Skip to main content

Iron Deficiency and Excess in the Brain: Implications for Cognitive Impairment and Neurodegeneration

  • Chapter
  • First Online:
  • 1772 Accesses

Part of the book series: Nutrition and Health ((NH))

Summary

• Iron is a two-way sword. Either its brain iron deficiency (ID) or excess profoundly affects brain function.

• ID can result in reduction of brain iron by roughly 35% as contrast to a 90% depletion in the liver. Thus it is tightly controlled. It is associated with impairment of cognition and learning processes which may result from alteration in dopaminergic, at the level of its receptor subsensitivity, and increased opiate neurotransmission. Other aminergic systems are not profoundly affected.

• The effect of ID on brain function is age dependent, and it is more severe in newborn rats than adults and is irreversible in newborn even after long-term supplementation with iron.

• The exact mechanisms by which dopamine receptors are affected by ID and their effects cognition are not well understood, but may involve dopamine interaction with the endogenous opiates, enkephalin, and dynorphins, involving the hippocampus and striatum.

• One of the major findings on brain iron metabolism is its accumulation at neuronal sites which degenerate and give rise to neurodegenerative disorders such as Parkinson’s disease, Alzheimer’s disease, Huntington’s diseases. Some are familial disorders, with mutation of genes involved in iron metabolism, such as Freidreich’s ataxia, PANK2, aceruloplasminemia.

• The role of iron and its accumulation in substantia nigra pars compacta of parkinsonian brains, where melanized dopamine neuron selectively degenerates, has indicated that iron participates in the Fenton reaction to induce oxidative stress-dependent damage to the neurons.

• Confirmation for participation of iron in Parkinson’s disease has come from its 6-hydroxydopmaine, MPTP (N-methy-4-phenyl-1,2,3,6-tetrahydropyridine), and lactacystin neurotoxin models, where similar iron accumulation occurs in substantia nigra pars compacta and pretreatment with iron chelators are neuroprotective. Several iron chelators have been developed as neuroprotective agents for Parkinson’s disease and other neurodegenerative disorders.

• It is apparent that iron accumulation may have a pivotal role in the degeneration of dopamine neurons in Parkinson’s disease. Future studies must illuminate why the process of neurodegeneration results in iron deposition and from where it is transported when it has limited access across the blood–brain barrier.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhami, V. M., Husain, R., Husain, R., & Seth, P. K. (1996). Influence of iron deficiency and lead treatment on behavior and cerebellar and hippocampal polyamine levels in neonatal rats. Neurochemical Research, 21(8), 915–922.

    Article  CAS  PubMed  Google Scholar 

  • Aime, S., Bergamasco, B., Casu, M., Digilio, G., Fasano, M., Giraudo, S., et al. (2000). Isolation and 13C-NMR characterization of an insoluble proteinaceous fraction from substantia nigra of patients with Parkinson’s disease. Movement Disorder, 15(5), 977–981.

    Article  CAS  Google Scholar 

  • Angulo, J. A. (1992). Involvement of dopamine D1 and D2 receptors in the regulation of proenkephalin mRNA abundance in the striatum and accumbens of the rat brain. Journal of Neurochemistry, 58(3), 1104–1109.

    Article  CAS  PubMed  Google Scholar 

  • Bartzokis, G., Cummings, J. L., Markham, C. H., Marmarelis, P. Z., Treciokas, L. J., Tishler, T. A., et al. (1999, February). MRI evaluation of brain iron in earlier- and later-onset Parkinson’s disease and normal subjects. Magn Reson Imaging, 17(2), 213–222.

    Article  CAS  PubMed  Google Scholar 

  • Bayer, S. A. (1985). Hippocampal region. In G. Paxinos (Ed.), The rat nervous system (pp. 335–352). Australia: Academic Press.

    Google Scholar 

  • Becker, G. J., Seufert, U., Bogdahn Reichmann, H., & Reiners, K. (1995). Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology, 45, 182–184.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar, D., Ashkenazi, R., & Youdim, M. B. H. (1986). Long term consequences of early iron-deficiency on dopaminergic neurotransmission. International Journal of Developmental Neuroscience, 4, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar, D., Yehuda, S., Finberg, J. P. M., Spanier, I., & Youdim, M. B. H. (1988). Selective alteration in blood brain barrier and insulin transport in iron-deficient rat. Journal of Neurochemistry, 50, 1434–1437.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar, D., & Youdim, M. B. H. (1991). Intranigral iron injection induces behavioural and biochemical “parkinsonism” in rats. Journal of Neurochemistry, 57, 2133–2135.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar, D., Eshel, G., Finberg, J. P., & Youdim, M. B. H. (1991). The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. Journal of Neurochemistry, 56, 1441–1444.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar, D., Riederer, P., & Youdim, M. B. H. (1991). Iron-melanin interaction and lipid peroxidation: Implications for Parkinson’s disease. Journal of Neurochemistry, 57, 1609–1614.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar, D., Kahana, N., Kampel, V., Warshawsky, A., & Youdim, M. B. H. (2004). Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lesion in rats. Neuropharmacology, 46, 254–263.

    Article  CAS  Google Scholar 

  • Berg, D., Becker, G., & Zeiler, B. (1999). Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology, 53, 1026–1031.

    Article  CAS  PubMed  Google Scholar 

  • Berg, D., Gerlach, M., Youdim, M. B. H., & Riederer, P. (2001). Brain iron pathways and their relevance to Parkinson’s disease. Journal of Neurochemistry, 79, 225–236.

    Article  CAS  PubMed  Google Scholar 

  • Berg, D., Roggendorf, W., Schröder, U., Klein, R., Tatschner, T., Benz, P., et al. (2002). Echogenicity of the substantia nigra: Association with increased iron content and marker for susceptibility to nigrostriatal injury. Archive of Neurology, 599, 999–1005.

    Article  Google Scholar 

  • Berg, D., Siefker, C., Ruprecht-Dörfler, P., & Becker, G. (2001). Echo pattern of substantia nigra and its relevance for motor function and motility in elderly subjects. Neurology, 56, 13–17.

    Article  CAS  PubMed  Google Scholar 

  • Björklund, A., & Kirik, D. (2003). Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors. TINS, 26, 386–392.

    PubMed  Google Scholar 

  • Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361(6407), 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Boyer, R., Grabill, Y., & Petrovich, R. (1988). Reactive release of ferritin iron: A kinetic assay. Analytical Biochemistry, 174, 17–22.

    Article  CAS  PubMed  Google Scholar 

  • Castellani, R., Siedlak, S., Perry, G., & Smith, A. (2000). Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathology, 100, 111–114.

    Article  CAS  Google Scholar 

  • Chua, A. C., & Morgan, E. H. (1996). Effect of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat. Biological Trace Element Research, 55(1–2), 39–54.

    Article  CAS  PubMed  Google Scholar 

  • Connor, J. R., Boeshore, K. L., Benkovic, S. A., & Menzies, S. L. (1994). Isoforms of ferritin have aspecific cellular distribution in the brain. Journal of Neuroscience Research, 37, 461–465.

    Article  CAS  PubMed  Google Scholar 

  • Connor, J., Menzies, S., St. Martin, S., & Mufson, G. L. (1990). The cellular distribution of transferrin, ferritin and iron in the human brain. Journal of Neuroscience Research, 27, 595–611.

    Article  CAS  PubMed  Google Scholar 

  • Connor, J. R., & Menzies, S. L. (1996). Relationship of iron to oligodendrocytes and myelination. GLIA, 17(2), 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Connor, J. R., Pavlick, G., Karli, D., Menzies, S. L., & Palmer, C. (1995). A histochemical study of iron-positive cells in the developing rat brain. Journal of Comparative Neurology, 355, 111–123.

    Article  CAS  PubMed  Google Scholar 

  • Connor, J. R., Pillips, T. M., Lakshman, M. R., Baron, K. D., Fine, R. E. & Csiza, C. K. (1987). Regional variation in the levels of transferrin in the CNS of normal and myelin-deficient rats. Journal of Neurochemistry, 49(5), 1523–1529.

    Article  CAS  PubMed  Google Scholar 

  • Conway, K. A., Rochet, J. C., Bieganski, R. M., & Lansbury, P. T., Jr. (2001). Kinetic stabilization of the alpha-synuclein protofibril by a dopamine alpha-synuclein adduct. Science, 294, 1346–1349.

    Article  CAS  PubMed  Google Scholar 

  • Dallman, P. R., Siimes, M. A., & Manies, E. C. (1975). Brain iron: Persistent deficiency following short-term iron deprivation in the young rat. British Journal of Haematology, 31(3), 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Dallman, P. R., & Spirito, R. A. (1977). Brain iron in the rat: Extremely slow turnover in normal rats may explain the long-lasting effects of early iron deficiency. Journal of Nutrition, 107, 1075–1081.

    CAS  PubMed  Google Scholar 

  • De los Monteros, A. E., Korsak, R. A., Tran, T., Vu, D., de Vellis, J., & Edmond, J. (2000). Dietary iron and the integrity of the developing rat brain: A study with the artificially-reared rat pup. Cellular Molecular Biology (Noisy-le-grand), 46, 501–515.

    Google Scholar 

  • Dexter, D., Florence, A., Aouad, F., Hider, R., Jenner, P., & Crichton, R. R. (1995). Brain iron in the ferrocene-loaded rat: Its chelation and influence on dopamine metabolism. Biochemical Pharmacology, 49(12), 1821–6.

    Google Scholar 

  • Dexter, D. T., Carayon, A., Javoy-Agid, F., Agid, Y., Marsden, D., & Jenner, P. (1991). Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain, 114, 1953–1975.

    Article  PubMed  Google Scholar 

  • Dexter, D. T., Sian, J., Rose, S., Marsden, D., & Jenner, P. (1994). Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Annals of Neurology, 35, 38–44.

    Article  CAS  PubMed  Google Scholar 

  • Dexter, D. T., Wells, F. R., Agid, J., Agid, Y., Marsden, D., & Jenner, P. (1987). Increased nigral iron content in post-mortem parkinsonian brain. Lancet, 341, 1219–1220.

    Article  Google Scholar 

  • Dexter, D. T., Wells, F. R., Lees, A. J., Marsden, D., & Jenner, P. (1989). Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. Journal of Neurochemistry, 52, 1830–1836.

    Article  CAS  PubMed  Google Scholar 

  • Dexter, D. T., Brooks, D. J., Harding, A. E., Burn, D. J., Muller, D. P., Goss-Sampson, M. A., Jenner, P. G., & Marsden, C. D. (1994). Nigrostriatal function in vitamin E deficiency: clinical, experimental, and positron emission tomographic studies. Annals of Neurology, 35(3), 298–303.

    Google Scholar 

  • Dhur, A., Galan, P., & Hercberg, S. (1990). Effect of decreased food consumption during iron deficiency upon growth rate and iron status indicators in the rat. Annals of Nutrition and Metabolism, 34, 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Dobbing, J. (1990a). Vulnerable periods in developing brain. In J. Dobbing (Ed.), Brain behavior and iron in the infant diet (pp. 1–26). New York: Springer-Verlag.

    Google Scholar 

  • Dobbing, J. (Ed.). (1990b). Brain behavior and iron in the infant diet. Berlin: Springer-Verlag.

    Google Scholar 

  • Dong, Z., Ferger, B., Feldon, J., & Bueler, H. (2002). Overexpression of Parkinson’s disease associated alpha-synuclein A53T by recombinant adeno-associated virus in mice does not increase the vulnerability of dopaminergic neurons to MPTP. Journal of Neurochemistry and Neurobiology, 53, 1–10.

    Article  CAS  Google Scholar 

  • Double, K. L., Ben-Shachar, D., Youdim, M. B. H., & Riederer, P. (2002). Influence of neuromelanin on oxidative pathways within the human substantia nigra. Neurotoxicology and Teratology, 24, 621–628.

    Article  CAS  PubMed  Google Scholar 

  • Double, K. L., Gerlach, M., Schünemann, V., Ben Shachar, D., Youdim, M. B. H., & Riederer, P. (2003). Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochemical Pharmacology, 66, 489–494.

    Article  CAS  PubMed  Google Scholar 

  • Double, K. L., Gerlach, M., Youdim, M. B. H., & Riederer, P. (2000). Impaired iron homeostasis in Parkinson’s disease. Journal of Neural Transmission, 60(Suppl.), 37–58.

    PubMed  Google Scholar 

  • Double, K. L., Maywald, M., Schmittel, M., & Riederer, P. (1997). In vitro studies of ferritin iron release and neurotoxicity. Journal of Neurochemistry, 70, 2492–2499.

    Article  Google Scholar 

  • Double, K. L., Riederer, P., & Gerlach, M. (1998). The role of iron in 6-hydroxydopamine neurotoxicity. Advances in Neurology, 80, 287–296.

    Google Scholar 

  • Double, K. L., Riederer, P., & Gerlach, M. (1999). The significance of neuromelanin in Parkinson’s disease. Drug News Development, 12, 333–340.

    CAS  Google Scholar 

  • Double, K. L., Zecca, L., Costi, P., Gerlach, M., & Riederer, P. (2000). Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melanins. Journal of Neurochemistry, 75, 2583–2589.

    Article  CAS  PubMed  Google Scholar 

  • Durham, R. A., Johnson, J. D., Moore, K. E., & Lookingland, K. J. (1996, September 2). Evidence that D2 receptor-mediated activation of hypothalamic tuberoinfundibular dopaminergic neurons in the male rat occurs via inhibition of tonically active afferent dynorphinergic neurons. Brain Research, 732(1–2), 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Dwork, A. J. (1995). Effects of diet and development upon the uptake and distribution of cerebral iron. Journal of Neurological Sciences, 134(Suppl.), 45–51.

    Article  CAS  Google Scholar 

  • Dwork, A. J., Lawler, G., Zybert, P. A., & Durkin, M. (1990, June 4). An autoradiographic study of the uptake and distribution of iron by the brain of the young rat. Brain Research, 518(1–2), 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Dwork, A. J., Schon, E. A., & Herbert, J. (1988). Non-identical distribution of transferrin and ferric iron in human brain. Neuroscience, 27, 333–345.

    Article  CAS  PubMed  Google Scholar 

  • Earle, K. M. (1968). Studies in Parkinson’s disease including x-ray fluorescent spectroscopy of formalin-fixed tissues. Journal of Neuropathology and Experimental Neurology, 27, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Eisenstein, R. S., & Blemings, K. P. (1998). Iron regulatory proteins, iron responsive elements and iron homeostasis. Journal of Nutrition, 128(12), 2295–2298.

    CAS  PubMed  Google Scholar 

  • Erikson, K. M., Pinero, D. J., Connor, J. R., & Beard, J. L. (1997). Regional brain iron, ferritin and transferrin concentrations during iron deficiency and iron repletion in developing rats. Journal of Nutrition, 127(10), 2030–2038.

    CAS  PubMed  Google Scholar 

  • Essatara, M. B., Levine, A. S., Morley, J. E., & McClain, C. J. (1984). Zinc deficiency and anorexia in rats: Normal feeding patterns and stress induced feeding. Physiology and Behavior, 32, 469–474.

    Article  CAS  PubMed  Google Scholar 

  • Faucheux, B. A., Martin, M. E., Beaumont, C., & Hirsch, E. (2003). Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. Journal of Neurochemistry, 86, 1142–1148.

    Article  CAS  PubMed  Google Scholar 

  • Felt, B. T., & Lozoff, B. (1996). Brain iron and behavior of rats are not normalized by treatment of iron deficiency anemia during early development. Journal of Nutrition, 126(3), 693–701.

    CAS  PubMed  Google Scholar 

  • Forloni, G., Bertani, I., & Calella, A. M. (2001). α-Synuclein and Parkinson’s disease: Selective neurodegenerative effect of α-synuclein fragment on dopaminergic neurons in vitro and in vivo. Annnals of Neurology, 47, 632–640.

    Article  Google Scholar 

  • Frederickson, C. J., Klitenick, M. A., Manton, W. I., & Kirkpatrick, J. B. (1983). Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Research, 273, 335–339.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, A., & Galazka-Friedman, J. (2001). The current state of free radicals in Parkinson’s disease. Nigral iron as a trigger of oxidative stress. In D. Calne & S. Calne (Eds.), Parkinson’s disease: Advances in neurology (Vol. 86, pp. 137–142). Philadelphia, PA: Lippincott Williams & Wilkins.

    Google Scholar 

  • Gal, S., Zheng, H., Fridkin, M., & Youdim, M. B. H. (2005). Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. Journal of Neurochemistry, 95(1), 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Galazka-Friedman, J., Bauminger, E. R., Friedman, A., Barcikowska, M., Hechel, D., & Nowik, I. (1996). Iron in parkinsonian and control substantia nigra, a Mössbauer spectroscopy study. Movement Disorder, 11, 8–16.

    Article  CAS  Google Scholar 

  • Georgieff, M. K., Petry, C. D., Wobken, J. D., & Oyer, C. E. (1996). Liver and brain iron deficiency in newborn infants with bilateral renal agenesis (Potter’s syndrome). Pediatric Pathology and Laboratory Medicine, 16(3), 509–519.

    CAS  PubMed  Google Scholar 

  • Gerlach, M., Ben-Shachar, D., Riederer, P., & Youdim, M. B. (1994). Altered brain metabolism of iron as a cause of neurodegenerative diseases. Journal of Neurochemistry, 63(3), 793–807.

    Article  CAS  PubMed  Google Scholar 

  • Gerlach, M., Double, K., Riederer, P., & Youdim, M. B. H. (1997). Iron in the parkinsonian substantia nigra. Movement Disorder, 12, 258–260.

    CAS  Google Scholar 

  • Gerlach, M., Double, K. L., Ben-Shachar, D., Youdim, M. B. H., & Riederer, P. (2003). Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease. Neurotoxicity Research, 5, 35–44.

    Article  PubMed  Google Scholar 

  • Gerlach, M., Trautwein, A. X., Zecca, L., Riererer, P., & Youdim, M. B. H. (1995). Mössbauer spectroscopic studies of human neuromelanin isolated from the substantia nigra. Journal of Neurochemistry, 65, 923–926.

    Article  CAS  PubMed  Google Scholar 

  • Gibb, W. (1992). Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuron susceptibility in Parkinson’s disease. Brain Research, 581, 283–291.

    Article  CAS  PubMed  Google Scholar 

  • Gomori, G. (1993). Microtechnical demonstration of iron. American Journal of Pathology, 12, 655–663.

    Google Scholar 

  • Good, P. F., Olanow, C. W., & Perl, D. P. (1992). Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease. A LAMMA study. Brain Research, 593, 343–346.

    Article  CAS  PubMed  Google Scholar 

  • Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., Kortsha, G. X., Brown, G. G., et al. (1997). Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology, 48, 650–658.

    Article  CAS  PubMed  Google Scholar 

  • Gorell, J. M., Johnson, C. C., Rybicki, B., Peterson, E. L., Kortsha, G. X., Brown, G. G., et al. (1999). Occupational exposure to manganese, copper, lead, iron, mercury, and zinc and the risk of Parkinson’s disease. Neurotoxicology, 20, 239–247.

    CAS  PubMed  Google Scholar 

  • Gorell, J. M., Ordidge, R. J., Brown, G. G., Deniau, J. C., Buderer, N. M., & Helpern, J. A. (1995). Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology, 45, 1138–1143.

    Article  CAS  PubMed  Google Scholar 

  • Gosnell, B. A., Levine, A. S., & Morley, J. E. (1986). The stimulation of food intake by selective agonists of mu, kappa and delta opioid receptors. Life Sciences, 38(12), 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  • Götz, M. E., Künig, G., Riederer, P., & Youdim, M. B. H. (1994). Oxidative stress: Free radical production in neural degeneration. Pharmacology and Therapeutics, 63, 37–122.

    Article  PubMed  Google Scholar 

  • Griffiths, P. D., & Crossman, A. R. (1993). Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease. Dementia, 4(2), 61–65.

    CAS  PubMed  Google Scholar 

  • Griffiths, P. D., Dobson, B. R., Jones, G. R., & Clarke, D. T. (1999). Iron in the basal ganglia in Parkinson’s disease. An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. Brain, 122, 667–673.

    Article  PubMed  Google Scholar 

  • Guesry, P. (1998). The role of nutrition in brain development. Prevention Medicine, 27(2), 189–194.

    Article  CAS  Google Scholar 

  • Gulya, K., Kovacs, G. L., & Kasa, P. (1991). Partial depletion of endogenous zinc level by (DPen2, D-Pen5) enkephalin in the rat brain. Life Sciences, 48(12), PL57–PL62.

    Article  Google Scholar 

  • Haile, D. J. (1999). Regulation of genes of iron metabolism by the iron-response proteins. American Journal of Medical Sciences, 318(4), 230–240.

    Article  CAS  Google Scholar 

  • Hallgren, B., & Sourander, P. (1958). The effect of age on the non-haemin iron in the human brain. Journal of Neurochemistry, 3, 41–51.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., & Gutteridge, J. (1986). Iron and free radical reactions: Two aspects of antioxidant protection. Trends in Biological Sciences, 11, 1372–1375.

    Article  Google Scholar 

  • Han, J., Day, J. R., Thomson, K., Connor, J. R., & Beard, J. L. (2000). Iron deficiency alters H- and L-ferritin expression in rat brain. Cellular Molecular Biology (Noisy-le-grand), 46, 517–528.

    CAS  Google Scholar 

  • Hansen, T. M., Nielsen, H., Bernth, N., & Moos, T. (1999). Expression of ferritin protein and subunit mRNAs in normal and iron deficient rat brain. Molecular Brain Research, 65, 186–197.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, M., Hsu, L. J., Xia, Y., Takeda, A., Sisk, A., Sundsmo, M., et al. (1999). Oxidative stress induces amyloid-like aggregate formation of NACP/α-synuclein in vitro. Neuroreport, 10, 717–721.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, M., Rockenstein, E., & Masliah, E. (2003). Transgenic models of α-synuclein pathology. Annals of New York Academy of Sciences, 991, 171–188.

    Article  CAS  Google Scholar 

  • Hegg, C. C., & Thayer, S. A. (1999). Monocytic cells secrete factors that evoke excitatory synaptic activity in rat hippocampal cultures. European Journal of Pharmacology, 385(2–3), 231–237.

    Article  CAS  PubMed  Google Scholar 

  • Hill, J. M. (1988). The distribution of iron in the brain. In M. B. H. Youdim (Ed.), Brain iron: neurochemistry and behavioural aspects (pp. 1–24). London: Taylor and Francis.

    Google Scholar 

  • Hirsch, E. C. (1994). Biochemistry of Parkinson’s disease with special reference to the dopaminergic systems. Molecular Neurobiology, 9, 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, E. C., Brandel, J.-P., Galle, P., Agid, Y. A., & Agid, J. (1991). Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: An x-ray microanalysis. Journal of Neurochemistry, 56, 446–451.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, E. C., Graybiel, A. M., & Agid, Y. A. (1988). Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature, 334, 345–348.

    Article  CAS  PubMed  Google Scholar 

  • Howell, G. A., Welch, M. G., & Frederickson, C. J. (1984). Stimulation-induced uptake and release of zinc in hippocampal slices. Nature (London), 308, 736–738.

    Article  CAS  Google Scholar 

  • Hsu, L. J., Sagarra, Y., & Arroyo, A. (2001). α-Synuclein promotes mitochondrial deficit and oxidative stress. American Journal of Pathology, 157, 401–410.

    Article  Google Scholar 

  • Iancu, T. C., Perl, D. P., Sternlieb, I., & Olanow, W. (1996). The application of laser microprobe mass analysis to the study of biological material. Biometals, 9, 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Jellinger, K. A. (1999). The role of iron in neurodegeneration: Prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging, 14, 115–140.

    Article  CAS  PubMed  Google Scholar 

  • Jellinger, K. A. (2003). General aspects of neurodegeneration. Journal of Neural Transmission, 65(Suppl.), 101–144.

    Article  PubMed  Google Scholar 

  • Jellinger, K., Kienzl, E., Rumpelmair, G., Riederer, P., & Youdim, M. B. H. (1992). Iron-melanin complex in substantia nigra of parkinsonian brains: An x-ray microanalysis. Journal of Neurochemistry, 59, 1168–1171.

    Article  CAS  PubMed  Google Scholar 

  • Jellinger, K., Kienzl, E., Rumpelmair, G., Riederer, P., & Youdim, M. B. H. (1993). Iron and ferritin in substantia nigra in Parkinson’s disease. In H. Narabayashi, T. Nagatsu, N. Yanagisawa, & Y. Mizuno (Eds.), Parkinson’s disease: Advances in neurology (Vol. 60, pp. 267–272). New York: Raven Press Ltd.

    Google Scholar 

  • Jellinger, K., Paulus, W., Grundke-Iqbal, I., Riederer, P., & Youdim, M. B. H. (1990). Brain iron and ferritin in Parkinson’s and Alzheimer’s disease. Journal of Neural Transmission, 2, 327–340.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko, Y., Kitamoto, T., Tateishi, J., & Yamaguchi, K. (1989). Ferritin immunohistochemistry as a marker for microglia. Acta Neuropathology (Berl), 79(2), 129–136.

    Article  CAS  Google Scholar 

  • Kastner, A., Hirsch, E., Lejeune, O., Javoy-Agid, F., Rascol, O., & Agid, Y. (1992). Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? Journal of Neurochemistry, 59, 1080–1089.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, C., & Ling, E. A. (1995). Transient expression of transferrin receptors and localisation of iron in amoeboid microglia in postnatal rats. Journal of Anatomy, 186(Pt. 1), 165–173.

    CAS  PubMed  Google Scholar 

  • Kim, K. S., Choi, S. Y., & Kwon, H. Y. (2002). Aggregation of α-synuclein induced by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Free Radicals in Biology and Medicine, 32, 544–550.

    Article  CAS  Google Scholar 

  • Krüger, R., Kuhn, W., Müller, T., Woitalla, D., Graeber, M., Kösel, S., et al. (1998). Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nature Genetic, 18, 106–108.

    Article  Google Scholar 

  • Lai, B. C. L., Marion, S. A., Teschke, K., & Tsui, A. J. (2002). Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism and Related Disorders, 8, 297–309.

    Article  CAS  PubMed  Google Scholar 

  • Lapenna, D., Degioia, S., & Ciofani, G. (1995). Captopril induces iron release from ferritin and oxidative stress. Journal of Pharmacy and Pharmacology, 47, 1–11.

    Article  Google Scholar 

  • Lhermitte, J., Kraus, W. M., & McAlpine, D. (1924). On the occurrence of abnormal deposits of iron in the brain in Parkinsonism with special reference to its localisation. Journal of Neurology and Psychopathology, 5, 195–208.

    Article  CAS  PubMed  Google Scholar 

  • Li, D. (1998). Effect of iron deficiency on iron distribution and gamma-aminobutyric acid (GABA) metabolism in young rat brain tissues. Hokkaido Igaku Zasshi – Hokkaido. Journal of Medical Sciences, 73(3), 215–225.

    CAS  Google Scholar 

  • Linert, W., Herlinger, E., Jameson, R. F., Kienzl, E., Jellinger, K., & Youdim, M. B. H. (1996). Dopamine, 6-hydroxydopamine, iron, and dioxygen, their mutual interactions and possible implication in the development of Parkinson’s disease. Biochimica et Biophysica Acta, 1316, 160–168.

    Article  PubMed  Google Scholar 

  • Lo Bianco, C., Ridet, J. L., Schneider, B. L., Deglon, N., & Aebischer, P. (2002). α-Synucleinopathy and selective dopaminergic loss in a rat lentiviral-based model of Parkinson’s disease. Proceeding of National Academy of Sciences, USA, 99, 10813–10818.

    Google Scholar 

  • Loeffler, D. A., Connor, J. R., Juneau, P. L., Snyder, B. S., Kanaley, L., DeMaggio, A. J., et al. (1995). Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. Journal of Neurochemistry, 65, 710–716.

    Article  CAS  PubMed  Google Scholar 

  • Logroscino, G., Marder, K., Graziano, J., Freyer, G., Slavkovich, V., Lojacono, N., et al. (1998). Dietary iron, animal fats, and risk of Parkinson’s disease. Movement Disorder, 13(Suppl. 1), 13–16.

    Google Scholar 

  • Lopiano, L., Chiesa, M., Digilio, D., Giraudo, S., Bergamasco, B., Torre, E., et al. (2000). Q-band EPR investigations of neuromelanin in control and Parkinson’s disease patients. Biochimica et Biophysica Acta, 1500, 306–312.

    Article  CAS  PubMed  Google Scholar 

  • Lozoff, B., & Brittenham, G. M. (1986). Behavioral aspects of iron deficiency. Progress in Hematology, 14, 23–53.

    CAS  PubMed  Google Scholar 

  • Lozoff, B. (1988). Behavioral alteration in iron deficiency. Advances in Pediatrics, 6, 331–359.

    Google Scholar 

  • Lozoff, B., Jimenez, E., & Wolf, A. W. (1991). Long-term developmental outcome of infants with iron deficiency. New England Journal of Medicine, 325, 687–694.

    Article  CAS  PubMed  Google Scholar 

  • Lozoff, B., Wolf, A. W., & Jimenez, E. (1996). Iron-deficiency anemia and infant development: Effects of extended oral iron therapy. Journal of Pediatric, 129, 382–389.

    Article  CAS  Google Scholar 

  • Mann, V. M., Cooper, J. M., & Daniel, S. E. (1994). Complex, I., iron, and ferritin in Parkinson’s disease substantia nigra. Annals of Neurology, 36, 876–881.

    Article  CAS  PubMed  Google Scholar 

  • Markopoulou, K., Wszolek, Z., & Pfeiffer, R. (1999). Reduced expression of the G209A α-synuclein allele in familial parkinsonism. Annals of Neurology, 46, 374–381.

    Article  CAS  PubMed  Google Scholar 

  • Martin, W. R. W. (2001). Magnetic resonance imaging and spectroscopy in Parkinson’s disease. In D. Calne & S. Calne (Eds.), Parkinson’s disease: Advances in neurology (Vol. 86, pp. 197–203). Philadelphia, PA: Lippincott Williams & Wilkins.

    Google Scholar 

  • Matsuoka, Y., Vila, M., Lincoln, S., McCormack, A., Picciano, M., LaFrancois, J., et al. (2001). Lack of nigral pathology in transgenic mice expressing human α-synuclein driven by the tyrosine hydroxylase promoter. Neurobiology of Disease, 8, 535–539.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, Y., Hattori, N., & Kitada, T. (2001). Familial Parkinson’s disease, α-synuclein and parkin. In D. Calne & S. Calne (Eds.), Parkinson’s disease: Advances in neurology (Vol. 86, pp. 13–21). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Monteiro, H., & Winterbourn, C. (1988). The superoxide-dependent transfer of iron from ferritin to transferrin and lactoferrin. The Biochemical Journal, 256, 923–928.

    CAS  PubMed  Google Scholar 

  • Monteiro, H., Ville, G., & Winterbourn, C. (1989). Release of iron from ferritin by semiquinone, anthracycline, bipyridyl and nitroaromatic radicals. Free Radicals in Biology and Medicine, 6, 587–591.

    Article  CAS  Google Scholar 

  • Moos, T., Oates, P. S., & Morgan, E. H. (1998). Expression of the neuronal transferrin receptor is age dependent and susceptible to iron deficiency. Journal of Comparative Neurology, 398(3), 420–430.

    Article  CAS  PubMed  Google Scholar 

  • Morris, B. J., & Johnston, H. M. (1995). A role for hippocampal opioids in long-term functional plasticity. Trends in Neuroscience, 18, 350–355.

    Article  CAS  Google Scholar 

  • Morris, B. J., Höllt, V., & Herz, A. (1988). Dopaminergic regulation of striatal proenkephalin mRNA and prodynorphin mRNA contrasting effects of D1 and D2 antagonists. Neuroscience, 25(2), 525–532.

    Article  CAS  PubMed  Google Scholar 

  • Münch, G., Gasic-Milenkovic, J., & Arendt, T. (2003). Effect of advanced glycation endproducts on cell cycle and their relevance for Alzheimer’s disease. Journal of Neural Transmission, 65(Suppl.), 63–71.

    Article  PubMed  Google Scholar 

  • Münch, G., Lüth, H. J., Wong, A., Arendt, T., Hirsch, E., Ravid, R., et al. (2000). Crosslinking of α-synuclein by advanced glycation endproducts – An early pathophysiological step in Lewy body formation? Journal of Chemical Neuroanatomy 20, 253–257.

    Article  PubMed  Google Scholar 

  • Nakajima, K., & Kohsaka, S. (1993). Functional roles of microglia in the brain. Neuroscience Research, 17, 187–203.

    Article  CAS  PubMed  Google Scholar 

  • Ngim, C. H., & Devathasan, G. (1989). Epidemiologic study on the association between body burden mercury level and idiopathic Parkinson’s disease. Neuroepidemiology, 8, 128–141.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, M. S., Vorum, H., Lindersson, E., & Joseph, P. H. (2001). Ca2+ binding to α-synuclein regulate ligand binding and oligomerization. Journal of Biological Chemistry, 276, 22680–22684.

    Article  CAS  PubMed  Google Scholar 

  • Oestreicher, E., Sengstock, G. J., Riederer, P., & Olanow, W. (1994). Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: A histochemical and neurochemical study. Brain Research, 660, 8–18.

    Article  CAS  PubMed  Google Scholar 

  • Ostrerova-Golts, N., Petrucelli, L., Hardy, J., Lee, J. M., Farer, M., & Wolozin, B. (2000). The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. Journal of Neuroscience, 20, 6048–6054.

    CAS  PubMed  Google Scholar 

  • Owen, A. D., Schapira, A. H. V., & Jenner, P. (1997). Indices of oxidative stress in Parkinson’s disease, Alzheimer’s disease and dementia with Lewy bodies. Journal of Neural Transmission, 51(Suppl.), 167–173.

    Article  CAS  PubMed  Google Scholar 

  • Pablo Huidobro-Toro, J., & Leong Way, E. (1983). Opiates. In D. G. Grahame-Smith & P. J. Cowen (Eds.), Part 1, Preclinical psychopharmacology (pp. 300–343). Amsterdam: Excerpta Medica.

    Google Scholar 

  • Pablo Huidobro-Toro, J., & Leong Way, E. (1985). Opiates. In D. G. Grahame-Smith & P. J. Cowen (Eds.), Part 1. Preclinical psychopharmacology (pp. 283–343). Amsterdam: Elsevier.

    Google Scholar 

  • Paik, S. R., Lee, D. Y., Cho, H. J., Lee, E. N., & Chang, C. S. (2003). Oxidized glutathione stimulated the amyloid formation of α-synuclein. FEBS Letters, 537, 63–67.

    Article  CAS  PubMed  Google Scholar 

  • Paik, S. R., Shin, H., & Lee, J. (1999). Copper(II)-induced self oligomerization of α-synuclein. The Biochemical Journal, 340, 821–828.

    Article  CAS  PubMed  Google Scholar 

  • Parks, Y. A., & Wharton, B. A. (1989). Iron deficiency and the brain. Acta Paediatrica Scanddinavia, 361, 71–77.

    CAS  Google Scholar 

  • Parks, Y. A., & Wharton, B. (1990). Iron-deficiency and the brain clinical significance of behavioral changes. In J. Dobbing (Ed.), Brain, behavior and iron in the infant diet (pp. 157–176). Berlin: Springer-Verlag.

    Google Scholar 

  • Perry, G., Sayre, L. M., Atwood, C. S., Castellani, R. J., Cash, A. D., Rottkamp, C. A., et al. (2002). The role of iron and copper in the aetiology of neurodegenerative disorders, therapeutic implications. CNS Drugs, 16, 339–352.

    Article  CAS  PubMed  Google Scholar 

  • Pilas, B., Sarna, T., Kalyanaraman, B., & Swartz, H. M. (1988). The effect of melanin on iron associated decomposition of hydrogen peroxide. Free Radicals in Biology and Medicine, 4, 285–293.

    Article  CAS  Google Scholar 

  • Pinero, D. J., Li, N. Q., Connor, J. R., & Beard, J. L. (2000). Variations in dietary iron alter brain iron metabolism in developing rats. Journal of Nutrition, 130(2), 254–263.

    CAS  PubMed  Google Scholar 

  • Pollitt, E., Haas, J., & Levitsky, D. A. (Eds.). (1989). International conference of iron deficiency and behavioural development. American Journal of Clinical Nutrition, 50, 565–705.

    Google Scholar 

  • Pollitt, E., & Leibel, R. L. (Eds.). (1982). Iron-deficiency, brain biochemistry and behavior. New York: Raven Press.

    Google Scholar 

  • Polymeropoulos, M., Lavedan, C., & Leroy, E. (1997). Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.

    Article  CAS  PubMed  Google Scholar 

  • Powers, K. M., Smith-Weller, T., Franklin, G., Longstreth, W. T. Jr., Swanson, P. D., & Checkoway, H. (2003). Parkinson’s disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology, 60, 1761–1766.

    Article  CAS  PubMed  Google Scholar 

  • Rao, R., de Ungria, M., Sullivan, D., Wu, P., Wobken, J. D., Nelson, C. A., et al. (1999). Perinatal brain iron deficiency increases the vulnerability of rat hippocampus to hypoxic ischemic insult. Journal of Nutrition, 129(1), 199–206.

    CAS  PubMed  Google Scholar 

  • Riederer, P., Sofic,´E., Rausch, W. D., Birkmyer, W., Riederer, P., & Youdim, M. B. H. (1989). Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. Journal of Neurochemistry, 52, 515–520.

    Article  CAS  PubMed  Google Scholar 

  • Riederer, P., Rausch, W. D., Schmidt, B., & Gerlach, M. (1988). Biochemical fundamentals in Parkinson’s disease. Mount Sinai Journal of Medicine, 55, 21–28.

    CAS  PubMed  Google Scholar 

  • Riederer, P., Sofic, E., Rausch, W. D., & Youdim, M. B. H. (1989). Transition metal, ferritin, glutathime and ascorbic acid in Parkinsonian brains. Journal of Neurochemistry, 52, 515–521.

    Article  CAS  PubMed  Google Scholar 

  • Riederer, P., Sofic, E., & Rausch, W. D. (1985). Dopaminforschung heute und morgen – L-Dopa in der Zunkunft. In P. Riederer & H. Umek (Eds.), L-Dopa Substitution der Parkinson-Krankheit, Geschichte-Gegenwart-Zukunft (pp. 127–144). New York: Springer Wien.

    Chapter  Google Scholar 

  • Rybicki, B. A., Johnson, C. C., Peterson, E. L., Kortsha, G. X., & Gorell, J. M. (1999). A family history of Parkinson’s disease and its effect on other PD risk factors. Neuroepidemiology, 18, 270–278.

    Article  CAS  PubMed  Google Scholar 

  • Ryvlin, P., Broussolle, E., Piollet, H., Viallet, F., Khalfallah, Y., & Chazot, G. (1995). Magnetic resonance imaging evidence of decreased putamenal iron content in idiopathic Parkinson’s disease. Archives of Neurology, 52, 583–588.

    Article  CAS  PubMed  Google Scholar 

  • Saha, A. R., Ninkina, N. N., & Hanger, D. P. (2001). Induction of neuronal death by α-synuclein. European Journal of Neuroscience, 12, 3073–3077.

    Article  Google Scholar 

  • Seidler, A., Hellenbrand, W., Robra, B. P., Vieregge, P., Nischan, P., Joerg, J., et al. (1996). Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: A case control study in Germany. Neurology, 46, 1275–1284.

    Article  CAS  PubMed  Google Scholar 

  • Sengstock, G. J., Zawia, N. H., Olanow, C. W., Dunn, A. J., & Arendash, G. W. (1997). Intranigral iron infusion in the rat. Acute elevations in nigral lipid peroxidation and striatal dopaminergic markers with ensuing nigral degeneration. Biology of Trace Element Research, 58, 177–195.

    Article  CAS  Google Scholar 

  • Shima, T., Sarna, T., Stroppolo, A., Gerbasi, R., & Zecca, L. (1997). Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: An electron paramagnetic resonance spectroscopy study. Free Radicals in Biology and Medicine, 23, 110–119.

    Article  CAS  Google Scholar 

  • Shoham, S., Glinka, Y., Tanne, Z., & Youdim, M. B. H. (1996). Brain iron: Function and dysfunction in relation to cognitive processes. In L. Hallberg & N. G. Asp (Eds.), Iron nutrition in health and disease (pp. 205–218). London: John Libbey & Co.

    Google Scholar 

  • Shoham, S., & Youdim, M. B. H. (2000). Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases. Cellular and Molecular Biology (Noisy-le-grand), 46, 743–760.

    CAS  Google Scholar 

  • Shoham, S., & Youdim, M. B. (2002). The effects of iron deficiency and iron and zinc supplementation on rat hippocampus ferritin. Journal of Neural Transmission, 109(10), 1241–1256.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, A., Agrawal, K. N., & Shukla, G. S. (1989). Effect of latent iron deficiency on metal levels of rat brain regions. Biology of Trace Element Research, 22, 141–152.

    Article  CAS  Google Scholar 

  • Sipe, J. C., Lee, P., & Beutler, E. (2002). Brain iron metabolism and neurodegenerative disorders. Developmental Neuroscience, 24, 188–196.

    Article  CAS  PubMed  Google Scholar 

  • Sofić, E., Paulus, W., Jellinger, K., Riederer, P., & Youdim, M. B. H. (1991). Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. Journal of Neurochemistry, 56, 978–982.

    Article  PubMed  Google Scholar 

  • Sofić, E., Riederer, P., Heinsen, H., Riederer, P., & Youidim, M. B. H. (1988). Increased iron(III) and total iron content in post-mortem substantia nigra of parkinsonian brain. Journal of Neural Transmission, 74, 199–205.

    Article  PubMed  Google Scholar 

  • Spatz, H. (1922). Uber des eisennachewis in gehrin besonders in zentren des extra-pyramidal motorrischen systems. Neural Psychiatry, 77, 261–390.

    Article  Google Scholar 

  • Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., & Goedert, M. (1998). α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proceedings of National Academy of Sciences USA, 95, 6469–6473.

    Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., & Lee, V. M. (1997). α-Synuclein in Lewy bodies. Nature, 388, 839–840.

    Article  CAS  PubMed  Google Scholar 

  • Stengaard-Pedersen, K., Fredens, K., & Larson, L. I. (1981). Enkephalin and zinc in the mossy fiber system. Brain Research, 212, 230–233.

    Article  CAS  PubMed  Google Scholar 

  • Tabner, B. J., Turnbull, S. O., El-Agnaf, O. M. A., & Allsop, D. (2002). Formation of hydrogen peroxide and hydroxyl radicals from Aβ and α-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Radicals in Biology and Medicine, 32, 1076–1083.

    Article  CAS  Google Scholar 

  • Tabrizi, S. J., Orth, M., Wilkinson, J. M., Taanman, J. W., Warner, T. T., Cooper, J. M., et al. (2001). Expression of mutant α-synuclein causes increased susceptibility to dopamine toxicity. Human Molecular Genetics, 9, 2683–2689.

    Article  Google Scholar 

  • Tang, F. E., Costa, E., & Schartz, J. P. (1983). Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks. Proceedings of National Academy of Sciences USA, 80, 3841–3846.

    Google Scholar 

  • Taylor, E. M., Crowe, A., & Morgan, E. H. (1991). Transferrin and iron uptake by the brain: Effects of altered iron status. Journal of Neurochemistry, 57(5), 1584–1592.

    Article  CAS  PubMed  Google Scholar 

  • Tikka, T. M., & Koistinaho, J. E. (2001). Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. Journal of Immunology, 166(12), 7527–7533.

    CAS  Google Scholar 

  • Turnbull, S., Tabner, B. J., El-Agnaf, O. M. A., Moore, S., Davies, Y., & Allsop, D. (2001). α-Synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radicals in Biology and Medicine, 30, 1163–1170.

    Article  CAS  Google Scholar 

  • Uitti, R. J., Rajput, A. H., Rozdilsky, B., Bickis, M., Wollin, T., & Yuen, W. K. (1989). Regional metal concentrations in Parkinson’s disease, other chronic neurological diseases, and control brains. Canadian Journal of Neurology Sciences, 16, 310–314.

    CAS  Google Scholar 

  • Volles, M. J., & Lansbury, P. T., Jr. (2002). Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry, 41, 4595–4602.

    Article  CAS  PubMed  Google Scholar 

  • Volles, M. J., & Lansbury, P. T., Jr. (2003). Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry, 42, 7871–7878.

    Article  CAS  PubMed  Google Scholar 

  • Volles, M. J., Lee, S. J., Rochet J-C, Shtilerman, M. D., Ding, T. T., Kessler, J. C., & Lansbury, P. T., Jr. (2001). Vesicle permeabilization by protofibrillar α-synuclein: Implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry, 40, 7812–7819.

    Article  CAS  PubMed  Google Scholar 

  • Walter, T., De Andraca, I., Chadud, P., & Perales, C. G. (1989). Iron deficiency anemia: Adverse effects on infant psychomotor development. Pediatrics, 84, 7–17.

    CAS  PubMed  Google Scholar 

  • Walter, U., Wittstock, M., Benecke, R., & Dressler, D. (2002). Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinson’s disease. Journal of Neural Transmission, 109, 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Webb, T. F., & Oski, F. A. (1973). Iron deficiency anemia and scholastic achievements: Behavioral stability and perceptual sensitivity to adolescents. Journal of Pediatrics, 82, 827–830.

    Article  CAS  PubMed  Google Scholar 

  • Werkman, S., Shifman, L., & Shelly, T. (1964). Psychosocial correlates of iron deficiency in early childhood. Psychosomatic Medicine, 26, 125–134.

    CAS  PubMed  Google Scholar 

  • Wolozin, B., & Golts, N. (2002). Iron and Parkinson’s disease. Neuroscientist, 8, 22–32.

    Article  CAS  PubMed  Google Scholar 

  • Xie, X., & Smart, T. G. (1994). Modulation of long-term potentiation in rat hippocampal pyramidal neurons by zinc. Pflugers Archives, 427, 481–486.

    Article  CAS  Google Scholar 

  • Ye, F. Q., Allen, P. S., & Martin, W. R. W. (1996). Basal ganglia iron content in Parkinson’s disease measured with magnetic resonance. Movement Disorder, 11, 243–249.

    Article  CAS  Google Scholar 

  • Yehuda, S., & Youdim, M. B. H. (1984). The increased opiate action of β-endorphin in iron-deficient rats: The possible involvement of dopamine. European Journal of Pharmacology, 105, 245–251.

    Article  Google Scholar 

  • Yehuda, S., & Youdim, M. B. H. (1989). Brain iron: A lesson from animal models. American Journal of Clinical Nutrition, 50(Suppl), 618–625.

    CAS  PubMed  Google Scholar 

  • Yehuda, S. (1990). Neurochemical bases of behavioral effects o brain iron-deficiency in animals. In J. Dobbing (Ed.), Brain, behavior and iron in the infant diet (pp. 63–82). Berlin: Springer-Verlag.

    Google Scholar 

  • Yehuda, S., Youdim, M. B. H., & Mostofsky, M. (1986). Brain iron deficiency causes reduced learning capacity in rats. Pharmacology Biochemistry and Behavior, 25, 141–145.

    Article  CAS  Google Scholar 

  • Yehuda, S., Youdim, M. B. H., & Zamir, N. (2000). Iron-deficiency induces increased brain met-enkaphalin and pain threshold in response to opiate peptides. Nutri Neurosci. 1, 78–85.

    Google Scholar 

  • Yokoi, K., Kimura, M., & Itokawa, Y. (1991). Effect of dietary iron deficiency on mineral levels in tissues of rats. Biology of Trace Element Research, 29, 257–265.

    Article  CAS  Google Scholar 

  • Yoshida, T., Tanaka, M., Sotomatsu, A., & Hirai, S. (1995). Activated microglia cause superoxide- mediated release of iron from ferritin. Neuroscience Letters, 190(1), 21–24.

    Article  CAS  PubMed  Google Scholar 

  • Youdim, M. B. H. (1985). Brain iron metabolism. Biochemical and behavioural aspects of iron in relation to dopaminergic neurotransmission. In A. Lajtha (Ed.), Handbook of neurochemistry (Vol. 10, pp. 731–756). New York: Plenum Press.

    Google Scholar 

  • Youdim, M. B. H. (1990). Neuropharmacological and neurochemical aspects of iron deficiency. In J. Dobbing (Ed.), Brain behavior and iron in the infant diet (pp. 83–106). Berlin: Springer-Verlag.

    Google Scholar 

  • Youdim, M. B. H. (2003). What have we learnt from cDNA microarray gene expression studies about the role of iron in MPTP-induced neurodegeneration and Parkinson's disease. Journal of Neural Transmission, 65(Suppl.), 73–88.

    Article  PubMed  Google Scholar 

  • Youdim, M. B., Ben-Shachar, D., & Riederer, P. (1989). Is Parkinson's disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurologica Scandinavia Supplementum, 126, 47–54.

    Article  CAS  Google Scholar 

  • Youdim, M. B., Ben-Shachar, D., & Riederer, P. (1993). The possible role of iron in the etiopathology of Parkinson's disease. Movement Disorder, 8, 1–12.

    Article  CAS  Google Scholar 

  • Youdim, M. B. H., Ben-Shachar, D., & Yehuda, S. (1989). Putative biological mechanisms of the effect of iron-deficiency on brain biochemistry and behavior American. Journal of Clinical Nutrition, 50, 607–617.

    CAS  Google Scholar 

  • Youdim, M. B. H., Eshel, G., & Ben-Shachar, D. (2003). Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators; a lesson from 6-hydroxydopamine and iron chelators desferal and VK-28. Annals of New York Academy of Sciences. New York. 1012, 306–325.

    Google Scholar 

  • Youdim, M. B., & Green, A. R. (1977). Biogenic monoamine metabolism and functional activity in iron-deficient rats: Behavioural correlates. Ciba Foundation Symposium, 51, 201–225.

    CAS  Google Scholar 

  • Youdim, M. B. H., & Riederer, P. (1997). Understanding Parkinson’s disease. Scientific American, 257, 59–64.

    Google Scholar 

  • Youdim, M. B. H., & Riederer, P. (1999). Iron in the brain, normal and pathological. In G. Adelman & B. H. Smith (Eds.), Encyclopedia of neuroscience (pp. 983–987). Amsterdam: Elsevier.

    Google Scholar 

  • Youdim, M. B. H., & Riederer, P. (2003, in press). Iron in normal and pathological brain diseases. In B. Smith & G. Adleman (Eds.), Encyclopedia of neuroscience. Amsterdam: Elsevier.

    Google Scholar 

  • Youdim. M. B., Stephenson, G., & Ben Shachar, D. (2004). Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: A lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Annals of New York Academy of science, 1012, 306–25.

    Google Scholar 

  • Youdim, M. B. H., Sills, M. A., Neydron, W. E., Creed, G. J., & Jacobowitz, D. H. (1986). Iron deficiency alters discrete proteins in rat caudate nucleus and nucleus accumbens. Journal of Neurochemistry, 47, 794–799.

    Article  CAS  PubMed  Google Scholar 

  • Youdim, M. B. H., & Yehuda, S. (2000). The neurochemical basis of cognitive deficits induced by brain iron deficiency: Involvement of dopamine-opiate system. Cellular Molecular Biology, 46, 491–500.

    CAS  Google Scholar 

  • Youdim, M. B. H., Zamir, N., & Yehuda, S. (2000). Antinociception in iron-deficient rats related to subsensitivity of dopamine D2 receptor induced increase of opiate peptides. Nutrition Neuroscience, 3, 357–365.

    CAS  Google Scholar 

  • Zayed, J., Ducic, S., Campanella, G., Panisset, J. C., André, P., Masson, H., et al. (1990). Facteurs environnementaux dans l’e´tiologie de la maladie de Parkinson. Canadian Journal of Neurological Sciences, 17, 286–291.

    CAS  PubMed  Google Scholar 

  • Zecca, L., Berg, D., & Arzberger, T., et al. (2008). The in vivo detection of iron and neuromelanin by transcranial sonography: A new approach for early detection of substantia nigra damage. Brain (submitted).

    Google Scholar 

  • Zecca, L., Gallorini, M., & Schünemann, V., et al. (2001a). Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: Consequences for iron storage and neurodegenerative processes. Journal of Neurochemistry, 76, 1766–1773.

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., Tampellini, D., & Gerlach, M., et al. (2001b). Substantia nigra neuromelanin: Structure, synthesis, and molecular behaviour. Molecular Pathology, 54, 414–418.

    CAS  PubMed  Google Scholar 

  • Zecca, L., Fariello, R., & Riederer, P. (2002). The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Letters, 510, 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., Shima, T., & Stroppolo, A. (1996). Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience, 73, 407–415.

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., & Swartz, H. M. (1993). Total and paramagnetic metals in human substantia nigra and its neuromelanin. Journal of Neural Transmission Parkinson’s Disease and Dementias Section, 5, 203–213.

    Article  CAS  Google Scholar 

  • Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R., & Crichton, R. R. (2004). Iron, brain ageing and neurodegenerative disorders. Nature Reviews. Neuroscience, 5(11), 863–873.

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., Zucca, F. A., Wilms, H., & Sulzer, D. (2003). Neuromelanin of the substantia nigra: A neuronal black hole with protective and toxic characteristics. Trends in Neuroscience, 26(11) 578–80.

    Google Scholar 

  • Zheng, H., Gal, S., Weiner, L. M., Bar-Am, O., Warshawsky, A., Fridkin, M., & Youdim, M. B. (2005). Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: In vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. Journal of Neurochemistry, 95(1), 68–78.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, H., Weiner, L. M., Bar-Am, O., Epsztejn, S., Cabantchik, Z. I., Warshawsky, A., et al. (2005). Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer's, Parkinson’s, and other neurodegenerative diseases. Bioorganic Medical Chemistry, 13(3), 773–783.

    Article  CAS  Google Scholar 

  • Zhu, W., Xie, W., Pan, T., Xu, P., Fridkin, M., Zheng, H., et al. (2007, December). Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB Journal, 21(14), 3835–3844.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Youdim, M.B., Gerlach, M., Riederer, P. (2009). Iron Deficiency and Excess in the Brain: Implications for Cognitive Impairment and Neurodegeneration. In: Yehuda, S., Mostofsky, D. (eds) Iron Deficiency and Overload. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-462-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-462-9_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-22-0

  • Online ISBN: 978-1-59745-462-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics