Skip to main content

Alzheimer’s Dementia

  • Chapter
  • First Online:
Iron Deficiency and Overload

Part of the book series: Nutrition and Health ((NH))

  • 1644 Accesses

Summary

• The disability caused by Alzheimer’s disease (AD) is increasing worldwide with 4.6 million newly diagnosed patients every year.

• Age-related oxidative stress appears to be an important contributor to the amyloid pathology and neuronal degeneration of AD.

• Iron homeostasis is altered in AD patients.

• Iron promotes the formation of amyloid plaques and neurofibrillary tangles, which are the hallmarks of the disease.

• Iron also causes synaptic dysfunction by altering cell membrane integrity and impairing the function of membrane-bound proteins.

• Future treatments for AD may include dietary modifications and drugs that reduce the amount of toxic free iron, or that protect cells against iron toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arumugam, T. V., Gleichmann, M., Tang, S. C., & Mattson, M. P. (2006). Hormesis/preconditioning mechanisms, the nervous system and aging. Ageing Research Reviews, 5(2), 165–178.

    Article  PubMed  CAS  Google Scholar 

  • Avramovich-Tirosh, Y., Reznichenko, L., Mit, T., Zheng, H., Fridkin, M., Weinreb, O., et al. (2007). Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron- chelating- antioxidants, M-30 and green tea polyphenol, EGCG. Current Alzheimer Research, 4(4), 403–411.

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay, S., Huang, X., Cho, H., Greig, N. H., Youdim, M. B., & Rogers, J. T. (2006). Metal specificity of an iron-responsive element in Alzheimer's APP mRNA 5'untranslated region, tolerance of SH-SY5Y and H4 neural cells to desferrioxamine, clioquinol, VK-28, and a piperazine chelator. Journal of Neural Transmission Supplement 71, 237–247.

    Google Scholar 

  • Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer's disease. Lancet, 368(9533), 387–403.

    Article  PubMed  CAS  Google Scholar 

  • Bruce-Keller, A. J., Li, Y. J., Lovell, M. A., Kraemer, P. J., Gary, D. S., Brown, R. R., et al. (1998). 4-Hydroxynonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visuospatial memory in rats. Journal of Neuropathology and Experimental Neurology, 57(3), 257–267.

    Article  PubMed  CAS  Google Scholar 

  • Burdo, J. R., & Connor, J. R. (2003). Brain iron uptake and homeostatic mechanisms: An overview. Biometals, 16(1), 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Bush, A. I. (2002). Metal complexing agents as therapies for Alzheimer's disease. Neurobiology of Aging, 23(6), 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  • Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., et al. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron, 43(5), 633–645.

    Article  PubMed  CAS  Google Scholar 

  • Carson, J. A., & Turner, A. J. (2002). Beta-amyloid catabolism: Roles for neprilysin (NEP) and other metallopeptidases? Journal of Neurochemistry, 81(1), 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Castellani, R. J., Moreira, P. I., Liu, G., Dobson, J., Perry, G., Smith, M. A., et al. (2007). Iron: The Redox-active center of oxidative stress in Alzheimer disease. Neurochemical Research, 32(10), 1640–1645.

    Article  PubMed  CAS  Google Scholar 

  • Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, D. N., Jones, W. D., McLean, C. A, et al. (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron, 30(3), 665–676.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J. R., Menzies, S. L., St Martin, S. M., & Mufson, E. J. (1992). A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. Journal of Neuroscience Research, 31(1), 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J. R., Snyder, B. S., Beard, J. L., Fine, R. E., & Mufson, E. J. (1992). Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's disease. Journal of Neuroscience Research, 31(2), 327–335.

    Article  PubMed  CAS  Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 261(5123), 921–923.

    Article  PubMed  CAS  Google Scholar 

  • Crapper McLachlan, D. R., Dalton, A. J., Kruck, T. P., Bell, M. Y., Smith, W. L., Kalow, W., et al. (1991). Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet, 337(8753), 1304–1308.

    Article  PubMed  CAS  Google Scholar 

  • Crouch, P. J., White, A. R., & Bush, A. I. (2007). The modulation of metal bio-availability as a therapeutic strategy for the treatment of Alzheimer's disease. FEBS Journal, 274(15), 3775–3783.

    Article  PubMed  CAS  Google Scholar 

  • Deibel, M. A., Ehmann, W. D., & Markesbery, W. R. (1996). Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: Possible relation to oxidative stress. Journal of Neurological Sciences, 143(1–2), 137–142.

    Article  CAS  Google Scholar 

  • Dyrks, T., Dyrks, E., Hartmann, T., Masters, C., & Beyreuther, K. (1992). Amyloidogenicity of beta A4 and beta A4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. Journal of Biological Chemistry, 267(25), 18210–18217.

    PubMed  CAS  Google Scholar 

  • Falangola, M. F., Lee, S. P, Nixon, R. A., Duff, K., & Helpern, J. A. (2005) Histological co-localization of iron in Abeta plaques of PS/APP transgenic mice. Neurochemical Research, 30(2), 201–205.

    Article  PubMed  CAS  Google Scholar 

  • Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., et al. (2005). Global prevalence of dementia: A Delphi consensus study. Lancet, 366(9503), 2112–2117.

    Article  PubMed  Google Scholar 

  • Fidani, L., & Goate, A. (1992). Mutations in APP and their role in beta-amyloid deposition. Progress in Clinical & Biological Research, 379, 195–214.

    CAS  Google Scholar 

  • Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 349(6311), 704–706.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, Y., & Mattson, M. P. (1994). Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Experimental Neurology, 128(1), 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal, I., Fleming, J., Tung, Y. C., Lassmann, H., Iqbal, K., & Joshi, J. G. (1990). Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathologica, 81(2), 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Q., Sopher, B. L., Furukawa, K., Pham, D. G., Robinson, N., Martin, G. M., et al. (1997). Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: Involvement of calcium and oxyradicals. Journal of Neuroscience, 17(11), 4212–4222.

    PubMed  CAS  Google Scholar 

  • Guo, Q., Fu, W., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., et al. (1999). Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nature Medicine, 5(1), 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Halagappa, V. K., Guo, Z., Pearson, M., Matsuoka, Y., Cutler, R. G., Laferla, F. M., et al. (2007) Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiology of Disease, 26(1), 212–220.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J., & Allsop, D. (1991). Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends in Pharmacological Sciences, 12(10), 383–388.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science, 297(5580), 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., et al. (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease. Proceedings of the National Academy of Sciences United States of America, 91(8), 3270–3274.

    Google Scholar 

  • Holtzman, D. M., Bales, K. R., Tenkova, T., Fagan, A. M., Parsadanian, M., Sartorius, L. J., et al. (2000). Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences United States of America, 97(6), 2892–2897.

    Google Scholar 

  • Iqbal, K., Alonso Adel, C., Chen, S., Chohan, M. O., El-Akkad, E., Gong, C. X., et al. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta, 1739(2–3), 198–210.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal, K., & Grundke-Iqbal, I. (2007, January 9). Alzheimer neurofibrillary degeneration: Significance, etiopathogenesis, therapeutics and prevention. Journal of Cellular and Molecular Medicine Jan–Feb, 12(1), 38–35.

    Google Scholar 

  • Jellinger, K., Paulus, W., Grundke-Iqbal, I., Riederer, P., & Youdim, M. B. (1990) Brain iron and ferritin in Parkinson's and Alzheimer's diseases. Journal of Neural Transmission Parkinson’s Disease and Dementia Section, 2(4), 327–340.

    Article  PubMed  CAS  Google Scholar 

  • Keller, J. N., Mark, R. J., Bruce, A. J., Blanc, E., Rothstein, J. D., Uchida, K., et al. (1997). 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience, 80(3), 685–696.

    Article  PubMed  CAS  Google Scholar 

  • Levy-Lahad, E., & Bird, T. D. (1996). Genetic factors in Alzheimer's disease: A review of recent advances. Annals of Neurology, 40(6), 829–840.

    Article  PubMed  CAS  Google Scholar 

  • Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21(21), 8370–8377.

    PubMed  CAS  Google Scholar 

  • Liu, G., Huang, W., Moir, R. D., Vanderburg, C. R., Lai, B., Peng, Z., et al. (2006). Metal exposure and Alzheimer's pathogenesis. Journal of Structural Biology, 155(1), 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L., & Markesbery, W.R. (1998). Copper, iron and zinc in Alzheimer's disease senile plaques. Journal of the Neurological Sciences, 158(1), 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Lovell, M. A., Xiong, S., Xie, C., Davies, P., & Markesbery, W. R. (2004). Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. Journal of Alzheimer’s Disease, 6(6), 659–671.

    PubMed  CAS  Google Scholar 

  • Mantyh, P. W., Ghilardi, J. R., Rogers, S., DeMaster, E., Allen, C. J., Stimson, E. R., et al. (1993). Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide. Journal of Neurochemistry, 61(3), 1171–1174.

    Article  PubMed  CAS  Google Scholar 

  • Mark, R. J., Hensley, K., Butterfield, D. A., & Mattson, M. P. (1995). Amyloid beta-peptide impairs ion-motive ATPase activities: Evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. Journal of Neuroscience, 15(9), 6239–6249.

    PubMed  CAS  Google Scholar 

  • Mark, R. J., Pang, Z., Geddes, J. W., Uchida, K., & Mattson, M. P. (1997). Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: Involvement of membrane lipid peroxidation. Journal of Neuroscience, 17(3), 1046–1054.

    PubMed  CAS  Google Scholar 

  • Masters, C. L., Multhaup, G., Simms, G., Pottgiesser, J., Martins, R. N., & Beyreuther, K. (1985). Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO Journal, 4(11), 2757–2763.

    PubMed  CAS  Google Scholar 

  • Mattson, M. P., Fu, W., Waeg, G., & Uchida, K. (1997). 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport, 8(9–10), 2275–22781.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (2004a). Pathways towards and away from Alzheimer's disease. Nature, 430(7000), 631–639.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (2004b) Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Annals of New York Academy of Sciences, 1012, 37–50.

    Article  CAS  Google Scholar 

  • Mayeux, R. (2003). Epidemiology of neurodegeneration. Annual Review of Neurosciences, 26, 81–104.

    Article  CAS  Google Scholar 

  • Mazur-Kolecka, B., Kowal, D., Sukontasup, T., Dickson, D., & Frackowiak, J. (2004). The effect of oxidative stress on amyloid precursor protein processing in cells engaged in beta-amyloidosis is related to apolipoprotein E genotype. Acta Neuropathologica, 108(4), 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Moller, H. J., & Graeber, M. B. (1998). The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. European Archives of Psychiatry and Clinical Neurosciences, 248(3), 111–122.

    Article  CAS  Google Scholar 

  • Morris, C. M., Kerwin, J. M., & Edwardson, J. A. (1994). Non-haem iron histochemistry of the normal and Alzheimer's disease hippocampus. Neurodegeneration, 3(4), 267–275.

    PubMed  CAS  Google Scholar 

  • Pasquier, F., Boulogne, A., Leys, D., & Fontaine, P. (2006). Diabetes mellitus and dementia. Diabetes and Metabolism, 32(5 Pt 1), 403–414.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, W. A., Chan, S. L., & Mattson, M. P. (2000). A mechanism for the neuroprotective effect of apolipoprotein E: Isoform-specific modification by the lipid peroxidation product 4-hydroxynonenal. Journal of Neurochemistry, 74(4), 1426–1433.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T., Lahiri, D. K., Sambamurti, K., Chen, D., Mattson, M. P., Egan, J. M., et al. (2003). Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. Journal of Neuroscience Research, 72(5), 603–612.

    Article  PubMed  CAS  Google Scholar 

  • Pissarnitski, D. (2007). Advances in gamma-secretase modulation. Current Opinions in Drug Discovery and Development, 10, 392–402.

    CAS  Google Scholar 

  • Poirier, J., Davignon, J., Bouthillier, D., Kogan, S., Bertrand, P., & Gauthier, S. (1993). Apolipoprotein E polymorphism and Alzheimer's disease. Lancet, 342(8873), 697–699.

    Article  PubMed  CAS  Google Scholar 

  • Quintana, C., Bellefqih, S., Laval, J.Y., Guerquin-Kern, J.L., Wu, T.D., Avila, J., et al. (2006). Study of the localization of iron, ferritin, and hemosiderin in Alzheimer's disease hippocampus by analytical microscopy at the subcellular level. Journal of Structural Biology, 153(1), 42–54.

    Article  PubMed  CAS  Google Scholar 

  • Raber, J., Huang, Y., & Ashford, J. W. (2004). ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiology of Aging, 25(5), 641–650.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, C. W., Bush, A. I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., et al. (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial. Archives of Neurology, 60(12), 1685–1691.

    Article  PubMed  Google Scholar 

  • Rogaeva, E. (2002) The solved and unsolved mysteries of the genetics of early-onset Alzheimer's disease. Neuromolecular Medicine, 2(1), 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J. T., Randall, J. D., Cahill, C. M., Eder, P. S., Huang, X., Gunshin, H., et al. (2002). An iron-responsive element type II in the 5'-untranslated region of the Alzheimer's amyloid precursor protein transcript. Journal of Biological Chemistry, 277(47), 45518–45528.

    Article  PubMed  CAS  Google Scholar 

  • Rottkamp, C. A., Raina, A. K., Zhu, X., Gaier, E., Bush, A. I., Atwood, C. S., et al. (2001). Redox-active iron mediates amyloid-beta toxicity. Free Radical Biology and Medicine, 30(4), 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Rovelet-Lecrux, A., Hannequin, D., Raux, G., Le Meur, N., Laquerriere, A., Vital, A., et al. (2006). APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature Genetics, 38(1), 24–26.

    Article  PubMed  CAS  Google Scholar 

  • Schäfer, S., Pajonk, F. G., Multhaup, G., & Bayer, T. A. (2007). Copper and clioquinol treatment in young APP transgenic and wild-type mice: Effects on life expectancy, body weight, and metal-ion levels. Journal of Molecular Medicine, 85, 405–413.

    Article  PubMed  Google Scholar 

  • Selkoe, D. J. (1991a). Amyloid protein and Alzheimer's disease. Scientific American, 265(5), 68–71, 74–66, 78.

    Article  PubMed  Google Scholar 

  • Selkoe, D. J. (1991b). The molecular pathology of Alzheimer's disease. Neuron, 6(4), 487–498.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.A., Harris, P.L., Sayre, L.M., & Perry, G. (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proceedings of National Academy of Sciences United States of America, 94(18), 9866–9868.

    Google Scholar 

  • Smith, M. A., Wehr, K., Harris, P. L., Siedlak, S. L., Connor, J. R., & Perry, G. (1998). Abnormal localization of iron regulatory protein in Alzheimer's disease. Brain Research, 788(1–2), 232–236.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. G., Cappai, R., & Barnham, K. J. (2007). The redox chemistry of the Alzheimer's disease amyloid beta peptide. Biochimica et Biophysica Acta, 1768(8), 1976–1990.

    Article  PubMed  CAS  Google Scholar 

  • Stranahan, A. M., Arumugam, T. V., Cutler, R. G., Lee, K., Egan, J. & Mattson, M. P. (2008). Diabetes impairs hippocampal function via glucocorticoid–mediated effects on new and mature neurons. Nature Neuroscience Mar, 11(3), 309–317.

    Google Scholar 

  • Tanzi, R. E., Moir, R. D., & Wagner, S. L. (2004). Clearance of Alzheimer's Abeta peptide: The many roads to perdition. Neuron, 43(5), 605–608.

    PubMed  CAS  Google Scholar 

  • Thompson, C. M., Markesbery, W. R., Ehmann, W. D., Mao, Y. X., & Vance, D. E. (1988). Regional brain trace-element studies in Alzheimer's disease. Neurotoxicology, 9(1), 1–7.

    PubMed  CAS  Google Scholar 

  • Tu, H., Nelson, O., Bezprozvanny, A., Wang, Z., Lee, S. F., Hao, Y. H., et al. (2006). Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer's disease-linked mutations. Cell, 126(5), 981–993.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, H. L., & Frenkel, D. (2006) Immunology and immunotherapy of Alzheimer's disease. Nature Reviews Immunology, 6(5), 404–416.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organisation report-Neurological disorders: Public health Challenges. (2007). http://www.who.int/mental_health/neurology/neurodiso/en/index.html.

  • Williams, T. I., Lynn, B. C., Markesbery, W. R., & Lovell, M. A. (2006). Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer's disease. Neurobiology of Aging, 27(8), 1094–1099.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gulyani, S., Mattson, M.P. (2009). Alzheimer’s Dementia. In: Yehuda, S., Mostofsky, D. (eds) Iron Deficiency and Overload. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-462-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-462-9_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-22-0

  • Online ISBN: 978-1-59745-462-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics