Skip to main content

Brain Iron Deposition in Aging and Disease: Role of HO-1

  • Chapter
  • First Online:
  • 1631 Accesses

Part of the book series: Nutrition and Health ((NH))

Summary

• Mechanisms responsible for the pathological deposition of redox-active iron in the aging and degenerating human brain remain incompletely understood.

• Heme oxygenase-1 (HO-1) is a 32-kDa stress protein that degrades heme to biliverdin, free iron, and carbon monoxide.

• Brain HO-1 expression increases with advancing age, and the enzyme is further induced in CNS tissues affected by Alzheimer’s disease, Parkinson’s disease, and other neurodegenerative and neuroinflammatory conditions.

• Upregulation of HO-1 in astrocytes exacerbates intracellular oxidative stress and promotes sequestration of non-transferrin-derived iron by the mitochondrial compartment.

• The glial mitochondrial iron catalyzes the bio-activation of protoxins (e.g., catechols, MPTP) to potent neurotoxins (o-semiquinones, MPP+) and may further facilitate neural injury by attenuating glutathione biosynthesis and other ATP-dependent processes.

• Suppression of glial HO-1 induction or activity may constitute a rational therapeutic approach to curtail pathological iron deposition and mitochondrial insufficiency in disorders of the aging human CNS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anthony, S. G., Schipper, H. M., Tavares, R., Hovanesian, V., Cortez, S. C., Stopa, E. G., et al. (2003). Stress protein expression in the Alzheimer-diseased choroid plexus. Journal of Alzheimer’s Disease, 5(3), 171–177.

    PubMed  CAS  Google Scholar 

  • Baranano, D. E., & Snyder, S. H. (2001). Neural roles for heme oxygenase: contrasts to nitric oxide synthase. Proceedings of the National Academy of Sciences, USA, 98(20), 10996–11002.

    Article  CAS  Google Scholar 

  • Beal, M. (1995). Mitochondrial dysfunction and oxidative damage in neurodegenerative diseases. Austin, TX: R.G. Landes Co.

    Google Scholar 

  • Beal, M. F. (1996). Mitochondria, free radicals, and neurodegeneration. Current Opinion in Neurobiology, 6(5), 661–666.

    Article  PubMed  CAS  Google Scholar 

  • Bonilla, E., Tanji, K., Hirano, M., Vu, T. H., DiMauro, S., & Schon, E. A. (1999). Mitochondrial involvement in Alzheimer's disease. Biochimica et Biophysica Acta, 1410(2), 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Bowen, B. C., Block, R. E., Sanchez-Ramos, J., Pattany, P. M., Lampman, D. A., Murdoch, J. B., et al. (1995). Proton MR spectroscopy of the brain in 14 patients with Parkinson disease. AJNR American Journal of Neuroradiology, 16(1), 61–68.

    PubMed  CAS  Google Scholar 

  • Brawer, J. R., Reichard, G., Small, L., & Schipper, H. M. (1994). The origin and composition of peroxidase-positive granules in cysteamine-treated astrocytes in culture. Brain Research, 633(1–2), 9–20.

    Article  PubMed  CAS  Google Scholar 

  • Brawer, J. R., & Sonnenschein, C. (1975). Cytopathological effects of estradiol on the arcuate nucleus of the female rat. A possible mechanism for pituitary tumorigenesis. American Journal of Anatomy, 144(1), 57–88.

    Article  PubMed  CAS  Google Scholar 

  • Brawer, J. R., Stein, R., Small, L., Cisse, S., & Schipper, H. M. (1994). Composition of Gomori-positive inclusions in astrocytes of the hypothalamic arcuate nucleus. Anatomical Record, 240(3), 407–415.

    Article  PubMed  CAS  Google Scholar 

  • Broekemeier, K. M., & Pfeiffer, D. R. (1995). Inhibition of the mitochondrial permeability transition by cyclosporin A during long time frame experiments: relationship between pore opening and the activity of mitochondrial phospholipases. Biochemistry, 34(50), 16440–16449.

    Article  PubMed  CAS  Google Scholar 

  • Businaro, R., Fabrizi, C., Caronti, B., Calderaro, C., Fumagalli, L., & Lauro, G. M. (2002). Myelin basic protein induces heme oxygenase-1 in human astroglial cells. Glia, 37(1), 83–88.

    Article  PubMed  Google Scholar 

  • Butterfield, D. A. (2002). Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: Implications for neurodegeneration in Alzheimer's disease brain. A review. Free Radical Research, 36(12), 1307–1313.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D. A., Castegna, A., Lauderback, C. M., & Drake, J. (2002). Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiology of Aging, 23(5), 655–664.

    Article  PubMed  Google Scholar 

  • Calne, D. B. (1994). Neurodegenerative diseases. Philadelphia: W.B. Saunders Co.

    Google Scholar 

  • Castellani, R., Smith, M. A., Richey, P. L., & Perry, G. (1996). Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Research, 737(1–2), 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Cissé, S., & Schipper, H. M. (1995). Experimental induction of corpora amylacea-like inclusions in rat astroglia. Neuropathology and Applied Neurobiology, 21(5), 423–431.

    Article  PubMed  Google Scholar 

  • Connor, J. R. (1997). Metals and oxidative damage in neurological disorders. New York: Plenum Press.

    Google Scholar 

  • Converso, D. P., Taille, C., Carreras, M. C., Jaitovich, A., Poderoso, J. J., & Boczkowski, J. (2006). HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism. The Federation of American Societies for Experimental Biology Journal, 20(8), 1236–1238.

    Article  CAS  Google Scholar 

  • Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., McKee, A. C., Beal, M. F., et al. (1994). Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics, 23(2), 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Dennery, P. A. (2000). Regulation and role of heme oxygenase in oxidative injury. Current Topics in Cellular Regulation, 36, 181–199.

    Article  PubMed  CAS  Google Scholar 

  • DiMonte, D., Schipper, H., Hetts, S., & Langston, J. (1995). Iron-mediated bioactivation of 1-methl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in glial cultures. Glia, 15, 203–206.

    Article  CAS  Google Scholar 

  • Dore, S., Takahashi, M., Ferris, C. D., Zakhary, R., Hester, L. D., Guastella, D., et al. (1999). Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proceedings of the National Academy of Sciences, USA, 96(5), 2445–2450.

    Article  CAS  Google Scholar 

  • Frankel, D., Mehindate, K., & Schipper, H. M. (2000). Role of heme oxygenase-1 in the regulation of manganese superoxide dismutase gene expression in oxidatively-challenged astroglia. Journal of Cellular Physiology, 185(1), 80–86.

    Article  PubMed  CAS  Google Scholar 

  • Frankel, D., & Schipper, H. M. (1999). Cysteamine pretreatment of the astroglial substratum (mitochondrial iron sequestration) enhances PC12 cell vulnerability to oxidative injury. Experimental Neurology, 160(2), 376–385.

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama, H., Ogawa, M., Yamauchi, H., Yamaguchi, S., Kimura, J., Yonekura, Y., et al. (1994). Altered cerebral energy metabolism in Alzheimer's disease: A PET study. Journal of Nuclear Medicine, 35(1), 1–6.

    PubMed  CAS  Google Scholar 

  • Gibson, G. E., Sheu, K. F., & Blass, J. P. (1998). Abnormalities of mitochondrial enzymes in Alzheimer disease. Journal of Neural Transmission, 105(8–9), 855–870.

    Article  PubMed  CAS  Google Scholar 

  • Ham, D., & Schipper, H. M. (2000). Heme oxygenase-1 induction and mitochondrial iron sequestration in astroglia exposed to amyloid peptides. Cellular and Molecular Biology (Noisy-le-grand), 46(3), 587–596.

    CAS  Google Scholar 

  • Hirose, W., Ikematsu, K., & Tsuda, R. (2003). Age-associated increases in heme oxygenase-1 and ferritin immunoreactivity in the autopsied brain. Legal Medicine (Tokyo), 5(Suppl.), S360–S366.

    Article  CAS  Google Scholar 

  • Jefferies, W. A., Food, M. R., Gabathuler, R., Rothenberger, S., Yamada, T., Yasuhara, O., et al. (1996). Reactive microglia specifically associated with amyloid plaques in Alzheimer's disease brain tissue express melanotransferrin. Brain Research, 712(1), 122–126.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P. (2003). Oxidative stress in Parkinson's disease. Annals of Neurology, 53(Suppl. 3), S26–S36; discussion S36–S28.

    Article  PubMed  CAS  Google Scholar 

  • Jofre-Monseny, L., Loboda, A., Wagner, A. E., Huebbe, P., Boesch-Saadatmandi, C., Jozkowicz, A., et al. (2007). Effects of apoE genotype on macrophage inflammation and heme oxygenase-1 expression. Biochemical and Biophysical Research Communications, 357(1), 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. P., Wang, X., Galbiati, F., Ryter, S. W., & Choi, A. M. (2004). Caveolae compartmentalization of heme oxygenase-1 in endothelial cells. The Federation of American Societies for Experimental Biology Journal, 18(10), 1080–1089.

    Article  CAS  Google Scholar 

  • Kimpara, T., Takeda, A., Watanabe, K., Itoyama, Y., Ikawa, S., Watanabe, M., et al. (1997). Microsatellite polymorphism in the human heme oxygenase-1 gene promoter and its application in association studies with Alzheimer and Parkinson disease. Human Genetics, 100(1), 145–147.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. Y., & Lee, K. L. (2001). Accumulation of peroxidase-positive granules with ageing in SAMP and 10 SAMR1 mouse brains. Korean Journal of Anatomy, 34, 645–651.

    Google Scholar 

  • LeVine, S. M. (1997). Iron deposits in multiple sclerosis and Alzheimer's disease brains. Brain Research, 760(1–2), 298–303.

    Article  PubMed  CAS  Google Scholar 

  • Llesuy, S. F., & Tomaro, M. L. (1994). Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochimica et Biophysica Acta, 1223(1), 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Maes, O. C., Kravitz, S., Mawal, Y., Su, H., Liberman, A., Mehindate, K., et al. (2006). Characterization of alpha(1)-antitrypsin as a heme oxygenase-1 suppressor in Alzheimer plasma. Neurobiology of Disease, 24, 89–100.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (2002). Contributions of mitochondrial alterations, resulting from bad genes and a hostile environment, to the pathogenesis of Alzheimer's disease. International Review of Neurobiology, 53, 387–409.

    Article  PubMed  CAS  Google Scholar 

  • Mawal, Y., Berlin, D., Kravitz, S., & Schipper, H. (2002). Heme oxygenase-1 and Alzheimer disease. In N. G. Abraham, J. Alam, & K. A. Nath (Ed.), Heme oxygenase in biology and medicine (pp. 145–155). New York: Kluwer Academic/Plenum Publishers.

    Chapter  Google Scholar 

  • McGeer, P. L., & McGeer, E. G. (1995). The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Research Brain Research Reviews, 21(2), 195–218.

    Article  PubMed  CAS  Google Scholar 

  • McLaren, J., Brawer, J. R., & Schipper, H. M. (1992). Iron content correlates with peroxidase activity in cysteamine-induced astroglial organelles. Journal of Histochemistry and Cytochemistry, 40(12), 1887–1897.

    Article  PubMed  CAS  Google Scholar 

  • Mehindate, K., Sahlas, D. J., Frankel, D., Mawal, Y., Liberman, A., Corcos, J., et al. (2001). Proinflammatory cytokines promote glial heme oxygenase-1 expression and mitochondrial iron deposition: implications for multiple sclerosis. Journal of Neurochemistry, 77(5), 1386–1395.

    Article  PubMed  CAS  Google Scholar 

  • Minoshima, S., Giordani, B., Berent, S., Frey, K. A., Foster, N. L., & Kuhl, D. E. (1997). Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Annals of Neurology, 42(1), 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Miyajima, H., Kono, S., Takahashi, Y., & Sugimoto, M. (2002). Increased lipid peroxidation and mitochondrial dysfunction in aceruloplasminemia brains. Blood Cells Molecules and Diseases, 29(3), 433–438.

    Article  CAS  Google Scholar 

  • Mydlarski, M. B., Brawer, J. R., & Schipper, H. M. (1998). The peroxidase-positive subcortical glial system. In H. M. Schipper (Ed.), Astrocytes in brain aging and neurodegeneration (pp. 191–206). Austin: R.G. Landes Co.

    Google Scholar 

  • Nakagami, T., Toyomura, K., Kinoshita, T., & Morisawa, S. (1993). A beneficial role of bile pigments as an endogenous tissue protector: Anti-complement effects of biliverdin and conjugated bilirubin. Biochimica et Biophysica Acta, 1158(2), 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Petronilli, V., Cola, C., Massari, S., Colonna, R., & Bernardi, P. (1993). Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. Journal of Biological Chemistry, 268(29), 21939–21945.

    PubMed  CAS  Google Scholar 

  • Piantadosi, C. A., Carraway, M. S., & Suliman, H. B. (2006). Carbon monoxide, oxidative stress, and mitochondrial permeability pore transition. Free Radical Biology and Medicine, 40(8), 1332–1339.

    Article  PubMed  CAS  Google Scholar 

  • Ponka, P. (2004). Hereditary causes of disturbed iron homeostasis in the central nervous system. Annals of the New York Academy of Sciences, 1012, 267–281.

    Article  PubMed  CAS  Google Scholar 

  • Reichmann, H., & Riederer, P. (1994). Mitochondrial disturbances in neurodegeneration. Philadelphia: Saunders.

    Google Scholar 

  • Ryter, S. W., & Tyrrell, R. M. (2000). The heme synthesis and degradation pathways: Role in oxidant sensitivity. Heme oxygenase has both pro- and anti-oxidant properties. Free Radical Biology and Medicine, 28(2), 289–309.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., et al. (1993). Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology, 43(8), 1467–1472.

    Article  PubMed  CAS  Google Scholar 

  • Sayre, L. M., Smith, M. A., & Perry, G. (2001). Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Current Medical Chemistry, 8(7), 721–738.

    Article  CAS  Google Scholar 

  • Schipper, H., Scarborough, D., Lechan, R., & Reichlin, S. (1990). Gomori-positive astrocytes in primary culture: Effects of in vitro age and cysteamine exposure. Developmental Brain Research, 54, 71.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M. (1996). Astrocytes, brain aging, and neurodegeneration. Neurobiology of Aging, 17(3), 467–480.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M. (1998). Glial iron sequestration and neurodegeneration. In H. M. Schipper (Ed.), Astrocytes in brain aging and neurodegeneration (pp. 235–251). Austin: R.G. Landes Co.

    Google Scholar 

  • Schipper, H. M. (1999). Glial HO-1 expression, iron deposition and oxidative stress in neurodegenerative diseases. Neurotoxicity Research, 1(1), 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M. (2000). Heme oxygenase-1: Role in brain aging and neurodegeneration. Experimental Gerontology, 35(6–7), 821–830.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M. (2001). Mitochondrial iron deposition in aging astroglia: Mechanisms and disease implications. In M. Ebadi, J. Marwah, & R. K. Chopra (Eds.), Mitochondrial ubiquinone (Coenzyme Q): Biochemical, functional, medical, and therapeutic aspects in human health and disease (pp. 267–280). Scottsdale, AZ: Prominent Press.

    Google Scholar 

  • Schipper, H. M. (2004a). Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Research Reviews, 3, 265–301.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M. (2004b). Heme oxygenase-1: Transducer of pathological brain iron sequestration under oxidative stress. In S. LeVine, J. R. Connor, & H. M. Schipper (Eds.), Redox-active metals in neurological disorders (Vol. 1012, pp. 84–93). New York: Annals of the New York Academy of Sciences.

    Google Scholar 

  • Schipper, H. M., Bennett, D. A., Liberman, A., Bienias, J. L., Schneider, J. A., Kelly, J., et al. (2006). Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiology of Aging, 27(2), 252–261.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M., Bernier, L., Mehindate, K., & Frankel, D. (1999). Mitochondrial iron sequestration in dopamine-challenged astroglia: role of heme oxygenase-1 and the permeability transition pore. Journal of Neurochemistry, 72(5), 1802–1811.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M., Chertkow, H., Mehindate, K., Frankel, D., Melmed, C., & Bergman, H. (2000). Evaluation of heme oxygenase-1 as a systemic biological marker of sporadic AD. Neurology, 54(6), 1297–1304.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M., & Cissé, S. (1995). Mitochondrial constituents of corpora amylacea and autofluorescent astrocytic inclusions in senescent human brain. Glia, 14(1), 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M., Cissé, S., & Stopa, E. G. (1995). Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Annals of Neurology, 37(6), 758–768.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M., Kotake, Y., & Janzen, E. G. (1991). Catechol oxidation by peroxidase-positive astrocytes in primary culture: An electron spin resonance study. Journal of Neuroscience, 11(7), 2170–2176.

    PubMed  CAS  Google Scholar 

  • Schipper, H. M., Liberman, A., & Stopa, E. G. (1998). Neural heme oxygenase-1 expression in idiopathic Parkinson's disease. Experimental Neurology, 150(1), 60–68.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M., Mydlarski, M. B., & Wang, X. (1993). Cysteamine gliopathy in situ: A cellular stress model for the biogenesis of astrocytic inclusions. Journal of Neuropathology and Experimental Neurology, 52(4), 399–410.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M., Small, L., Wang, X., & Brawer, J. R. (2002). Role of porphyrin sequestration in the biogenesis of iron-laden astrocytic inclusions in primary culture. Developmental Neuroscience, 24(2–3), 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. M., Vininsky, R., Brull, R., Small, L., & Brawer, J. R. (1998). Astrocyte mitochondria: A substrate for iron deposition in the aging rat substantia nigra. Experimental Neurology, 152(2), 188–196.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (1991). The molecular pathology of Alzheimer's disease. Neuron, 6(4), 487–498.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. A., Kutty, R. K., Richey, P. L., Yan, S. D., Stern, D., Chader, G. J., et al. (1994). Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer's disease. American Journal of Pathology, 145(1), 42–47.

    PubMed  CAS  Google Scholar 

  • Song, L., Song, W., & Schipper, H. M. (2007). Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury. Journal of Neuroscience Research, 85(10), 2186–2195.

    Article  PubMed  CAS  Google Scholar 

  • Song, W., Su, H., Song, S., Paudel, H. K., & Schipper, H. M. (2006). Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia. Journal of Cellular Physiology, 206(3), 655–663.

    Article  PubMed  CAS  Google Scholar 

  • Soong, N. W., Hinton, D. R., Cortopassi, G., & Arnheim, N. (1992). Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nature Genetics, 2(4), 318–323.

    Article  PubMed  CAS  Google Scholar 

  • St-Jacques, R., Chapman, A., Lacaille, J. C., Mohr, G., & Schipper, H. M. (1999). Acceleration of ageing-related gliopathic changes and hippocampal dysfunction following intracerebroventricular infusion of cysteamine in adult rats. Neuroscience, 90(3), 1103–1113.

    Article  PubMed  CAS  Google Scholar 

  • Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N., & Ames, B. N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science, 235(4792), 1043–1046.

    Article  PubMed  CAS  Google Scholar 

  • Storm, T., Rath, S., Mohamed, S. A., Bruse, P., Kowald, A., Oehmichen, M., et al. (2002). Mitotic brain cells are just as prone to mitochondrial deletions as neurons: A large-scale single-cell PCR study of the human caudate nucleus. Experimental Gerontology, 37(12), 1389–1400.

    Article  PubMed  CAS  Google Scholar 

  • Tanno, Y., Okuizumi, K., & Tsuji, S. (1998). mtDNA polymorphisms in Japanese sporadic Alzheimer's disease. Neurobiology of Aging, 19(Suppl. 1), S47–51.

    Article  PubMed  CAS  Google Scholar 

  • Vaya, J., Song, W., Khatib, S., Geng, G., & Schipper, H. M. (2007). Effects of heme oxygenase-1 expression on sterol homeostasis in rat astroglia. Free Radical Biology and Medicine, 42(6), 864–871.

    Article  PubMed  CAS  Google Scholar 

  • Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V., & Snyder, S. H. (1993). Carbon monoxide: a putative neural messenger. Science, 259(5093), 381–384.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Manganaro, F., & Schipper, H. M. (1995). A cellular stress model for the sequestration of redox-active glial iron in the aging and degenerating nervous system. Journal of Neurochemistry, 64(4), 1868–1877.

    Article  PubMed  CAS  Google Scholar 

  • Yu, H.-L., Chertkow, H. M., Bergman, H., & Schipper, H. M. (2003). Aberrant profiles of native and oxidized glycoproteins in Alzheimer plasma. Proteomics, 3, 2240–2248.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., & Piantadosi, C. A. (1992). Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. Journal of Clinical Investigation, 90(4), 1193–1199.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Adrienne Liberman for assistance with the preparation of this manuscript. Contributions by the Schipper laboratory were enabled by grants from the Canadian Institutes of Health Research, the Fonds de la Recherche en Santé du Québec, the Alzheimer’s Association (US), and the Parkinson Foundation of Canada.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schipper, H.M. (2009). Brain Iron Deposition in Aging and Disease: Role of HO-1. In: Yehuda, S., Mostofsky, D. (eds) Iron Deficiency and Overload. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-462-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-462-9_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-22-0

  • Online ISBN: 978-1-59745-462-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics