gallagher, J. P. (1999) Different subtypes of GABAB receptors are present at pre-and postsynaptic sites within the rat dorsolateral septal nucleus. J. Neurophysiol. 81, 2875–2883.

    PubMed  CAS  Google Scholar 

  55. Brauner-Osborne, H. and Krogsgaard-Larsen, P. (2000) Sequence and expression pattern of a novel orphan G-protein-coupled receptor, GPRC5B, a family C receptor with a short amino-terminal domain. Genomics 65, 121–128.

    Article  PubMed  CAS  Google Scholar 

  56. Robbins, M. J., Charles, K. J., Harrison, D. C., and Pangalos, M. N. (2002) Localization of the GPRC5B receptor in the rat brain and spinal cord. Brain Res. Mol. Brain Res. 106, 136–144.

    Article  PubMed  CAS  Google Scholar 

  57. Schuler, V., Lüscher, C., Blanchet, C., et al. (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre-and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron. 31, 47–58.

    Article  PubMed  CAS  Google Scholar 

  58. Prosser, H. M., Gill, C. H., Hirst, W. D., et al. (2001) Epileptogenesis and enhance prepulse inhibition in GABA (B1)-deficient mice. Mol. Cell. Neurosci. 17, 1059–1070.

    Article  PubMed  CAS  Google Scholar 

  59. Urwyler, S., Pozza, M. F., Lingenhoehl, K., et al. (2003) N,N′-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of gamma-aminobutyric acidB receptor function. J. Pharmacol. Exp. Ther. 307, 322–330.

    Article  PubMed  CAS  Google Scholar 

  60. Couve, A., Calver, A. R., Fairfax, B., Moss, S. J., and Pangalos, M. N. (2004) Unraveling the unusual signaling properties of the GABAB receptor. Biochem. Pharmacol. 68, 1527–1536.

    Article  PubMed  CAS  Google Scholar 

  61. Sands, S. A., McCarson, K. E., and Enna, S. J. (2004) Relationship between the antinociceptive response to desipramine and changes in GABAB receptor function and subunit expression in the dorsal horn of the rat spinal cord. Biochem. Pharmacol. 67, 743–749.

    Article  PubMed  CAS  Google Scholar 

  62. Sands, S. A., McCarson, K. E., and Enna, S. J. (2003) Differential regulation of GABAB receptor subunit expression and function. J. Pharmacol. Exp. Ther. 305, 191–196.

    Article  PubMed  CAS  Google Scholar 

  63. Sands, S. A., Reisman, S. A., and Enna, S. J. (2004) Effect of antidepressants on GABAB receptor function and subunit expression in the rat hippocampus. Biochem. Pharmacol. 68, 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  64. McCarson, K. E., Duric, V., Reisman, S. A., Winter, M., and Enna, S. J. (2006) GABAB receptor function and subunit expression in the rat spinal cord as indicators of stress and the antinociceptive response to antidepressants. Brain Res. 1068, 109–117.

    Article  PubMed  CAS  Google Scholar 

  65. Marshall, F. H., Jones, K. A., Kaupmann, K., and Bettler, B. (1999) GABAB receptors — the first 7TM heterodimers. Trends Pharmacol. Sci. 20, 396–399.

    Article  PubMed  CAS  Google Scholar 

  66. Lehtinen, M. J., Meri, S., and Jokiranta, T. S. (2004) Interdomain contact regions and angles between adjacent short consensus repeat domains. J. Mol. Biol. 344, 1385–1396.

    Article  PubMed  CAS  Google Scholar 

  67. Calver, A. R., Davies, C. H., and Pangalos, M. (2002) GABA(B) receptors: from monogamy to promiscuity. Neurosignals 11, 299–314.

    Article  PubMed  CAS  Google Scholar 

  68. Nehring, R. B., Horikawa, H. P., El Far, O., et al. (2000) The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. J. Biol. Chem. 275, 35,185–35,191.

    Article  CAS  Google Scholar 

  69. Vernon, E., Meyer, G., Pickard, L., et al. (2001) GABA(B) receptors couple directly to the transcription factor ATF4. Mol. Cell. Neurosci. 17, 637–645.

    Article  PubMed  CAS  Google Scholar 

  70. White, J. H., McIlhinney, R. A., Wise, A., et al. (2000) The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proc. Natl. Acad. Sci. USA 97, 13,967–13,972.

    CAS  Google Scholar 

  71. Sauter, K., Grampp, T., Fritschy, J. M., et al. (2005) Subtype-selective interaction with the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) regulates cell surface expression of GABA(B) receptors. J. Biol. Chem. 280, 33,566–33,572.

    Article  CAS  Google Scholar 

  72. Couve, A., Kittler, J. T., Uren, J. M., et al. (2001) Association of GABA(B) receptors and members of the 14-3-3 family of signaling proteins. Mol. Cell. Neurosci. 17, 317–328.

    Article  PubMed  CAS  Google Scholar 

  73. Couve, A., Restituito, S., Brandon, J. M., et al. (2004) Marlin-1, a novel RNA-binding protein associates with GABA receptors. J. Biol. Chem. 279, 13,934–13,943.

    Article  CAS  Google Scholar 

  74. Restituito, S., Couve, A., Bawagan, H., et al. (2005) Multiple motifs regulate the trafficking of GABAB receptors at distinct checkpoints within the secretory pathway. Mol. Cell. Neurosci. 28, 747–756.

    Article  PubMed  CAS  Google Scholar 

  75. Blein, S., Ginham, R., Uhrin, D., et al. (2004) Structural analysis of the complement control protein (CCP) modules of GABAB receptor 1a: only one of the two CCP modules is compactly folded. J. Biol. Chem. 279, 48,292–48,306.

    Article  CAS  Google Scholar 

  76. Froestl, W., Mickel, S. J., Von Sprecher, G., et al. (1995) Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. J. Med. Chem. 38, 3313–3331.

    Article  PubMed  CAS  Google Scholar 

  77. Enna, S. J. (1997) γ-Aminobutyric acid-B (GABAB) receptor agonists and antagonists: pharmacological properties and therapeutic possibilities. Exp. Opin. Invest. Drugs 6, 1319–1325.

    Article  CAS  Google Scholar 

  78. Froestl, W., Gallagher, M., Jenkins, H., et al. (2004) SGS742: the first GABAB receptor antagonist in clinical trials. Biochem. Pharmacol. 68, 1479–1487.

    Article  PubMed  CAS  Google Scholar 

  79. Guarnaccia, J. B., Bollmer, T. L., and Waxman, S. G. (1998) Multiple sclerosis, in Pharmacological Management of Neurological and Psychiatric Disorders, (Enna, S. J. and Coyle, J. T., eds.), McGraw-Hill, New York, pp. 377–428.

    Google Scholar 

  80. Mondadori, C., Preiswerk, G., and Jaekel, J. (1992) Treatment with a GABAB receptor blocker improves the cognitive performance of mice, rats and rhesus monkeys. Pharmacol. Comm. 2, 93–97.

    CAS  Google Scholar 

  81. DeSousa, N. J., Benninger, R., Jhamandas, K., and Boegman, R. J. (1994) Stimulation of GABAB receptors in the basal forebrain selectively impairs working memory of rats in the double Y-maze. Brain Res. 641, 29–38.

    Article  PubMed  CAS  Google Scholar 

  82. Snead, O. C. (1995) Basic mechanisms of generalized absence epilepsy. Ann. Neurol. 37, 146–157.

    Article  PubMed  Google Scholar 

  83. Corrigall, W. A., Coen, K. M., Adamson, K. L., Chow, B. L., and Zhang, J. (2000) Response of nicotine self-administration in the rat to manipulations of mu-opioid and gamma-aminobutyric acid receptors in the ventral tegmental area. Psychopharmacology 149, 107–114.

    Article  PubMed  CAS  Google Scholar 

  84. Haney, M., Hart, C. L., and Foltin, R. W. (2006) Effects of baclofen on cocaine self-administration: opioid-and nonopioid-dependent volunteers. Neuropsychopharmacology 31, 1814–1821.

    Article  PubMed  CAS  Google Scholar 

  85. Flannery, B. A., Garbutt, J. C., Cody, M. W., et al. (2004) Baclofen for alcohol dependence: a preliminary open-label study. Alcohol Clin. Exp. Res. 28, 1517–1523.

    Article  PubMed  CAS  Google Scholar 

  86. Queva, C., Bremner-Danielsen, M., Edlund, A., et al. (2003) Effects of GABA agonists on body temperature regulation in GABA(B(1))-/-mice. Br. J. Pharmacol. 140, 315–322.

    Article  PubMed  CAS  Google Scholar 

  87. Thuault, S. J., Brown, J. T., Sheardown, S. A., et al. (2004) The GABAB2 subunit is critical for the trafficking and function of native GABAB receptors. Biochem. Pharmacol. 68, 1655–1666.

    Article  PubMed  CAS  Google Scholar 

  88. Getova, D. P., Bowery, N. G., and Spassov, V. (1997) Effects of GABAB receptor antagonists on learning and memory retention in a rat model of absence epilepsy. Eur. J. Pharmacol. 320, 9–13.

    Article  PubMed  CAS  Google Scholar 

  89. Hosford, D. A., Wang, Y., Liu, C. C., and Snead, O. C. (1995) Characterization of the antiabsence effects of SCH 50911, a GABA-B receptor antagonist, in the lethargic mouse, gamma-hydroxybutyrate, and pentylenetetrazole models. J. Pharmacol. Exp. Ther. 274, 1399–1403.

    PubMed  CAS  Google Scholar 

  90. Vergnes, M., Boehrer, A., Simler, S., Bernasconi, R., and Marescaux, C. (1997) Opposite effects of GABAB receptor antagonists on absences and convulsive seizures. Eur. J. Pharmacol. 332, 245–255.

    Article  PubMed  CAS  Google Scholar 

  91. Badran, S., Schmutz, M., and Olpe, H. R. (1997) Comparative in vivo and in vitro studies with the potent GABAB receptor antagonist, CGP 56999A. Eur. J. Pharmacol. 333, 135–142.

    Article  PubMed  CAS  Google Scholar 

  92. Nakagawa, Y., Sasaki, A., and Takashima, T. (1999) The GABA(B) receptor antagonist CGP36742 improves learned helplessness in rats. Eur. J. Pharmacol. 381, 1–7.

    Article  PubMed  CAS  Google Scholar 

  93. Heese, K., Otten, U., Mathivet, P., Raiteri, M., Marescaux, C., and Bernasconi, R. (2003) GABA(B) receptor antagonists elevate both mRNA and protein levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) but not neurotrophin-3 (NT-3) in brain and spinal cord of rats. Neuropharmacology 39, 449–462.

    Article  Google Scholar 

  94. Mombereau, C., Kaupmann, K., Froestl, W., Sansig, G., van der Putten, H., and Cryan, J. F. (2004) Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety-and antidepressant-like behavior. Neuropsychopharmacology 29, 1050–1062.

    Article  PubMed  CAS  Google Scholar 

  95. Vaught, J. L., Pelly, K., Costa, L. G., Settler, P., and Enna, S. J. (1985) A comparison of the antinociceptive responses to the GABA receptor agonists THIP and baclofen. Neuropharmacology 24, 211–216.

    Article  PubMed  CAS  Google Scholar 

  96. Smith, G. D., Harrison, S. M., Birch, P. J., Elliott, P. J., Malcangio, M., and Bowery, N. G. (1994) Increased sensitivity to the antinociceptive activity of (±)-baclofen in an animal model of chronic neuropathic, but not chronic inflammatory hyperalgesia. Neuropharmacology 33, 1103–1108.

    Article  PubMed  CAS  Google Scholar 

  97. Fromm, G. (1994) Baclofen as an adjuvant analgesic. J. Pain Symptom Manage. 9, 500–509.

    Article  PubMed  CAS  Google Scholar 

  98. Roberts, E. and Frankel, S. (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid. J. Biol. Chem. 187, 55–63.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Enna, S.J. (2007). The GABA Receptors. In: Enna, S.J., Möhler, H. (eds) The GABA Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-465-0_1

Download citation

Publish with us

Policies and ethics