Skip to main content

Positive Mediators of Cell Proliferation in Neoplasia: Growth Factors and Receptors

  • Chapter
  • First Online:
The Molecular Basis of Human Cancer

Abstract

Complex signaling networks underlie the regulation of fundamental processes such as embryonic development, tissue differentiation, and systemic responses to wounds and infections. Among the major mediators of these events, growth factors are in large part responsible for the control of cell proliferation, differentiation, and survival. The specific interaction of a growth factor with its receptor initiates a cascade of intracellular biochemical reactions that ultimately mediate the biological response in the target cells. The cytoplasmic molecules that participate in these pathways have been termed second messengers—their activation allows the transmission of the signals to the nucleus and eventually the regulation of the expression of genes involved in mitogenic and differentiation responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doolittle RF, Hunkapiller MW, Hood LE, et al. Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science. 1983;221:275–7.

    Article  CAS  PubMed  Google Scholar 

  2. Waterfield MD, Scrace GT, Whittle N, et al. Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature. 1983;304:35–9.

    Article  CAS  PubMed  Google Scholar 

  3. Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature. 1984;307:521–7.

    Article  CAS  PubMed  Google Scholar 

  4. Sherr CJ, Rettenmier CW, Sacca R, et al. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell. 1985;41:665–76.

    Article  CAS  PubMed  Google Scholar 

  5. Barbacid M. ras genes. Annu Rev Biochem. 1987;56:779–827.

    Article  CAS  PubMed  Google Scholar 

  6. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5:875–85.

    Article  CAS  PubMed  Google Scholar 

  7. Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987;237:1154–62.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen S. Nobel lecture. Epidermal growth factor. Biosci Rep. 1986;6:1017–28.

    Article  CAS  PubMed  Google Scholar 

  9. Brugge JS, Erikson RL. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature. 1977;269:346–8.

    Article  CAS  PubMed  Google Scholar 

  10. Levinson AD, Oppermann H, Levintow L, Varmus HE, Bishop JM. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell. 1978;15:561–72.

    Article  CAS  PubMed  Google Scholar 

  11. Collett MS, Erikson RL. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A. 1978;75:2021–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. N Engl J Med. 1980;303:878–80.

    Article  CAS  PubMed  Google Scholar 

  13. Bosenberg MW, Massague J. Juxtacrine cell signaling molecules. Curr Opin Cell Biol. 1993;5:832–8.

    Article  CAS  PubMed  Google Scholar 

  14. Logan A. Intracrine regulation at the nucleus—a further mechanism of growth factor activity? J Endocrinol. 1990;125:339–43.

    Article  CAS  PubMed  Google Scholar 

  15. Santos SC, Dias S. Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood. 2004;103:3883–9.

    Article  CAS  PubMed  Google Scholar 

  16. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991;64:841–8.

    Article  CAS  PubMed  Google Scholar 

  17. Aaronson SA. Growth factors and cancer. Science. 1991;254:1146–53.

    Article  CAS  PubMed  Google Scholar 

  18. Valtieri M, Tweardy DJ, Caracciolo D, et al. Cytokine-dependent granulocytic differentiation. Regulation of proliferative and differentiative responses in a murine progenitor cell line. J Immunol. 1987;138:3829–35.

    CAS  PubMed  Google Scholar 

  19. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–12.

    Article  CAS  PubMed  Google Scholar 

  20. Stern DF, Kamps MP, Cao H. Oncogenic activation of p185neu stimulates tyrosine phosphorylation in vivo. Mol Cell Biol. 1988;8:3969–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weiner DB, Liu J, Cohen JA, Williams WV, Greene MI. A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature. 1989;339:230–1.

    Article  CAS  PubMed  Google Scholar 

  22. Burke CL, Lemmon MA, Coren BA, Engelman DM, Stern DF. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene. 1997;14:687–96.

    Article  CAS  PubMed  Google Scholar 

  23. Yarden Y, Ullrich A. Growth factor receptor tyrosine kinases. Annu Rev Biochem. 1988;57:443–78.

    Article  CAS  PubMed  Google Scholar 

  24. Castagnino P, Biesova Z, Wong WT, et al. Direct binding of eps8 to the juxtamembrane domain of EGFR is phosphotyrosine- and SH2-independent. Oncogene. 1995;10:723–9.

    CAS  PubMed  Google Scholar 

  25. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169–81.

    Article  CAS  PubMed  Google Scholar 

  26. Heldin CH. Dimerization of cell surface receptors in signal transduction. Cell. 1995;80:213–23.

    Article  CAS  PubMed  Google Scholar 

  27. Heldin C-H, Ostman A. Ligand-induced dimerization of growth factor receptors: variation on the theme. Cytokine Growth Factor Rev. 1996;7:3–10.

    Article  CAS  PubMed  Google Scholar 

  28. Heldin CH, Ostman A, Ronnstrand L. Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta. 1998;1378:F79–113.

    CAS  PubMed  Google Scholar 

  29. Lemmon MA, Bu Z, Ladbury JE, et al. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J. 1997;16:281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays. 2000;22:108–12.

    Article  CAS  PubMed  Google Scholar 

  31. Hamada T, Ui-Tei K, Miyata Y. A novel gene derived from developing spinal cords, SCDGF, is a unique member of the PDGF/VEGF family. FEBS Lett. 2000;475:97–102.

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Ponten A, Aase K, et al. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat Cell Biol. 2000;2:302–9.

    Article  CAS  PubMed  Google Scholar 

  33. Tsai YJ, Lee RK, Lin SP, Chen YH. Identification of a novel platelet-derived growth factor-like gene, fallotein, in the human reproductive tract. Biochim Biophys Acta. 2000;1492:196–202.

    Article  CAS  PubMed  Google Scholar 

  34. Bergsten E, Uutela M, Li X, et al. PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol. 2001;3:512–6.

    Article  CAS  PubMed  Google Scholar 

  35. Hamada T, Ui-Tei K, Imaki J, Miyata Y. Molecular cloning of SCDGF-B, a novel growth factor homologous to SCDGF/PDGF-C/fallotein. Biochem Biophys Res Commun. 2001;280:733–7.

    Article  CAS  PubMed  Google Scholar 

  36. LaRochelle WJ, Jeffers M, McDonald WF, et al. PDGF-D, a new protease-activated growth factor. Nat Cell Biol. 2001;3:517–21.

    Article  CAS  PubMed  Google Scholar 

  37. Reigstad LJ, Varhaug JE, Lillehaug JR. Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family. FEBS J. 2005;272:5723–41.

    Article  CAS  PubMed  Google Scholar 

  38. Shih AH, Holland EC. Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett. 2006;232:139–47.

    Article  CAS  PubMed  Google Scholar 

  39. Claesson-Welsh L, Eriksson A, Moren A, et al. cDNA cloning and expression of a human platelet-derived growth factor (PDGF) receptor specific for B-chain-containing PDGF molecules. Mol Cell Biol. 1988;8:3476–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kazlauskas A, Cooper JA. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell. 1989;58:1121–33.

    Article  CAS  PubMed  Google Scholar 

  41. Escobedo JA, Williams LT. A PDGF receptor domain essential for mitogenesis but not for many other responses to PDGF. Nature. 1988;335:85–7.

    Article  CAS  PubMed  Google Scholar 

  42. Matsui T, Heidaran M, Miki T, et al. Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science. 1989;243:800–4.

    Article  CAS  PubMed  Google Scholar 

  43. Heldin CH, Westermark B. Platelet-derived growth factors: a family of isoforms that bind to two distinct receptors. Br Med Bull. 1989;45:453–64.

    CAS  PubMed  Google Scholar 

  44. Williams LT. Signal transduction by the platelet-derived growth factor receptor. Science. 1989;243:1564–70.

    Article  CAS  PubMed  Google Scholar 

  45. Hoch RV, Soriano P. Roles of PDGF in animal development. Development. 2003;130:4769–84.

    Article  CAS  PubMed  Google Scholar 

  46. Schmahl J, Raymond CS, Soriano P. PDGF signaling specificity is mediated through multiple immediate early genes. Nat Genet. 2007;39:52–60.

    Article  CAS  PubMed  Google Scholar 

  47. Robbins KC, Antoniades HN, Devare SG, Hunkapiller MW, Aaronson SA. Structural and immunological similarities between simian sarcoma virus gene product(s) and human platelet-derived growth factor. Nature. 1983;305:605–8.

    Article  CAS  PubMed  Google Scholar 

  48. Eva A, Robbins KC, Andersen PR, et al. Cellular genes analogous to retroviral onc genes are transcribed in human tumour cells. Nature. 1982;295:116–9.

    Article  CAS  PubMed  Google Scholar 

  49. Igarashi H, Rao CD, Siroff M, et al. Detection of PDGF-2 homodimers in human tumor cells. Oncogene. 1987;1:79–85.

    CAS  PubMed  Google Scholar 

  50. Gazit A, Igarashi H, Chiu IM, et al. Expression of the normal human sis/PDGF-2 coding sequence induces cellular transformation. Cell. 1984;39:89–97.

    Article  CAS  PubMed  Google Scholar 

  51. Heldin CH, Johnsson A, Wennergren S, et al. A human osteosarcoma cell line secretes a growth factor structurally related to a homodimer of PDGF A-chains. Nature. 1986;319:511–4.

    Article  CAS  PubMed  Google Scholar 

  52. Westermark B, Johnsson A, Paulsson Y, et al. Human melanoma cell lines of primary and metastatic origin express the genes encoding the chains of platelet-derived growth factor (PDGF) and produce a PDGF-like growth factor. Proc Natl Acad Sci U S A. 1986;83:7197–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nister M, Hammacher A, Mellstrom K, et al. A glioma-derived PDGF A chain homodimer has different functional activities from a PDGF AB heterodimer purified from human platelets. Cell. 1988;52:791–9.

    Article  CAS  PubMed  Google Scholar 

  54. Kilic T, Alberta JA, Zdunek PR, et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res. 2000;60:5143–50.

    CAS  PubMed  Google Scholar 

  55. Simon MP, Pedeutour F, Sirvent N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997;15:95–8.

    Article  CAS  PubMed  Google Scholar 

  56. Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res. 2002;62:3729–35.

    CAS  PubMed  Google Scholar 

  57. Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299:708–10.

    Article  CAS  PubMed  Google Scholar 

  58. Jones AV, Cross NC. Oncogenic derivatives of platelet-derived growth factor receptors. Cell Mol Life Sci. 2004;61:2912–23.

    Article  CAS  PubMed  Google Scholar 

  59. Rettenmier CW, Sherr CJ. The mononuclear phagocyte colony-stimulating factor (CSF-1, M-CSF). Hematol Oncol Clin North Am. 1989;3:479–93.

    CAS  PubMed  Google Scholar 

  60. Griffin JD. Clinical applications of colony-stimulating factors. Oncology. 1988;2:15–23.

    CAS  PubMed  Google Scholar 

  61. Schmidt C, Bladt F, Goedecke S, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373:699–702.

    Article  CAS  PubMed  Google Scholar 

  62. Mroczko B, Szmitkowski M. Hematopoietic cytokines as tumor markers. Clin Chem Lab Med. 2004;42:1347–54.

    CAS  PubMed  Google Scholar 

  63. Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006;18:39–48.

    Article  CAS  PubMed  Google Scholar 

  64. Goswami S, Sahai E, Wyckoff JB, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005;65:5278–83.

    Article  CAS  PubMed  Google Scholar 

  65. Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene. 2002;21:3314–33.

    Article  CAS  PubMed  Google Scholar 

  66. Martin FH, Suggs SV, Langley KE, et al. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell. 1990;63:203–11.

    Article  CAS  PubMed  Google Scholar 

  67. Williams DE, Eisenman J, Baird A, et al. Identification of a ligand for the c-kit proto-oncogene. Cell. 1990;63:167–74.

    Article  CAS  PubMed  Google Scholar 

  68. Sattler M, Salgia R. Targeting c-Kit mutations: basic science to novel therapies. Leuk Res. 2004;28:S11–20.

    Article  CAS  PubMed  Google Scholar 

  69. Rosnet O, Marchetto S, deLapeyriere O, Birnbaum D. Murine Flt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene. 1991;6:1641–50.

    CAS  PubMed  Google Scholar 

  70. Parcells BW, Ikeda AK, Simms-Waldrip T, Moore TB, Sakamoto KM. FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia. Stem Cells. 2006;24:1174–84.

    Article  CAS  PubMed  Google Scholar 

  71. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306–9.

    Article  CAS  PubMed  Google Scholar 

  72. Plouet J, Schilling J, Gospodarowicz D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J. 1989;8:3801–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gospodarowicz D, Abraham JA, Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc Natl Acad Sci U S A. 1989;86:7311–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005;6:209.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13:9–22.

    CAS  PubMed  Google Scholar 

  76. Joukov V, Kaipainen A, Jeltsch M, et al. Vascular endothelial growth factors VEGF-B and VEGF-C. J Cell Physiol. 1997;173:211–5.

    Article  CAS  PubMed  Google Scholar 

  77. Roy H, Bhardwaj S, Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett. 2006;580:2879–87.

    Article  CAS  PubMed  Google Scholar 

  78. Otrock ZK, Makarem JA, Shamseddine AI. Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol Dis. 2007;38:258–68.

    Article  CAS  PubMed  Google Scholar 

  79. Grimmond S, Lagercrantz J, Drinkwater C, et al. Cloning and characterization of a novel human gene related to vascular endothelial growth factor. Genome Res. 1996;6:124–31.

    Article  CAS  PubMed  Google Scholar 

  80. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7:192–8.

    Article  CAS  PubMed  Google Scholar 

  81. Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 2001;7:186–91.

    Article  CAS  PubMed  Google Scholar 

  82. Lyttle DJ, Fraser KM, Fleming SB, Mercer AA, Robinson AJ. Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol. 1994;68:84–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. de Vries C, Escobedo JA, Ueno H, et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992;255:989–91.

    Article  PubMed  Google Scholar 

  84. Millauer B, Wizigmann-Voos S, Schnurch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993;72:835–46.

    Article  CAS  PubMed  Google Scholar 

  85. Pajusola K, Aprelikova O, Pelicci G, et al. Signalling properties of FLT4, a proteolytically processed receptor tyrosine kinase related to two VEGF receptors. Oncogene. 1994;9:3545–55.

    CAS  PubMed  Google Scholar 

  86. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  87. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376:62–6.

    Article  CAS  PubMed  Google Scholar 

  88. Ball SG, Shuttleworth CA, Kielty CM. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol. 2007;177:489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci U S A. 1991;88:9267–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med. 2001;7:575–83.

    Article  CAS  PubMed  Google Scholar 

  91. Gray A, Dull TJ, Ullrich A. Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000- molecular weight protein precursor. Nature. 1983;303:722–5.

    Article  CAS  PubMed  Google Scholar 

  92. Mroczkowski B, Reich M, Chen K, Bell GI, Cohen S. Recombinant human epidermal growth factor precursor is a glycosylated membrane protein with biological activity. Mol Cell Biol. 1989;9:2771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7:505–16.

    Article  CAS  PubMed  Google Scholar 

  94. Massague J. Transforming growth factor-alpha. A model for membrane-anchored growth factors. J Biol Chem. 1990;265:21393–6.

    CAS  PubMed  Google Scholar 

  95. Davis CG. The many faces of epidermal growth factor repeats. New Biol. 1990;2:410–9.

    CAS  PubMed  Google Scholar 

  96. Yarden Y. The EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37:S3–8.

    Article  CAS  PubMed  Google Scholar 

  97. Todaro GJ, Fryling C, De Larco JE. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci U S A. 1980;77:5258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shoyab M, McDonald VL, Bradley JG, Todaro GJ. Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci U S A. 1988;85:6528–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ. Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science. 1989;243:1074–6.

    Article  CAS  PubMed  Google Scholar 

  100. Johnson GR, Wong L. Heparan sulfate is essential to amphiregulin-induced mitogenic signaling by the epidermal growth factor receptor. J Biol Chem. 1994;269:27149–54.

    CAS  PubMed  Google Scholar 

  101. Lee SB, Huang K, Palmer R, et al. The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell. 1999;98:663–73.

    Article  CAS  PubMed  Google Scholar 

  102. Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, et al. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development. 2005;132:3923–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Berasain C, Castillo J, Perugorria MJ, Prieto J, Avila MA. Amphiregulin: a new growth factor in hepatocarcinogenesis. Cancer Lett. 2007;254:30–41.

    Article  CAS  PubMed  Google Scholar 

  104. Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science. 1991;251:936–9.

    Article  CAS  PubMed  Google Scholar 

  105. Higashiyama S, Lau K, Besner GE, Abraham JA, Klagsbrun M. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J Biol Chem. 1992;267:6205–12.

    CAS  PubMed  Google Scholar 

  106. Mitamura T, Higashiyama S, Taniguchi N, Klagsbrun M, Mekada E. Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J Biol Chem. 1995;270:1015–9.

    Article  CAS  PubMed  Google Scholar 

  107. Shing Y, Christofori G, Hanahan D, et al. Betacellulin: a mitogen from pancreatic beta cell tumors. Science. 1993;259:1604–7.

    Article  CAS  PubMed  Google Scholar 

  108. Taylor DS, Cheng X, Pawlowski JE, et al. Epiregulin is a potent vascular smooth muscle cell-derived mitogen induced by angiotensin II, endothelin-1, and thrombin. Proc Natl Acad Sci U S A. 1999;96:1633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ben-Baruch N, Yarden Y. Neu differentiation factors: a family of alternatively spliced neuronal and mesenchymal factors. Proc Soc Exp Biol Med. 1994;206:221–7.

    Article  CAS  PubMed  Google Scholar 

  110. Holmes WE, Sliwkowski MX, Akita RW, et al. Identification of heregulin, a specific activator of p185erbB2. Science. 1992;256:1205–10.

    Article  CAS  PubMed  Google Scholar 

  111. Wen D, Suggs SV, Karunagaran D, et al. Structural and functional aspects of the multiplicity of Neu differentiation factors. Mol Cell Biol. 1994;14:1909–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stove C, Bracke M. Roles for neuregulins in human cancer. Clin Exp Metastasis. 2004;21:665–84.

    Article  CAS  PubMed  Google Scholar 

  113. Yamamoto T, Nishida T, Miyajima N, et al. The erbB gene of avian erythroblastosis virus is a member of the src gene family. Cell. 1983;35:71–8.

    Article  CAS  PubMed  Google Scholar 

  114. Khazaie K, Schirrmacher V, Lichtner RB. EGF receptor in neoplasia and metastasis. Cancer Metastasis Rev. 1993;12:255–74.

    Article  CAS  PubMed  Google Scholar 

  115. Prigent SA, Lemoine NR. The type 1 (EGFR-related) family of growth factor receptors and their ligands. Prog Growth Factor Res. 1992;4:1–24.

    Article  CAS  PubMed  Google Scholar 

  116. Burden S, Yarden Y. Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis. Neuron. 1997;18:847–55.

    Article  CAS  PubMed  Google Scholar 

  117. Bublil EM, Yarden Y. The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol. 2007;19:124–34.

    Article  CAS  PubMed  Google Scholar 

  118. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001;37:S9–15.

    Article  CAS  PubMed  Google Scholar 

  119. Shigematsu H, Takahashi T, Nomura M, et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res. 2005;65:1642–6.

    Article  CAS  PubMed  Google Scholar 

  120. Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res. 1992;59:115–65.

    Article  CAS  PubMed  Google Scholar 

  121. Wilkie AO, Patey SJ, Kan SH, van den Ouweland AM, Hamel BC. FGFs, their receptors, and human limb malformations: clinical and molecular correlations. Am J Med Genet. 2002;112:266–78.

    Article  PubMed  Google Scholar 

  122. Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 2005;287:390–402.

    Article  CAS  PubMed  Google Scholar 

  123. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem. 1989;58:575–606.

    Article  CAS  PubMed  Google Scholar 

  124. Yu PJ, Ferrari G, Galloway AC, Mignatti P, Pintucci G. Basic fibroblast growth factor (FGF-2): the high molecular weight forms come of age. J Cell Biochem. 2007;100:1100–8.

    Article  CAS  PubMed  Google Scholar 

  125. Kwabi-Addo B, Ozen M, Ittmann M. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer. 2004;11:709–24.

    Article  CAS  PubMed  Google Scholar 

  126. Prudovsky I, Mandinova A, Soldi R, et al. The non-classical export routes: FGF1 and IL-1alpha point the way. J Cell Sci. 2003;116:4871–81.

    Article  CAS  PubMed  Google Scholar 

  127. Tekin M, Hismi BO, Fitoz S, et al. Homozygous mutations in fibroblast growth factor 3 are associated with a new form of syndromic deafness characterized by inner ear agenesis, microtia, and microdontia. Am J Hum Genet. 2007;80:338–44.

    Article  CAS  PubMed  Google Scholar 

  128. Muller WJ, Lee FS, Dickson C, et al. The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J. 1990;9:907–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tai AL, Sham JS, Xie D, et al. Co-overexpression of fibroblast growth factor 3 and epidermal growth factor receptor is correlated with the development of nonsmall cell lung carcinoma. Cancer. 2006;106:146–55.

    Article  CAS  PubMed  Google Scholar 

  130. Thomas KA. Transforming potential of fibroblast growth factor genes. Trends Biochem Sci. 1988;13:327–8.

    Article  CAS  PubMed  Google Scholar 

  131. Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M. Requirement of FGF-4 for postimplantation mouse development. Science. 1995;267:246–9.

    Article  CAS  PubMed  Google Scholar 

  132. Hebert JM, Rosenquist T, Gotz J, Martin GR. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell. 1994;78:1017–25.

    Article  CAS  PubMed  Google Scholar 

  133. Rubin JS, Osada H, Finch PW, et al. Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci U S A. 1989;86:802–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Finch PW, Rubin JS, Miki T, Ron D, Aaronson SA. Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science. 1989;245:752–5.

    Article  CAS  PubMed  Google Scholar 

  135. Werner S, Smola H, Liao X, et al. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science. 1994;266:819–22.

    Article  CAS  PubMed  Google Scholar 

  136. Alarid ET, Rubin JS, Young P, et al. Keratinocyte growth factor functions in epithelial induction during seminal vesicle development. Proc Natl Acad Sci U S A. 1994;91:1074–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Umemori H, Linhoff MW, Ornitz DM, Sanes JR. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell. 2004;118:257–70.

    Article  CAS  PubMed  Google Scholar 

  138. Tanaka A, Miyamoto K, Minamino N, et al. Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc Natl Acad Sci U S A. 1992;89:8928–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Miyamoto M, Naruo K, Seko C, et al. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol. 1993;13:4251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993;60:1–41.

    Article  CAS  PubMed  Google Scholar 

  141. Ezzat S, Asa SL. FGF receptor signaling at the crossroads of endocrine homeostasis and tumorigenesis. Horm Metab Res. 2005;37:355–60.

    Article  CAS  PubMed  Google Scholar 

  142. Cappellen D, De Oliveira C, Ricol D, et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet. 1999;23:18–20.

    CAS  PubMed  Google Scholar 

  143. Logie A, Dunois-Larde C, Rosty C, et al. Activating mutations of the tyrosine kinase receptor FGFR3 are associated with benign skin tumors in mice and humans. Hum Mol Genet. 2005;14:1153–60.

    Article  CAS  PubMed  Google Scholar 

  144. Grose R, Dickson C. Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev. 2005;16:179–86.

    Article  CAS  PubMed  Google Scholar 

  145. Espinal J. Mechanism of insulin action. Nature. 1987;328:574–5.

    Article  CAS  PubMed  Google Scholar 

  146. Clemmons DR. Structural and functional analysis of insulin-like growth factors. Br Med Bull. 1989;45:465–80.

    CAS  PubMed  Google Scholar 

  147. Clemmons DR. Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev. 1997;8:45–62.

    Article  CAS  PubMed  Google Scholar 

  148. Bach LA, Headey SJ, Norton RS. IGF-binding proteins—the pieces are falling into place. Trends Endocrinol Metab. 2005;16:228–34.

    Article  CAS  PubMed  Google Scholar 

  149. Ullrich A, Bell JR, Chen EY, et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature. 1985;313:756–61.

    Article  CAS  PubMed  Google Scholar 

  150. Ullrich A, Gray A, Tam AW, et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986;5:2503–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev. 2007;28:20–47.

    Article  CAS  PubMed  Google Scholar 

  152. Shier P, Watt VM. Primary structure of a putative receptor for a ligand of the insulin family. J Biol Chem. 1989;264:14605–8.

    CAS  PubMed  Google Scholar 

  153. Zhang B, Roth RA. The insulin receptor-related receptor. Tissue expression, ligand binding specificity, and signaling capabilities. J Biol Chem. 1992;267:18320–8.

    CAS  PubMed  Google Scholar 

  154. Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther. 2007;6:1–12.

    Article  CAS  PubMed  Google Scholar 

  155. Gohda E, Tsubouchi H, Nakayama H, et al. Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J Clin Invest. 1988;81:414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nakamura T, Nawa K, Ichihara A, Kaise N, Nishino T. Purification and subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett. 1987;224:311–6.

    Article  CAS  PubMed  Google Scholar 

  157. Nakamura T, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989;342:440–3.

    Article  CAS  PubMed  Google Scholar 

  158. Stoker M, Gherardi E, Perryman M, Gray J. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 1987;327:239–42.

    Article  CAS  PubMed  Google Scholar 

  159. Gherardi E, Sharpe M, Lane K, Sirulnik A, Stoker M. Hepatocyte growth factor/scatter factor (HGF/SF), the c-met receptor and the behaviour of epithelial cells. Symp Soc Exp Biol. 1993;47:163–81.

    CAS  PubMed  Google Scholar 

  160. Tamagnone L, Comoglio PM. Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors. Cytokine Growth Factor Rev. 1997;8:129–42.

    Article  CAS  PubMed  Google Scholar 

  161. Boccaccio C, Comoglio PM. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer. 2006;6:637–45.

    Article  CAS  PubMed  Google Scholar 

  162. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12:3657–60.

    Article  CAS  PubMed  Google Scholar 

  163. Peschard P, Park M. From Tpr-Met to Met, tumorigenesis and tubes. Oncogene. 2007;26:1276–85.

    Article  CAS  PubMed  Google Scholar 

  164. Yoshimura T, Yuhki N, Wang MH, Skeel A, Leonard EJ. Cloning, sequencing, and expression of human macrophage stimulating protein (MSP, MST1) confirms MSP as a member of the family of kringle proteins and locates the MSP gene on chromosome 3. J Biol Chem. 1993;268:15461–8.

    CAS  PubMed  Google Scholar 

  165. Wang MH, Wang D, Chen YQ. Oncogenic and invasive potentials of human macrophage-stimulating protein receptor, the RON receptor tyrosine kinase. Carcinogenesis. 2003;24:1291–300.

    Article  CAS  PubMed  Google Scholar 

  166. Cooper CS, Park M, Blair DG, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311:29–33.

    Article  CAS  PubMed  Google Scholar 

  167. Corso S, Comoglio PM, Giordano S. Cancer therapy: can the challenge be MET? Trends Mol Med. 2005;11:284–92.

    Article  CAS  PubMed  Google Scholar 

  168. Ronsin C, Muscatelli F, Mattei MG, Breathnach R. A novel putative receptor protein tyrosine kinase of the met family. Oncogene. 1993;8:1195–202.

    CAS  PubMed  Google Scholar 

  169. Gaudino G, Follenzi A, Naldini L, et al. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J. 1994;13:3524–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Snider WD. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell. 1994;77:627–38.

    Article  PubMed  Google Scholar 

  171. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci. 2005;6:603–14.

    Article  CAS  PubMed  Google Scholar 

  172. Chalazonitis A. Neurotrophin-3 in the development of the enteric nervous system. Prog Brain Res. 2004;146:243–63.

    Article  CAS  PubMed  Google Scholar 

  173. Ibanez CF. Neurotrophin-4: the odd one out in the neurotrophin family. Neurochem Res. 1996;21:787–93.

    Article  CAS  PubMed  Google Scholar 

  174. Chi MM, Powley TL. NT-4-deficient mice lack sensitivity to meal-associated preabsorptive feedback from lipids. Am J Physiol Regul Integr Comp Physiol. 2007;292:R2124–35.

    Article  CAS  PubMed  Google Scholar 

  175. Ebendal T. Function and evolution in the NGF family and its receptors. J Neurosci Res. 1992;32:461–70.

    Article  CAS  PubMed  Google Scholar 

  176. Glass DJ, Yancopoulos GD. The neurotrophins and their receptors. Trends Cell Biol. 1993;3:262–8.

    Google Scholar 

  177. Johnson D, Lanahan A, Buck CR, et al. Expression and structure of the human NGF receptor. Cell. 1986;47:545–54.

    Article  CAS  PubMed  Google Scholar 

  178. Barker PA. p75NTR is positively promiscuous: novel partners and new insights. Neuron. 2004;42:529–33.

    Article  CAS  PubMed  Google Scholar 

  179. Wehrman T, He X, Raab B, et al. Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron. 2007;53:25–38.

    Article  CAS  PubMed  Google Scholar 

  180. Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294:1945–8.

    Article  CAS  PubMed  Google Scholar 

  181. Nykjaer A, Lee R, Teng KK, et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature. 2004;427:843–8.

    Article  CAS  PubMed  Google Scholar 

  182. Klein R, Jing SQ, Nanduri V, O'Rourke E, Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991;65:189–97.

    Article  CAS  PubMed  Google Scholar 

  183. Klein R, Parada LF, Coulier F, Barbacid M. trkB, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMBO J. 1989;8:3701–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Lamballe F, Klein R, Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell. 1991;66:967–79.

    Article  CAS  PubMed  Google Scholar 

  185. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42.

    Article  CAS  PubMed  Google Scholar 

  186. Maness LM, Kastin AJ, Weber JT, et al. The neurotrophins and their receptors: structure, function, and neuropathology. Neurosci Biobehav Rev. 1994;18:143–59.

    Article  CAS  PubMed  Google Scholar 

  187. Kruttgen A, Schneider I, Weis J. The dark side of the NGF family: neurotrophins in neoplasias. Brain Pathol. 2006;16:304–10.

    Article  PubMed  Google Scholar 

  188. Douma S, Van Laar T, Zevenhoven J, et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430:1034–9.

    Article  CAS  PubMed  Google Scholar 

  189. Geiger TR, Peeper DS. Critical role for TrkB kinase function in anoikis suppression, tumorigenesis, and metastasis. Cancer Res. 2007;67:6221–9.

    Article  CAS  PubMed  Google Scholar 

  190. Bardelli A, Parsons DW, Silliman N, et al. Mutational analysis of the tyrosine kinome in colorectal cancers. Science. 2003;300:949.

    Article  CAS  PubMed  Google Scholar 

  191. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18:184–7.

    Article  CAS  PubMed  Google Scholar 

  192. Li Z, Tognon CE, Godinho FJ, et al. ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell. 2007;12:542–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tognon CE, Mackereth CD, Somasiri AM, McIntosh LP, Sorensen PH. Mutations in the SAM domain of the ETV6-NTRK3 chimeric tyrosine kinase block polymerization and transformation activity. Mol Cell Biol. 2004;24:4636–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Brzezianska E, Karbownik M, Migdalska-Sek M, et al. Molecular analysis of the RET and NTRK1 gene rearrangements in papillary thyroid carcinoma in the Polish population. Mutat Res. 2006;599:26–35.

    Article  CAS  PubMed  Google Scholar 

  195. Dahlback B. Protein S and C4b-binding protein: components involved in the regulation of the protein C anticoagulant system. Thromb Haemost. 1991;66:49–61.

    CAS  PubMed  Google Scholar 

  196. Manfioletti G, Brancolini C, Avanzi G, Schneider C. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol. 1993;13:4976–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Stitt TN, Conn G, Gore M, et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell. 1995;80:661–70.

    Article  CAS  PubMed  Google Scholar 

  198. Hafizi S, Dahlback B. Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J. 2006;273:5231–44.

    Article  CAS  PubMed  Google Scholar 

  199. Hafizi S, Dahlback B. Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases. Cytokine Growth Factor Rev. 2006;17:295–304.

    Article  CAS  PubMed  Google Scholar 

  200. Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell. 1988;54:787–93.

    Article  CAS  PubMed  Google Scholar 

  201. Yanagita M, Ishimoto Y, Arai H, et al. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. J Clin Invest. 2002;110:239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Angelillo-Scherrer A, de Frutos P, Aparicio C, et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat Med. 2001;7:215–21.

    Article  CAS  PubMed  Google Scholar 

  203. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–68.

    Article  CAS  PubMed  Google Scholar 

  204. O'Bryan JP, Frye RA, Cogswell PC, et al. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991;11:5016–31.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Streuli M, Krueger NX, Tsai AY, Saito H. A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila. Proc Natl Acad Sci U S A. 1989;86:8698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ohashi K, Mizuno K, Kuma K, Miyata T, Nakamura T. Cloning of the cDNA for a novel receptor tyrosine kinase, sky, predominantly expressed in brain. Oncogene. 1994;9:699–705.

    CAS  PubMed  Google Scholar 

  207. Graham DK, Dawson TL, Mullaney DL, Snodgrass HR, Earp HS. Cloning and mRNA expression analysis of a novel human protooncogene, c-mer. Cell Growth Differ. 1994;5:647–57.

    CAS  PubMed  Google Scholar 

  208. Sasaki T, Knyazev PG, Clout NJ, et al. Structural basis for Gas6-Axl signalling. EMBO J. 2006;25:80–7.

    Article  CAS  PubMed  Google Scholar 

  209. Budagian V, Bulanova E, Orinska Z, et al. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control. EMBO J. 2005;24:4260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wimmel A, Glitz D, Kraus A, Roeder J, Schuermann M. Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur J Cancer. 2001;37:2264–74.

    Article  CAS  PubMed  Google Scholar 

  211. Lay JD, Hong CC, Huang JS, et al. Sulfasalazine suppresses drug resistance and invasiveness of lung adenocarcinoma cells expressing AXL. Cancer Res. 2007;67:3878–87.

    Article  CAS  PubMed  Google Scholar 

  212. Wu YM, Robinson DR, Kung HJ. Signal pathways in up-regulation of chemokines by tyrosine kinase MER/NYK in prostate cancer cells. Cancer Res. 2004;64:7311–20.

    Article  CAS  PubMed  Google Scholar 

  213. Wu CW, Li AF, Chi CW, et al. Clinical significance of AXL kinase family in gastric cancer. Anticancer Res. 2002;22:1071–8.

    CAS  PubMed  Google Scholar 

  214. Holland SJ, Powell MJ, Franci C, et al. Multiple roles for the receptor tyrosine kinase axl in tumor formation. Cancer Res. 2005;65:9294–303.

    Article  CAS  PubMed  Google Scholar 

  215. Vajkoczy P, Knyazev P, Kunkel A, et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci U S A. 2006;103:5799–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Holder N, Klein R. Eph receptors and ephrins: effectors of morphogenesis. Development. 1999;126:2033–44.

    CAS  PubMed  Google Scholar 

  217. Pasquale EB. Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 2005;6:462–75.

    Article  CAS  PubMed  Google Scholar 

  218. Beckmann MP, Cerretti DP, Baum P, et al. Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors. EMBO J. 1994;13:3757–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Holland SJ, Gale NW, Mbamalu G, et al. Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature. 1996;383:722–5.

    Article  CAS  PubMed  Google Scholar 

  220. Clevers H, Batlle E. EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res. 2006;66:2–5.

    Article  CAS  PubMed  Google Scholar 

  221. Batlle E, Bacani J, Begthel H, et al. EphB receptor activity suppresses colorectal cancer progression. Nature. 2005;435:1126–30.

    Article  CAS  PubMed  Google Scholar 

  222. Nitkin RM, Smith MA, Magill C, et al. Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol. 1987;105:2471–8.

    Article  CAS  PubMed  Google Scholar 

  223. Hoch W. Formation of the neuromuscular junction. Agrin and its unusual receptors. Eur J Biochem. 1999;265:1–10.

    Article  CAS  PubMed  Google Scholar 

  224. Rupp F, Payan DG, Magill-Solc C, Cowan DM, Scheller RH. Structure and expression of a rat agrin. Neuron. 1991;6:811–23.

    Article  CAS  PubMed  Google Scholar 

  225. Jennings CG, Dyer SM, Burden SJ. Muscle-specific trk-related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases. Proc Natl Acad Sci U S A. 1993;90:2895–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ngo ST, Noakes PG, Phillips WD. Neural agrin: a synaptic stabiliser. Int J Biochem Cell Biol. 2007;39:863–7.

    Article  CAS  PubMed  Google Scholar 

  227. DeChiara TM, Bowen DC, Valenzuela DM, et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell. 1996;85:501–12.

    Article  CAS  PubMed  Google Scholar 

  228. Hilgenberg LG, Su H, Gu H, O'Dowd DK, Smith MA. Alpha3Na+/K + -ATPase is a neuronal receptor for agrin. Cell. 2006;125:359–69.

    Article  CAS  PubMed  Google Scholar 

  229. Airaksinen MS, Titievsky A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci. 1999;13:313–25.

    Article  CAS  PubMed  Google Scholar 

  230. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260:1130–2.

    Article  CAS  PubMed  Google Scholar 

  231. Grondin R, Gash DM. Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson's disease. J Neurol. 1998;245:35–42.

    Article  Google Scholar 

  232. Bespalov MM, Saarma M. GDNF family receptor complexes are emerging drug targets. Trends Pharmacol Sci. 2007;28:68–74.

    Article  CAS  PubMed  Google Scholar 

  233. Golden JP, Milbrandt J, Johnson Jr EM. Neurturin and persephin promote the survival of embryonic basal forebrain cholinergic neurons in vitro. Exp Neurol. 2003;184:447–55.

    Article  CAS  PubMed  Google Scholar 

  234. Airaksinen MS, Holm L, Hatinen T. Evolution of the GDNF family ligands and receptors. Brain Behav Evol. 2006;68:181–90.

    Article  PubMed  Google Scholar 

  235. Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer. 2007;7:35–45.

    Article  CAS  PubMed  Google Scholar 

  236. Sato TN, Qin Y, Kozak CA, Audus KL. Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci U S A. 1993;90:9355–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 2006;27:552–8.

    Article  CAS  PubMed  Google Scholar 

  238. Lee HJ, Cho CH, Hwang SJ, et al. Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J. 2004;18:1200–8.

    Article  CAS  PubMed  Google Scholar 

  239. Shim WS, Ho IA, Wong PE. Angiopoietin: a TIE(d) balance in tumor angiogenesis. Mol Cancer Res. 2007;5:655–65.

    Article  CAS  PubMed  Google Scholar 

  240. Vogel WF, Abdulhussein R, Ford CE. Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal. 2006;18:1108–16.

    Article  CAS  PubMed  Google Scholar 

  241. Kiedzierska A, Smietana K, Czepczynska H, Otlewski J. Structural similarities and functional diversity of eukaryotic discoidin-like domains. Biochim Biophys Acta. 2007;1774:1069–78.

    Article  CAS  PubMed  Google Scholar 

  242. Abdulhussein R, McFadden C, Fuentes-Prior P, Vogel WF. Exploring the collagen-binding site of the DDR1 tyrosine kinase receptor. J Biol Chem. 2004;279:31462–70.

    Article  CAS  PubMed  Google Scholar 

  243. Ongusaha PP, Kim JI, Fang L, et al. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J. 2003;22:1289–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Matsushime H, Wang LH, Shibuya M. Human c-ros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptorlike molecule. Mol Cell Biol. 1986;6:3000–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Sonnenberg E, Godecke A, Walter B, Bladt F, Birchmeier C. Transient and locally restricted expression of the ros1 protooncogene during mouse development. EMBO J. 1991;10:3693–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Charest A, Lane K, McMahon K, et al. Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). Genes Chromosomes Cancer. 2003;37:58–71.

    Article  CAS  PubMed  Google Scholar 

  247. Charest A, Wilker EW, McLaughlin ME, et al. ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res. 2006;66:7473–81.

    Article  CAS  PubMed  Google Scholar 

  248. Maru Y, Hirai H, Takaku F. Human ltk: gene structure and preferential expression in human leukemic cells. Oncogene Res. 1990;5:199–204.

    CAS  PubMed  Google Scholar 

  249. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994;263:1281–4.

    Article  CAS  PubMed  Google Scholar 

  250. Amin HM, Lai R. Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood. 2007;110:2259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Stoica GE, Kuo A, Powers C, et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem. 2002;277:35990–8.

    Article  CAS  PubMed  Google Scholar 

  252. Masiakowski P, Carroll RD. A novel family of cell surface receptors with tyrosine kinase-like domain. J Biol Chem. 1992;267:26181–90.

    CAS  PubMed  Google Scholar 

  253. Wilson C, Goberdhan DC, Steller H. Dror, a potential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases. Proc Natl Acad Sci U S A. 1993;90:7109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Oishi I, Suzuki H, Onishi N, et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells. 2003;8:645–54.

    Article  CAS  PubMed  Google Scholar 

  255. Schambony A, Wedlich D. Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell. 2007;12:779–92.

    Article  CAS  PubMed  Google Scholar 

  256. Chou YH, Hayman MJ. Characterization of a member of the immunoglobulin gene superfamily that possibly represents an additional class of growth factor receptor. Proc Natl Acad Sci U S A. 1991;88:4897–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Mossie K, Jallal B, Alves F, et al. Colon carcinoma kinase-4 defines a new subclass of the receptor tyrosine kinase family. Oncogene. 1995;11:2179–84.

    CAS  PubMed  Google Scholar 

  258. Hovens CM, Stacker SA, Andres AC, et al. RYK, a receptor tyrosine kinase-related molecule with unusual kinase domain motifs. Proc Natl Acad Sci U S A. 1992;89:11818–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Tamagnone L, Partanen J, Armstrong E, et al. The human ryk cDNA sequence predicts a protein containing two putative transmembrane segments and a tyrosine kinase catalytic domain. Oncogene. 1993;8:2009–14.

    CAS  PubMed  Google Scholar 

  260. Lu W, Yamamoto V, Ortega B, Baltimore D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell. 2004;119:97–108.

    Article  CAS  PubMed  Google Scholar 

  261. Bovolenta P, Rodriguez J, Esteve P. Frizzled/RYK mediated signalling in axon guidance. Development. 2006;133:4399–408.

    Article  CAS  PubMed  Google Scholar 

  262. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103:211–25.

    Article  CAS  PubMed  Google Scholar 

  263. Hudziak RM, Lewis GD, Winget M, et al. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol. 1989;9:1165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Kasprzyk PG, Song SU, Di Fiore PP, King CR. Therapy of an animal model of human gastric cancer using a combination of anti-erbB-2 monoclonal antibodies. Cancer Res. 1992;52:2771–6.

    CAS  PubMed  Google Scholar 

  265. Yu D. Mechanisms of ErbB2-mediated paclitaxel resistance and trastuzumab-mediated paclitaxel sensitization in ErbB2-overexpressing breast cancers. Semin Oncol. 2001;28:12–7.

    Article  CAS  PubMed  Google Scholar 

  266. Madhusudan S, Ganesan TS. Tyrosine kinase inhibitors in cancer therapy. Clin Biochem. 2004;37:618–35.

    Article  CAS  PubMed  Google Scholar 

  267. Kawamoto T, Sato JD, Le A, et al. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci U S A. 1983;80:1337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    Article  CAS  PubMed  Google Scholar 

  269. Ricart AD, Tolcher AW. Technology insight: cytotoxic drug immunoconjugates for cancer therapy. Nat Clin Pract Oncol. 2007;4:245–55.

    Article  CAS  PubMed  Google Scholar 

  270. de Klein A, van Kessel AG, Grosveld G, et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1982;300:765–7.

    Article  PubMed  Google Scholar 

  271. Druker BJ. Perspectives on the development of a molecularly targeted agent. Cancer Cell. 2002;1:31–6.

    Article  CAS  PubMed  Google Scholar 

  272. Joensuu H, Dimitrijevic S. Tyrosine kinase inhibitor imatinib (STI571) as an anticancer agent for solid tumours. Ann Med. 2001;33:451–5.

    Article  CAS  PubMed  Google Scholar 

  273. van Oosterom AT, Judson I, Verweij J, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: A phase I study. Lancet. 2001;358:1421–3.

    Article  PubMed  Google Scholar 

  274. Roussidis AE, Theocharis AD, Tzanakakis GN, Karamanos NK. The importance of c-Kit and PDGF receptors as potential targets for molecular therapy in breast cancer. Curr Med Chem. 2007;14:735–43.

    Article  CAS  PubMed  Google Scholar 

  275. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

    Article  CAS  PubMed  Google Scholar 

  276. Garcia-Echeverria C, Pearson MA, Marti A, et al. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell. 2004;5:231–9.

    Article  CAS  PubMed  Google Scholar 

  277. Shawver LK, Slamon D, Ullrich A. Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell. 2002;1:117–23.

    Article  CAS  PubMed  Google Scholar 

  278. Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol. 2007;25:884–96.

    Article  CAS  PubMed  Google Scholar 

  279. Amit I, Wides R, Yarden Y. Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Mol Syst Biol. 2007;3:151.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Aaronson M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grumolato, L., Aaronson, S. (2017). Positive Mediators of Cell Proliferation in Neoplasia: Growth Factors and Receptors. In: Coleman, W., Tsongalis, G. (eds) The Molecular Basis of Human Cancer. Humana Press, New York, NY. https://doi.org/10.1007/978-1-59745-458-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-458-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-934115-18-3

  • Online ISBN: 978-1-59745-458-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics